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Abstract—In this paper, we propose a robust transceiver
design for nonregenerative multicasting multiple-input multiple-
output (MIMO) relay systems where a transmitter broadcasts
common message to multiple receivers with aid of a relay node
and the transmitter, relay and receivers are all equipped with
multiple antennas. In the proposed design, the actual channel
state information (CSI) is assumed as a Gaussian random matrix
with the estimated CSI as the mean value, and the channel
estimation errors are derived from the well-known Kronecker
model. In the proposed design scheme, the transmitter and relay
precoding matrices are jointly optimized to minimize the maximal
mean squared-error (MSE) of the estimated signal at all receivers.
The optimization problem is highly nonconvex in nature. Hence,
we propose a low complexity solution by exploiting the optimal
structure of the relay precoding matrix. Numerical simulations
demonstrate the improved robustness of the proposed transceiver
design algorithm against the CSI mismatch.

Index Terms—Nonregenerative MIMO relay, multicasting,
minimum mean-squared error (MMSE), robustness.

I. INTRODUCTION

In many practical wireless communication systems, one

source transmits common information to multiple destination

nodes simultaneously. These systems are also called multicast

broadcasting or multicasting systems. Recently, multicasting

systems have attracted much research interest, due to the

increasing demand for mobile applications such as location

based video broadcasting and streaming media.

The wireless channel has the multicast broadcasting nature,

hence it is very suitable for multicasting applications. How-

ever, the wireless system performance may be degraded due to

the channel fading and shadowing effects. By deploying multi-

antenna and beamforming techniques at the transmitter and

receiver, the channel shadowing effect can be mitigated [1].

Next generation wireless standards such as WiMAX 802.16m

and 3GPP LTE-Advanced have already included technologies

which enable better multicasting solutions based on multi-

antenna and beamforming techniques [2].

Due to the nonconvex nature of the problem, designing

the optimal beamforming vector for multicasting is difficult

in general. Capacity limits of multi-antenna multicast channel

have been studied in [3], and the channel spatial correlation

effect on the channel capacity has been investigated in [4].

In [5], algorithms for designing transmit beamforming vectors

for physical layer multicasting have been proposed with the

assumption that the channel state information (CSI) is avail-

able at the transmitter. Recently [6], achievable information

rate and relay precoder design of non-regenerative MIMO

relay networks are investigated under imperfect channel state

information (CSI) including channel estimation errors and

feedback/feedforward delay errors, without considering the

direct link from source to destination link.

In the proposed multicasting systems [2]–[5], single antenna

has been assumed at receiver. Recently multi-antenna receiver

design has been developed in [7]. In [8], the cooperative

protocol for multicast systems with multiple transmit antennas

is proposed with the assumption that the users are equipped

with single antenna.

In the case of long distance between the transmitter and

receivers, it is necessary to have a relay node between the

transmitter and receivers to efficiently mitigate the pathloss of

wireless channel. A two-hop MIMO relay multicasting system

has been proposed in [9] where one transmitter multicasts

common message to multiple receivers with the aid of a

relay node. The authors of [9] assume that the transmitter,

relay and receivers are all equipped with multiple antennas

and the full CSI of all channels is available at the relay.

However, in practical communication systems, the exact CSI

is not available and has to be estimated. There is always

mismatch between the true and estimated CSI. Hence, the

performance of the algorithm in [9] will degrade due to

such CSI mismatch. Robust transceiver design, which could

mitigate such performance degradation by taking the channel

estimation errors into account, is therefore of great importance

and highly desirable for practical applications [10].

In this paper, we propose a transceiver design algorithm for

nonregenerative multicasting MIMO relay systems which is

robust against the CSI mismatch. Similar to [9], we assume in

the proposed design that one transmitter broadcasts common

message to multiple receivers with the aid of a relay node and

the transmitter, relay and receivers are all equipped with multi-

ple antennas. However, different to [9], the true channel matri-

ces have Gaussian distribution, with the estimated channels as

the mean value, and the channel estimation errors follow the

well-known Kronecker model [10], [11]. Hence, we propose
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Fig. 1. Block diagram of a two-hop nonregenerative multicasting MIMO
relay system.

a robust algorithm to jointly design the transmitter, relay, and

receiver matrices to minimize the maximal mean-squared error

(MSE) of the signal waveform estimation among all receivers.

