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Design optimization of ironless multi-stage axial-flux permanent 

magnet generators for offshore wind turbines 

Direct-driven ironless-stator machines have been reported to have low requirement 

to the strength of the supporting structures. This feature is attractive for offshore 

wind turbines where lightweight generators are preferred. However, to produce 

sufficient torque, ironless generators are normally designed at large diameters, 

which can be a challenge to the machine structural reliability. Ironless Multi-Stage 

Axial-Flux Permanent Magnet Generator (MS-AFPMG) embraces the advantages 

of ironless machines but has relatively small diameter. The objective of this article 

is to present the design optimization and performance investigation of the ironless 

MS-AFPMG. An existing design strategy, which employs 2D and 3D static finite 

element analyses and genetic algorithm for machine optimization, is improved 

with the aim to reduce the calculation load and calculation time. This improved 

design strategy is used to investigate the optimal ironless MS-AFPMG. Some 

intrinsic features of this kind of machine are revealed. 

Keywords: Genetic algorithm; ironless multi-stage axial-flux permanent magnet 

generators; machine optimization; offshore wind turbines 

1. Introduction 

The offshore wind power application demands high-power and lightweight generators for 

minimizing the cost. A promising candidate that can meet this need is the large-diameter 

ironless machine, which is characterized by the lightweight supporting structures, 

because of the negligible normal stress between the stator and the rotor (Spooner et al. 

2005, Mueller and McDonald 2009). However, as the outer diameter goes large, the 

challenges in structural design arise, and the machine reliability may be reduced. In 

addition, the installation, operation and maintenances for large-diameter structures are of 

the concern. An alternative solution to the axial-flux version of this ironless concept is to 

reduce the outer diameter but have multiple stages in the axial direction, namely ironless 

Multi-Stage Axial-Flux Permanent Magnet Generator (MS-AFPMG).  



Known with different names (multi-disc, multi-stack, multi-layered etc.), MS-

AFPMGs (mainly iron-cored machines) have been used in small-power applications 

where the machine radial dimension is constrained and high torque density is expected, 

e.g. ship propulsion (Caricchi, Crescimbini, and Honorati 1999), automobile (Javadi and 

Mirsalim 2008), plan landing gear (Dumas, Enrici, and Matt 2012), and small wind 

turbine (Gerlando et al. 2011). Interests in MW and multi-MW ironless MS-AFPMGs for 

wind power application have emerged (Kobayashi et al. 2009, McDonald, Benatmane, 

and Mueller 2011, Zhang et al. 2013), because of low supporting structure weight, 

modularity, and fault tolerance.  

As it has been reported in Javadi and Mirsalim (2008) and in Mueller, McDonald, 

and Macpherson (2005), the number of stages affects the choice of optimal iron-cored 

MS-AFPMG; furthermore, the output power of axial-flux machines is roughly 

proportional to the third power of the machine outer diameter (Capponi, Donato, and 

Caricchi 2012). Ironless MS-AFPMG will have more stages but smaller diameter than 

ironless single-stage (1S) AFPMG for the same rated power; therefore, the outer diameter 

and the number of stages are two important parameters to determine the optimal ironless 

MS-AFPMG. Unfortunately, the articles on the high-power ironless MS-AFPMGs have 

mainly focused on presenting and validating the concept (Kobayashi et al. 2009, 

McDonald, Benatmane, and Mueller 2011). So far, there have been no complete articles 

on the optimization of MS-AFPMG, though Zhang et al. (2013) presents some 

investigations with incomplete description of the modelling and calculation results. 

The authors previously developed a design strategy in which the 2D and 3D Static 

Finite Element Analyses (SFEAs) were driven by a Genetic Algorithm (GA) for machine 

optimization. This design strategy was successfully used in the optimization of 1S 

machines (Zhang et al. 2014), and the lab tests in a 50 kW ironless axial-flux permanent 



magnet generator (Figure 1) confirmed its high accuracy. However, it has the drawback 

of long calculation time.  

 

 

Figure 1.  50kW PM generator prototype (courtesy of SmartMotor AS). 

 

The use of permanent magnet machines in wind energy application is getting 

popular nowadays due to robustness and gearless low speed operation. The general 

electrical scheme of variable speed permanent magnet synchronous generator used in 

both onshore and offshore wind farms are shown in Figure 2. In offshore industry, it is 

required to use big machines to extract maximum power from wind as well as reducing 

the installation and maintenance costs. One example for such an application is an axial-

flux permanent magnet based wind generator shown in Figure 1 by targeting a 10 MW 

class wind turbine. An attempt has been made in this work to improve the design, as low 

weight machine is more feasible for offshore wind turbine application. In this article, a 

form factor is introduced and the corresponding optimization method is upgraded to 

improve the calculation efficiency. GA is used for its adaptability (Wang et al. 2016) and 

high probability of capturing the global minima (Touat et al. 2014). This improved 

optimization strategy is used to investigate the effects of outer diameter and number of 

stages on the ironless MS-AFPMG performance. This article is organized as follows: 



Section 2 introduces the specifications and types of the studied machines. The design and 

optimization methods are presented in Section 3. In section 4, the optimal ironless MS-

AFPMGs, in terms of highest torque density, highest efficiency, and multiple objectives, 

are investigated with the improved optimization method; Section 5 concludes this article. 

 

    Figure 2.  Electrical schematic for PM based wind generator. 

2. Machine specification and types 

The studied ironless MS-AFPMG consists of several identical stages. Each stage (Figure 

3) has two rotors and one ironless stator comprising coils casted in epoxy resin. The stator 

is segmented to physically separated parts, and each part carries the same power.  

 

 

Figure 3.  Machine dimension in cylindrical coordinate (𝑔 is the air gap thickness, ℎ𝑀 is PM thickness, ℎ𝑟𝑦 

is rotor yoke thickness, 𝑟𝑖 is inner radius, and 𝑟𝑜 is outer radius. 𝑟, 𝜃 and𝑧 are the axes of the cylindrical 

coordinate). 



Generator specification is given in Table 1. It has 9 segments in total. The coil fill 

factor is low due to the use of heavily twisted Litz wires for minimizing the eddy current 

loss in the winding. The material specific costs are obtained from the industrial experience 

of the authors, and for information only. The rotor iron loss is low in this low-speed 

machine; solid steel is therefore used in the rotor yoke. 

 

      Table 1. Generator specification. 

Parameters Value Type 

Rated power (MW) 10 Constant 

Number of phases 3 Constant 

Rated speed (rpm) 12 Constant 

Rated voltage (kV) 6.8 Constant 

Total number of segments 9 Constant 

Coil fill factor 0.5 Constant 

PM specific cost (€/kg) 80 Constant 

Iron specific cost (€/kg) 16 Constant 

Copper specific cost (€/kg) 27 Constant 

Outer diameter (m) 10-24 Free variable 

Number of poles, 𝑝 90-720 Free variable 

Ratio of PM width to pole pitch, 𝑘𝑀 0.1-0.8 Free variable 

Peak of the air gap 1st order flux density, 𝐵𝑝1 (T) 0.1-0.8 Free variable 

Current density, 𝐽 (A/mm2) 2-5 Free variable 

Air gap thickness, 𝑔 (mm) 0.15%𝐷𝑜 Constraint 

PM thickness, ℎ𝑀 (mm) 5-100 Constraint 

Rotor yoke thickness, ℎ𝑟𝑦 (mm) 5-100 Constraint 

Reference rotor yoke flux density, 𝐵𝑟𝑦
𝑟𝑒𝑓

 (T) 1.7 Constraint 

Electric load at inner diameter, 𝐸𝐿 (kA/m) 50 Constraint 

PM type N42SH -- 

Iron type Solid steel -- 

 

Three types of generators are considered, namely 

(1) 1S-AFPMG, 9 segments. 