We would like to mention that although robust transceiver

design has been studied for single-user MIMO relay systems

[10]–[12], and multiuser MIMO relay systems [13], to the best

of our knowledge, robust transceiver design for multicasting

MIMO relay systems has not been investigated in existing

works.

II. SYSTEM MODEL

We consider a two-hop nonregenerative multicasting MIMO

relay system with L receivers as shown in Fig.1, where the

transmitter and relay have NS and NR antennas, respectively.

For simplicity, we assume that each receiver has ND antennas.

It is assumed that there is no direct link between the transmitter

and receivers. The data transmission takes place over two time

slots. The received signal at the relay during the first time slot

is given by

yr = H1Fx+ n1 (1)

where x ∈ CNB×1 is the transmitted signal vector which

satisfies E{xxH} = INB
, NB is chosen to satisfy NB ≤

min (NS , NR, ND), H1 ∈ CNR×NS is the MIMO channel

matrix between the transmitter and relay nodes, F ∈ CNS×NB

is the transmitter precoding matrix, n1 ∈ CNR×1 is the

additive noise vector at the relay. Here E{.} denotes the

statistical expectation and (.)H stands for the matrix Hermitian

transpose, and In denotes the n× n identity matrix.

In the second time slot, the relay node linearly precodes yr

with the relay precoding matrix G ∈ CNR×NR , and broadcasts

the linearly precoded signal vector xr = Gyr to all receivers.

The received signal at the ith receiver in the second time slot

is given by

yd,i = H2,iGH1Fx+H2,iGn1 + n2,i, i = 1, · · · , L (2)

where H2,i ∈ CND×NR is the MIMO channel matrix between

the relay and the ith receiver, n2,i ∈ C
ND×1 is the additive

noise vector at the ith receiver. We assume that all noises are

i.i.d with zero mean and unit variance. In general, channel

state information is required for optimal design of precoders.

However, in practice, the perfect CSI is not available at relay

or receivers due to channel mismatch. With this assumption,

the channel matrices H1 and H2,i can be modeled as [10]

H1 = Ĥ1 +∆1 (3)

H2,i = Ĥ2,i +∆2,i, i = 1, · · · , L (4)

where Ĥ1 and Ĥ2,i are the estimated transmitter-relay and

relay-receiver channels matrices, ∆1 and ∆2,i are the corre-

sponding channel estimation errors whose elements are zero

mean Gaussian random variables. In general, the channel

estimation error matrices, ∆1 and ∆2,i, depend on specific

channel estimation algorithms. In this paper, the channel

estimation algorithm proposed in [14] is used. The probability

density function (PDF) of ∆1 and ∆2,i can be modeled as

[15]

∆1 ∼ CN (0,Σ1 ⊗ΨT
1 ) (5)

∆2,i ∼ CN (0,Σ2,i ⊗ΨT
2,i) (6)

where ⊗ denotes the matrix Kronecker product, (·)T stands

for the matrix transpose, Σ1 and Ψ1 are the row and column

covariance matrices of ∆1, respectively, and Σ2,i and Ψ2,i are

the row and column matrices of ∆2,i, respectively. Here we

assume that ∆1 and ∆2,i are multivariate complex Gaussian

distributed with zero mean.

At the ith receiver, linear receiver Wi is applied to retrieve

the transmitted signal vector x. Hence, the estimated signal at

the ith receiver can be expressed as

x̃i = Wiyd,i, i = 1, · · · , L. (7)

Let us assume that Ps and Pr are the upper bound of the

transmitter and relay powers. Hence, the power constraints on

the transmitter and relay node can be expressed as

p(F) = tr
{
FFH

}
≤ Ps (8)

p(G,F) = tr
{
G(H1FF

HHH
1 + INR

)GH
}
≤ Pr (9)

where tr{.} is the trace of a matrix. In our proposed

transceiver design, our main aim is to minimize the maximum

MSE over all receivers. In the proposed desigh algorithm, we

derive the optimal transmitter and relay precoder matrices F,

G and ith receiver matrix Wi to minimized the maximum

MSE of the signal waveform estimation. Using (2) and (7),

the MSE of the signal waveform estimation at the ith receiver

is given by

Ji(Wi,G,F)