(2) Two-stage (2S) AFPMG, 9 segments per stage, 2 segments from adjacent stages 

are connected parallelly to the same load, and therefore, the total number of 

segments is equivalent to 9. 



(3) Three-stage (3S) AFPMG, 3 segments per stage. 

3. Design and optimization method 

This section presents the improvement of an existing design strategy, with the aim of 

reducing the calculation load and shortening the calculation time. 

3.1. Limitation of the existing method 

Zhang et al. (2014) developed a design strategy in which the 2D and 3D SFEAs were 

driven by a GA for machine optimization. This design strategy requires the accurate 

calculation of a leakage coefficient (𝑘𝑙𝑒), which is used to calculate the fundamental back-

EMF and given below 

                                                 𝑘𝑙𝑒 =
∫ 𝐵𝑝1(𝑟)𝑟𝑑𝑟

𝑟𝑜
𝑟𝑖

𝐵𝑝1𝑙𝑟𝑎
,                                                     (1) 

where 𝑙  is coil active length, and 𝑟𝑎 = √𝑟𝑖𝑟𝑜 . At the radius 𝑟𝑎 , a plane called field-

computation plane is defined, because it is at this plane 2D SFEA is conducted to size the 

machine.  

Practically, it is impossible to perform the integration in (1) in the postprocessing 

of a SFEA, which does not contain the information about the harmonic components of 

the air gap field. A feasible way is to pick up evenly distributed lines in the air gap along 

the coil active length, then apply FFT to the field of each line, and finally sum up all the 

results. To ensure an accurate 𝑘𝑙𝑒, a large amount of FFTs are required in postprocessing, 

which is cumbersome and time-consuming. In addition, the calculation of 𝑘𝑙𝑒 requires 

multiple iterations (mainly 3D SFEAs) for obtaining a converged 𝑘𝑙𝑒. The number of 

iterations affects the total calculation time, and depends on how close the initial guess of 

𝑘𝑙𝑒 is to its practical value. However, in a multidimensional optimization, it is not easy to 



give a good estimation of the initial value so that the number of iterations is as small as 

possible. Therefore, for improving the calculation efficiency, it is necessary to investigate 

other methods.  

3.2. Proposed method and form factor 

According to Faraday’s law, the transient back-EMF for a 𝑁-turn full-pitch coil is given 

by 

                                     𝑒 = 𝑁
𝑑𝜙

𝑑𝑡
= 𝑁 ∑ 𝛷𝑝𝑘𝜔𝑘𝑠𝑖𝑛(𝜔𝑘𝑡 + 𝜑𝑘)𝑛

1 ,                                 (2) 

where 𝜙 is the total transient flux penetrating a one-turn coil, 𝑡 is time, 𝑛 is the total 

harmonics considered, 𝛷𝑝𝑘 is the peak value of the 𝑘𝑡ℎ flux harmonic, 𝜔𝑘 is electrical 

angular velocity, and 𝜑𝑘 is phase angle. 

To calculate the fundamental back-EMF, the corresponding 𝛷𝑝1  is needed. 

Normally this requires multiple SFEAs or a transient FEA to obtain the 𝜙 − 𝑡 curve, then 

a FFT is conducted to extract 𝛷𝑝1. However, this process is also time-consuming. 

In this study, a method is proposed to calculate 𝛷𝑝1 with reduced calculation load 

and calculation time. Three calculation steps are needed. 

Step 1: calculate the form factor (𝑘𝑓𝑓) at the field-calculation plan. 𝑘𝑓𝑓 is defined 

in (3). Its numerator calculates the flux (for a unit radial length) corresponding to the 

fundamental harmonic, and the denominator calculates the total flux (for a unit radial 

length). Therefore, the form factor, actually represents the percentage of fundamental flux 

in the total flux in the field-calculation plan. To get 𝐵𝑝1, one FFT operation is required to 

the field distribution along the field-calculation line (Figure 4). 



                                   𝑘𝑓𝑓 =

∫ 𝐵𝑝1 cos(
𝜋

𝜃𝑝
𝜃)𝑟𝑎𝑑𝜃

𝜃𝑝
2

−
𝜃𝑝
2

∫ 𝐵𝑧𝑟𝑎𝑑𝜃
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−
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2
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2

𝜋
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𝜃𝑝
2

−
𝜃𝑝
2

,                                       (3) 

where 𝜃𝑝 is the pole pitch in radians, 𝐵𝑧 is the 𝑧-component of the flux density for a space 

point. 

 

Figure 4.  Field-calculation line (line 1) in the field-calculation plane (ℎ is the thickness of the coil). 

 

Step 2: do a 2D field integration under one pole over the conductor plane cut by 

the field-calculation line, which gives the maximum flux (𝛷𝑝) penetrating the coil. The 

mathematical expression of this integration is  

                                              𝛷𝑝|(𝑧=0.25ℎ) = ∫ ∫ 𝐵𝑧

𝜃𝑝

2

−
𝜃𝑝

2

𝑟𝑜

𝑟𝑖
𝑟𝑑𝜃𝑑𝑟,                                    (4) 

Step 3: assume all the planes (parallel to the field-calculation plane) along the coil 

active length have the same form factor in the air gap field, then the fundamental flux can 

be given by 

                                                   𝛷𝑝1 = 𝑘𝑓𝑓𝛷𝑝|(𝑧=0.25ℎ).                                                (5) 



3.3. Upgraded design and optimization strategy 

The upgraded design and optimization procedure is illustrated in Figure 5. The machine 

sizing and parameter calculation are directly conducted in 2D and 3D SFEAs. Two 

iteration loops are used, one for voltage drop ratio 𝜅 (the magnitude difference of rated 

back-EMF and rated voltage), and another for 𝑘𝑓𝑓. This method is driven by the GA of 

the Matlab optimization toolbox.  

 

 

Figure 5.  Design procedure (𝜅 is voltage drop ratio, 𝑘𝑓𝑓 is form factor). 



 

For a single-objective optimization, the problem is formulated as   

    𝑓𝑜𝑝𝑡 = 𝑚𝑖𝑛𝑓𝑜𝑏𝑗(𝐷𝑜 , 𝑝, 𝑘𝑀, 𝐵𝑝1, 𝐽),         (6) 

where 𝑓𝑜𝑏𝑗  is the optimization objective, which can be the negative value of torque 

density or negative efficiency. Torque density and efficiency are defined in (7) and (8).  

                                             𝑇𝐷 =
𝑇

𝑀𝑏𝑖+𝑀𝑝𝑚+𝑀𝑐𝑢
                                                        (7) 

                                              𝜂 =
𝑃𝑜

𝑃𝑜+𝑃𝑏𝑖+𝑃𝑝𝑚+𝑃𝑐𝑢+𝑃𝑤𝑓
,                                                         (8) 

where 𝑀𝑏𝑖 , 𝑀𝑝𝑚 , 𝑀𝑐𝑢 , 𝑃𝑜 , 𝑃𝑏𝑖 , 𝑃𝑝𝑚 , 𝑃𝑐𝑢, and 𝑃𝑤𝑓  are back iron weight, permanent 

magnet weight, copper winding weight, machine output power, back iron loss, permanent 

magnet loss, copper winding loss, windage and friction loss, respectively. This fitness 

function is subjected to the following constraints 

            𝑔(𝐷𝑜 , 𝑝, 𝑘𝑀, 𝐵𝑝1, 𝐽) = 0.001𝐷𝑜                                                              (9) 

                                             5 ≤ ℎ𝑀(𝐷𝑜 , 𝑝, 𝑘𝑀, 𝐵𝑝1, 𝐽) ≤ 100                                                      (10) 

                                             5 ≤ ℎ𝑟𝑦(𝐷𝑜 , 𝑝, 𝑘𝑀, 𝐵𝑝1, 𝐽) ≤ 100                                                     (11) 

                                                  𝐵𝑟𝑦
𝑟𝑒𝑓

(𝐷𝑜, 𝑝, 𝑘𝑀, 𝐵𝑝1, 𝐽) = 1.7                                                        (12) 

                                                     𝐸𝐿(𝐷𝑜 , 𝑝, 𝑘𝑀, 𝐵𝑝1, 𝐽) = 50.                                                         (13) 

For a multi-objective optimization where torque density, efficiency, and cost are 

all taken into account (see section 4), the problem is managed and solved in this way. 