= tr
{(

WiH2,iGH1F− INB

)(
WiH2,iGH1F− INB

)H

+WiRn,iW
H
i

}
, i = 1, · · · , L (10)

where Rn,i is the equivalent noise covariance matrix given by

Rn,i =H2,iGGHHH
2,i + IND

. (11)



III. PROPOSED ROBUST TRANSCEIVER DESIGN

ALGORITHM

For any given precoding matrices F and G which satisfy

the power constraints at the transmitter and relay node (8) and

(9), the weight matrix Wi minimizing (10) is the well known

MMSE filter which is given by [16]

Wi =FHHH
1 GHHH

2,i

× (H2,iGH1FF
HHH

1 GHHH
2,i +Rn,i)

−1 (12)

where (·)−1 stands for the matrix inverse. After substituting

(12) into (10) and using the matrix inversion lemma [17], the

linear transceiver design problem can be formulated as

min
G,F

max
i

Ji(G,F) = tr
{[

INB
+ H̄H

i R−1
n,iH̄i

]−1}

s.t. tr
{
G(H1FF

HHH
1 + INR

)GH
}
≤ Pr

tr
{
FFH

}
≤ Ps (13)

where H̄i = H2,iGH1F.

Note that directly solving the min-max problem (13) is

difficult due to the complicated function of Ji(G,F). In

the following, we propose a low computational complexity

approach to solve the problem (13). It can be shown similar

to [18] that the optimal relay precoding matrix G for each

link can be expressed as

G = TDH (14)

where D = (H1FF
HH1 + INR

)−1H1F and T can be

considered as the precoding matrix at the transmit side of the

second-hop MIMO multicasting channel.

Using the relay precoding matrix G (14), the MSE of the

estimated signal at the ith receiver can be reformulated as the

sum of two individual MSE [18] functions

Ji(T,F) = tr
{[

INB
+ FHHH

1 H1F
]−1}

+ tr
{[

R−1 +THHH
2,iH2,iT

]−1}
,

i = 1, · · · , L (15)

where

R = FHHH
1

(
H1FF

HHH
1 + INR

)−1
H1F. (16)

Interestingly, the first term in (15) is the MSE of estimating x

from the signal vector (1) received at the relay node using the

MMSE receiver with the weight matrix D, while the second

term in (15) can be viewed as the increment of the MSE

introduced by the second-hop.

Using the relay precoding matrix G in (14), the power

consumption at the relay power can be rewritten as tr(TRTH)
and using the matrix inversion lemma [17], the matrix R (16)

can be expressed as

R=FHHH
1

(
INR

−H1F

×
(
FHHH

1 H1F+ INB

)−1

FHHH
1

)
H1F

=FHHH
1 H1F

(
FHHH

1 H1F+ INB

)−1

(17)

We can observe from (17) that with increase in the first-

hop SNR, the term FHHH
1 H1F approaches infinity and at

a (moderately) high SNR level, FHHH
1 H1F ≫ INB

. Hence,

R can be approximated as INB
for high SNR value [9], [18].

Using (15) and (17), the optimization problem (13) can be

reformulated as

min
F,T

max
i

tr
{[

INB
+ FHHH

1 H1F
]−1}

+tr
{[

INB
+THHH

2,iH2,iT
]−1}

s.t. t r
{
TTH

}
≤ Pr,

tr
{
FFH

}
≤ Ps (18)

It can be noticed from (18) that T has no influence on the

first term of the objective function (18) and F has no influence

on the second term as well. Hence, the optimization problem

(18) can be divided into the following transmitter precoding

matrix optimization problem

min
F

tr
{[

INB
+ FHHH

1 H1F
]−1}

s.t. tr
{
FFH

}
≤ Ps (19)

and the relay precoding matrix optimization problem can be

expressed as

min
T

max
i

tr
{[

INB
+THHH

2,iH2,iT
]−1}

s.t. tr
{
TTH

}
≤ Pr. (20)

Lemma 1: Let f(X) be a function of random matrix

X having finite expectation E(X). If f is a matrix-convex

function, then E[f(X)] � f(E[X]) [19].