Torque density and efficiency are calculated sequentially, and compared to reference 



setting points. If they are greater than the reference setting points, then the cost of these 

populations are set to a default large number, so that they cannot be favoured and will 

have low impact on producing the next generations (This managing theme relies on the 

fact that optimizations with genetic algorithm are not gradient-dependent). If they are less 

than the reference setting points, then the machine cost is calculated. The machine with 

the lowest cost will be the optimal one in that generation.  

This is a mixed-integer (pole number must be an integer) optimization problem. 

Solving mixed-integer optimization is subject to limitations when choosing the proper 

mutation and crossover functions. Several calculation tests show that, in Matlab 

optimization toolbox, the default setting of mutation and crossover functions gives the 

best performance in term of computational efficiency. Therefore, these mutation and 

crossover functions are used throughout the whole calculations.     

3.4. Performance of the improved method 

To investigate the performance of the improved method, a random design case is used. 

Its task is to dimension a generator that meets the specifications in Table 1, with the given 

input in the upper part of the Table 2. Note that the aspect ratio is the ratio of machine 

axial length to its outer diameter, 𝜎 is the ratio of inner radius to outer radius, torque 

density is the rated torque divided by the weight of active parts (winding, PM, and rotor 

iron), and power cost is the cost of the active parts divided by the rated power.  

The calculation results (lower part of the Table 2) show that both methods can 

dimension the generator properly, and their design results are close to each other. 

However, with the improved method, the numbers of 2D and 3D SFEAs conducted are 

reduced, as well as the total calculation time. 

 



  Table 2. Method comparison. 

3.5. Population size  

Table 1 and 2 show that one integer (pole number) is used as the free variable. For this 

mixed integer optimization problem with five free variables, Matlab suggests the 

population size to be 50. This suggestion works fine, and normally after several 

generations, the fitness function will try to converge. However, at this moment, one may 

notice that, even though there is not much change in the value of the fitness function, the 

position (values of free variables) where the fitness function is obtained does vary a lot. 

In this study, the interest is not just to investigate the optimal designs, but also the 

positions corresponding to the optimal designs. Therefore, having enough populations is 

important for this study. In practical optimization, it is empirically decided to set the 

number of populations to 100 (stop criterion), so that the position (values of free 

variables) when the optimal design is obtained does not vary much. 

4. Optimization results 

The improved method is used to find the optimal designs in terms of highest torque 

 Parameters Improved method 
Method 

in Zhang et al. (2014) 

Calculation 

input 

Number of stages 3 

𝐷𝑜 (m) 10 

𝑘𝑀 0.73 

𝐵𝑝1 (T) 0.73 

𝑝 138 

𝐽 (A/mm2) 2 

Initial 𝑘𝑓𝑓 and 𝑘𝑙𝑒 𝑘𝑓𝑓 = 1 𝑘𝑙𝑒 = 1 

Calculation 

result 

Aspect ratio 0.127 0.124 

𝜎 0.794 0.777 

Torque density (Nm/kg) 37.06 35.60 

Efficiency (%) 96.9 96.9 

Power cost (€/W) 0.89 0.93 

Calculated 𝑘𝑓𝑓 and 𝑘𝑙𝑒 𝑘𝑓𝑓 = 0.983 𝑘𝑙𝑒 = 0.954 

Number of 2D SFEAs 271 378 

Number of 3D SFEAs 6 8 

Total calculation time 16.19 min. 20.83 min. 



density, highest efficiency, and multiple objectives. Note that the first point on the left 

side of each curve (Figure 6 and Figure 7) shows the first feasible design as the outer 

diameter grows with a step of 2 m, and for each machine type, the optimal designs at five 

different diameters are investigated. 

Four workstations (each has 2*Xeon X5687 3.6GHz, 24GB RAM) were used, and 

it took around two weeks to complete all the calculations. 

4.1. Optimal designs in term of highest torque density 

As depicted in Figure 6(a), the torque density increases as the diameter grows, this meets 

the expectation that large-diameter machines normally produce more torque. At small 

diameters (lower than 16 m), the more number of stages, the higher torque density the 

machines have.  

The other parameters are given in Figure 6(b)-(j). Machines with fewer number 

of stages present higher efficiency. As the diameter grows, the machine power cost 

decreases, and machines with fewer number of stages have higher power cost at low 

diameters. Above observations suggest that, in term of optimizing the torque density, it 

is better to build 1S machine at large diameter; if the outer diameter is constrained to a 

small value, MS solutions outperform the 1S solution while having lower efficiency and 

lower post cost. 

𝑘𝑀  and 𝐵𝑝1  decrease as the diameter grows, however, machines with fewer 

number of stages tend to have higher 𝑘𝑀 and 𝐵𝑝1. Note that 𝑘𝑀 is very low. It is because 

this is a single-objective optimization and the GA tries to search the designs that use more 

copper than iron and have high current loading. Prioritizing the reduction of the stator 

mass seems an effective way to improve torque density in this optimization case. Pole 



number increases as the diameter grows. Current density for 1S machine increases to its 

upper boundary (5 A/mm2), whereas it stays close to the upper boundary for MS 

machines. This can partly explain why 1S machine has higher efficiency than MS 

machines. As the diameter grows, the aspect ratio decreases and 𝜎 increases, indicating 

that machines become more like rings. Also note that as an important indication of the 

torque density, 𝜎 varies with the application (e.g. 0.7-0.8 recommended for ship 

propulsion, Caricchi, Crescimbini, and Honorati 1999). Figure 6(j) reveals the diameter-

dependency of 𝜎, which can be greater than 0.9 in this design case. The increase in the 

voltage drop ratio implies the increase in the reactance, and thus the decrease in the power 

factor. 

                 

                            (a)                                       (b)                                         (c)                                                             

               

                              (d)                                       (e)                                         (f) 

                 

                           (g)                                        (h)                                          (i) 



                                                              

                            (j) 

Figure 6.  Optimal designs in term of highest torque density. 

4.2. Optimal designs in term of highest efficiency 

As shown in Figure 7(a), the efficiency does not vary much with the increase in the 

diameter, whereas the more number of stages, the lower efficiency the machine has. This 

is mainly due to the higher copper loss in the MS machines. 

The other parameters are given in Figure 7(b)-(j). As the diameter increases, the 

torque density increases and the power cost decreases. Above observations suggest that, 

in term of optimizing the efficiency, it is better to build a 1S machine at a large diameter. 

Even if the diameter is constrained to a small value, machines with fewer stages still 

outperform those with more number of stages. 

As the diameter grows, 𝐵𝑝1 decreases, whereas 𝑘𝑀 almost stays constant around 

0.77, which is close to the result (0.78) in Wang et al. (2005) where the machine efficiency 

was optimized with Powell’s method. Pole number increases in all three machines. 

Current density for all three machines remains close to its lowest boundary (2 A/mm2), 

which helps to reduce copper loss. The aspect ratio and 𝜎 present the same trend as the 

previous case. Voltage drop ratio for 1S machine keeps almost stable, whereas it increases 

for MS machines. 

 



          

                (a)                                        (b)                                      (c)                                                                               

           

                         (d)                                         (e)                                       (f)                      

 

              

                (g)                                        (h)                                       (i) 

     

                (j) 

Figure 7.  Optimal designs in term of highest efficiency. 