A. Optimization of F

It can be noticed from (19) that the problem is reduced to

find the optimal precoding matrix F to minimize the MSE of

the received signal at the relay node. However, as the exact

H1 is unknown, we cannot solve the problem (19). If we

optimize F based on Ĥ1, there might be great performance

degradation due to the mismatch between H1 and Ĥ1. Thus,

instead of minimizing M(F) = tr{(INB
+FHHH

1 H1F)
−1},

we consider minimizing E∆1
{M(F)}, where the expectation

is over the distribution of ∆1.

However, the exact expression of E∆1
{M(F)} is difficult

to obtain. Using the channel estimation error model (3) and

Lemma 1, the lower bound of E∆1
{M(F)} can be written as

E∆1
{M(F)} � tr

{(
INB

+ FHE∆1
{HH

1 H1}F
)−1}

= tr
{(

INB
+ FHAF

)−1}
(21)

where A = ĤH
1 Ĥ1 + tr

{
Σ1

}
Ψ1. Using (21), the source

precoding matrix optimization problem can be written as

min
F

tr
{(

INB
+ FHAF

)−1}

s.t. tr
{
FFH

}
≤ Ps. (22)



Let us introduce the eigenvalue decomposition (EVD) of

the matrix A

A = UAΛAU
H
A (23)

where the diagonal elements of A are sorted in a decreasing

order. It can be shown that the solution to the problem (22) is

given by

F = UA,1Λ
1

2

F (24)

where UA,1 contains the leftmost NB columns of UA asso-

ciated with the largest NB eigenvalues and ΛF is a diagonal

matrix. After substituting (23) and (24) into (22), the problem

(22) can be written as the following optimization problem with

scalar variables

min
{λF,i}

NB∑

i=1

1

1 + λF,iλA,i

(25)

s.t.

NB∑

i=1

λF,i ≤ Ps (26)

λF,i ≥ 0, i = 1, · · · , NB (27)

where λF,i and λA,i, i = 1, · · · , NB, are the ith diago-

nal elements of ΛF and ΛA, respectively, and {λF,i} =
{λF,1, · · · , λF,NB

}. The problem (25)-(27) has the well-

known water-filling solution as [20]

λF,i =
1

λA,i

(√
λA,i

µ
− 1

)+

, i = 1, · · · , NB

where (x)+ = max(x, 0), and µ > 0 satisfies the nonlinear

equation of
∑NB

i=1
1

λA,i

(√λA,i

µ
− 1
)+

= Ps.

B. Optimization of T

It can be seen from (20) that the problem is reduced to find

the optimal precoding matrix T to minimize the maximal MSE

of the received signal at the receiver. Similar to the approach

we used to optimize F, using the channel estimation error

model (4) and Lemma 1, we have

E∆2,i
{tr{(INB

+THHH
2,iH2,iT)−1}}

� tr
{[

INB
+THE∆2,i

{HH
2,iH2,i}T

]−1}

= tr{(INB
+THBiT)−1} (28)

where Bi = ĤH
2,iĤ2,i + tr

{
Σ2,i

}
Ψ2,i. Using (28), the

problem of optimizing T can be written as

min
T

max
i

tr
{[

INB
+THBiT

]−1}

s.t. tr
(
TTH

)
≤ Pr. (29)