 



4.3. Optimal designs in term of multiple objectives at outer diameter 18 m 

Practically, the determination of the optimal machines involves the trade-off of multiple 

objectives. The formulation of a multi-objective fitness function normally depends on the 

specific application and the optimization algorithm (Gao et al. 2012 and Wang et al. 

2013). In this study, the optimal machines that satisfy the following objectives at outer 

diameter 18 m are investigated:  

(1) The active weight is lower than 60 tons. 

(2) The efficiency is greater than 95%. 

(3) The power cost is the lowest. 

The best designs from all three machines are given in Table 3, which shows that 

the optimal design is a 2S machine because of the lowest power cost. This optimal design 

also has the highest torque density, but its efficiency is lower than that for the best 1S 

machine. This optimization case implies that there is no general rule to follow, i.e., 

prioritizing 1S solution or MS solutions, if multiple objectives come into the 

consideration.  

 

                   Table 3. Optimal designs in term of multiple objectives. 

 1S-AFPMG 2S-AFPMG 3S-AFPMG 

𝑘𝑀 0.4 0.42 0.39 

𝐵𝑝1 (T) 0.4 0.37 0.29 

𝑝 180 180 204 

𝐽 (A/mm2) 4.70 4.65 3.38 

Aspect ratio (%) 1.15 2.08 2.82 

𝜅 (%) 5.45 7.28 8.85 

𝜎 0.87 0.93 0.94 

Torque density (Nm/kg) 170.08 171.69 148.94 

Efficiency (%) 95.6 95.1 95.1 

Power cost (€/W) 0.17 0.16 0.18 

     



4.4. General remarks 

Following general conclusions can be drawn from the above three investigations: 

(1) The diameter and number of stages significantly affect the performance of ironless 

MS-AFPMG. 

(2) If there is no dimensional constraint, it is always better to design a machine at a 

larger diameter for higher torque density and lower power cost. But of course, the 

weight of the inactive parts (supporting structures) is not taken into account.  

(3) If there are dimensional constraints, the number of stages will affect the 

determination of the optimal machines at a fixed diameter. Generally, machines 

with more number of stages tend to have lower efficiency because of more copper 

losses. 

(4) In some cases, e.g., there is only one design objective for a small diameter, or 

there are multiple objectives, MS machines may outperform 1S machine. 

(5) Machines with high torque density tend to have high current density, small 𝑘𝑀, 

and low air gap field, whereas machines with high efficiency tend to have low 

current density, large 𝑘𝑀, and high air gap field. 

(6) Note that similar optimization results for 1S-AFPMG are reported in Zhang et al. 

(2014); however, compared to the results in this study, the positions (values of 

free variables) where the optimization results are obtained are different. This 

implies the importance of having enough populations and generations in this kind 

of mixed integer GA-based optimizations. 



5. Conclusions 

This article introduced a form factor to reduce the calculation load and shorten the 

calculation time of an existing design and optimization strategy. This upgraded strategy, 

which employs 2D and 3D SFEAs and GA for machine optimization, was used to 

investigate the optimal ironless MS-AFPMGs in terms of highest torque density, highest 

efficiency, and multiple objectives.  

It has been shown that, direct-driven ironless MS-AFPMG normally has low 𝐵𝑝1, 

low aspect ratio, large pole number, and high 𝜎, whereas 𝑘𝑀 and current density varies 

with the fitness function. Without considering the inactive weight, it is always preferred 

to build a large-diameter ironless MS-AFPMG. However, if there are dimensional 

constraints, the MS solutions may outperform 1S solution. When the design has to deal 

with multiple objectives, the optimization becomes complicated, and the case-by-case 

investigation is needed. 

Structural and thermal analyses were out of the scope of this study. Nonetheless, 

it should be pointed out that, maintaining the structural reliability and providing proper 

cooling arrangement are two crucial aspects in offshore wind turbines, which should be 

taken into account in the system design, and as a result, the above investigation results 

may be affected. 
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