Using the matrix identity tr
{[

Im + Am×nBn×m

]−1}
=

tr
{[

In + Bn×mAm×n

]−1}
+ m − n the min-max problem

(29) can be written as

min
Q

max
i

tr
{[

IND
+B

1

2

i QB
1

2

i

]−1}
+NB −ND

s.t. tr
(
Q
)
≤ Pr

Q � 0 (30)

where Q = TTH and Q � 0 denotes that Q is a positive

semidefinite (PSD) matrix. Let us introduce a PSD matrix

Zi with
[
IND

+ B
1

2

i QB
1

2

i

]−1
� Zi, i = 1, · · · , L and a real

valued slack variable ρ. By using the Schur complement [19],

the optimization problem (30) can be reformulated as

min
ρ, Q, Zi

ρ

s.t. tr
(
Zi

)
≤ ρ, i = 1, · · · , L

tr
(
Q
)
≤ Pr(

Zi IND

IND
IND

+B
1

2

i QB
1

2

i

)
� 0, i = 1, · · · , L

Q � 0. (31)

The optimization problem (31) is a convex semidefinite pro-

gramming (SDP) problem and the convex programming tool-

box CVX [21] can be used to solve the SDP problem.

IV. SIMULATION RESULTS

In this section, we investigate the performance of the

proposed robust transceiver optimization algorithm for MIMO

relay multicasting systems through numerical simulations. We

simulate a two-hop nonregenerative MIMO relay multicasting

system with L = 2 and NS = NR = ND = 4. The

information-carrying symbols are generated from QPSK con-

stellations. The signal-to-noise ratios (SNRs) of the first-hop

and second-hop channels are defined as SNR1 = Ps/NS and

SNR2 = Pr/NR, respectively. We set SNR1 = 30dB. In the

simulations, the correlation matrices of the channel estimation

errors are modeled as [10]

Ψ1 =Ψ2,i =




1 α α2 α3

α 1 α α2

α2 α 1 α
α3 α2 α 1


 , i = 1, · · · , L

Σ1 =Σ2,i = σ2
e




1 β β2 β3

β 1 β β2

β2 β 1 β
β3 β2 β 1


 , i = 1, · · · , L

where 0 ≤ α, β ≤ 1 are correlation coefficients, and σ2
e

measures the variance of the estimated error.

The estimated channel matrices Ĥ1 and Ĥ2,i are generated

based on the following distributions

Ĥ1 ∼ CN
(
0,

1− σ2
e

σ2
e

Σ1⊗ΨT
1

)

Ĥ2,i ∼ CN
(
0,

1− σ2
e

σ2
e

Σ2,i⊗ΨT
2,i

)
, i = 1, · · · , L.

We compare the performance of the proposed robust min-max

MSE algorithm, namely the robust algorithm with the non-

robust min-max MSE [9] algorithm in terms of both MSE

and BER.

In the first simulation example, we investigate the BER

performance of the proposed algorithm at different levels

of σ2
e . Fig. 2 shows the BER performance of the proposed

robust algorithm versus SNR2 while fixing SNR1 = 30dB,
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Fig. 2. Example 1: BER versus SNR2 while fixing L = 2, NB = NS =

NR = ND = 4, SNR1 = 30dB.
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Fig. 3. Example 2: NMSE versus SNR2 while fixing L = 2, NB = NS =

NR = ND = 4, SNR1 = 30dB.

L = 2, NB = NS = NR = ND = 4. It can be seen from

Fig. 2 that over the whole range of SNR2, the proposed robust

algorithm significantly outperforms the non-robust algorithm

in terms of BER.

In the second simulation example, we study the MSE per-

formance of the proposed algorithm at different levels of σ2
e . In

Fig. 3, we compare the performance of the proposed algorithm

in terms of MSE versus SNR2 while fixing SNR1 = 30dB,

L = 2, NB = NS = NR = ND = 4. It can be noted from

Fig. 3 that the proposed robust algorithm shows better MSE

performance over the whole range of SNR2 than the existing

non-robust algorithm.

V. CONCLUSIONS

We have addressed the challenging issue of precoding

matrices optimization for a MIMO relay multicasting system

where the actual CSI is assumed as a Gaussian random matrix

with the estimated CSI as the mean value, and estimated error

of the channels is derived from the well-known Kronecker

model. In the proposed design scheme, the transmitter and

relay precoding matrices are jointly optimized to minimize

the maximal MSE of the estimated signal at all receivers.

Numerical simulations demonstrate that the proposed ro-

bust transceiver design algorithm outperforms the non-robust

transceiver design algorithm.
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