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New Insights Into Optimal Acoustic Feedback
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Abstract—In this paper we present new insights into the bias
problem for acoustic feedback cancellation when a probe signal
approach is used. The optimum solution of the feedback canceler
is not the feedback path but the product of the feedback path
and the sensitivity function and hence, the solution is biased.
The novelty of this paper also consists of the derivation of
the conditions for unbiased feedback cancellation when a probe
signal is used as input to the canceler. An adequate delay in the
forward path is necessary to reduce, or remove the bias term.
The theoretical analysis is verified with simulation results.

Index Terms—Acoustic feedback, bias problem, feedback can-
cellation, hearing aids, probe injection

I. INTRODUCTION

Acoustic feedback poses a problem in the normal operation
of assistive listening devices due to the acoustic coupling
between the loudspeaker and microphone. The microphone
picks up the loudspeaker signal and re-amplifies it creating an
acoustic loop, thus the signal traveling around this loop gets
stronger for each round trip potentially causing stability prob-
lems. The feedback limits the maximum stable gain (MSG)
achievable, it deteriorates the sound quality by producing a
distortion of the incoming signal, and it is a cause of instability
in acoustic systems working in closed-loop [1].

The use of feedback cancellation techniques is currently a
preferred option to tackling the feedback problem [1]. The
main challenge with traditional feedback cancelers is the well
known bias problem. The biased solution in the canceler’s
estimate is caused by the correlation between the loudspeaker
and incoming signal [1], [2]. It generally leads to a poor
system performance and in the worst-case scenario, it causes
the cancellation system to fail. Different techniques have been
proposed to reduce this correlation including phase modifica-
tion, frequency shifting, non-linear processing, decorrelating
pre-filters, probe noise injection, and the use of multiple
microphones to estimate the incoming signal and remove it
prior to adapting the canceler [1], [3]–[6].

In this paper we study the adaptive feedback canceler’s
optimal solution when a probe signal is injected into the
system. With a probe signal injection approach, either the
probe or the loudspeaker signal can be used as an input to
the adaptive canceler [3]. If the loudspeaker signal is used as
an input to the canceler then the optimal solution results in
the well known bias problem, where the correlation between
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Figure 1. Injected probe signal approach in acoustic feedback cancellation.

the loudspeaker signal and incoming signal is of interest.
However, if the probe signal, designed to be uncorrelated with
the incoming signal, is used to drive the adaptive canceler, then
it is accepted that the solution is an unbiased estimate of the
feedback path see [3], [7] and references therein. However, we
show theoretically that the injection of a probe signal, with the
probe signal used as an input to the adaptive canceler, does
not guarantee an unbiased solution. Thus, new insights into
the bias problem is presented.

Section II presents the system description for acoustic
feedback cancellation using a probe signal approach. Then,
Section III establishes theoretical expressions for the optimum
solution and presents new insights into the bias problem. Once
the biased solution is recognized, conditions under which it
can be reduced, or removed, is proposed. Finally, Section IV
produces simulations results that verify the derived theoretical
expressions.

In this paper, column vectors are emphasized using lower
letters in bold. The superscript T denote vector transpose,
the expectation operator is denoted by E {·}, the discrete-
time index is denoted by n, and the symbol q−1 denotes
the discrete-time delay operator q−1u(n) = u(n − 1). All
signals are real-valued, and we denote all signals as discrete-
time signals with time index n for convenience.

II. SYSTEM DESCRIPTION

Fig. 1 illustrates a feedback canceler for an assistive listen-
ing device with a single microphone.
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The feedback path between the loudspeaker and the
microphone is assumed to be a discrete-time finite im-
pulse response (FIR) filter with coefficient vector g =
[ g0 g1 ... gLg−1 ]T with filter length Lg which is rep-
resented as a polynomial transfer function G(q) in q as
G(q) = gTq with q = [ 1 q−1 ... q−Lg+1 ]T . This
representation allows the following notation, for the filtering
of y(n) by G(q) [8],

G(q)y(n) = gTy(n). (1)

Typically, the acoustic feedback path G(q) contains a delay
dg that arises from the processing delay of the analogue-
to-digital converter (ADC) and digital-to-analogue converter
(DAC), i.e., G(q) = q−dg Ḡ(q) with Lg = dg + Lḡ [9].
The feedback path G(q) is therefore modeled as a cascade
of a delay dg and a feedback canceler Ĝ(q). The adaptive
filter Ĝ(q) identifies and tracks changes to the feedback path
producing an estimate f̂(n) of the feedback signal f(n).
The loudspeaker and microphone signals are y(n) and m(n),
respectively. The incoming signal is denoted by u(n) and the
feedback signal is denoted by f(n) = G(q)y(n). The estimate
f̂(n) is subtracted from the microphone signal m(n).

A probe noise signal w(n), that is designed to be uncorre-
lated to u(n), is injected into the loudspeaker signal y(n) and
used as the input to the feedback canceler Ĝ(q).

The forward path K(q) represents the regular signal pro-
cessing path of the device (i.e., a frequency-specific gain,
compression and/or noise reduction). In this paper, K(q) has
a delay dk of at least one sample and provides the system with
a constant gain K̄(q) = K̄, i.e., K(q) = q−dkK̄(q).

A standard criterion to find an optimal set of coefficients is
to minimize the mean square error (MSE) cost function

J(ĝ) = E{|e(n)|2}. (2)

From Fig. 1, it can be seen that

m(n) = u(n) +G(q)y(n), (3)

and

y(n) = K(q)
(
m(n)− Ĝ(q)y(n)

)
+ w(n). (4)

where we set dg = 0 to simplify equations but it does not
impact the results. Nevertheless, the delay dg will be used in
our simulations presented in Section IV.

Substituting (3) into (4)

y(n) = S(q)K(q)u(n) + S(q)w(n)

= S(q)ȳ(n) (5)

where S(q) is the sensitivity function

S(q) =
1

1−K(q)
(
G(q)− Ĝ(q)

) , (6)

ȳ(n) = K(q)u(n) + w(n), (7)

and

e(n) = m(n)− Ĝ(q)w(n). (8)

The frequency function

K(ω)
(
G(ω)− Ĝ(ω)

)
(9)

in (6) is often referred to as the “loop-response”, where the
spectrum of K(q) and G(q) is denoted by K(ω) and G(ω),
respectively, with ω = [0, 2π]. It plays a central part in acoustic
feedback control [1], [3]. The Nyquist criterion states that
oscillations may occur if the magnitude response of the loop-
gain is greater than unity and the loop-phase is a multiple
of 2π [10]. It can be seen in (6) that the channel G(q) may
lead to system instability. To avoid this, the amount of gain
K(q) has to be limited. However, if the feedback canceler
Ĝ(q) can resemble G(q), then the system is brought closer to
its desired response S(q) = 1. Ideally, Ĝ(q) = G(q) which
results in S(q) = 1.

III. NEW INSIGHTS INTO THE BIAS PROBLEM USING PROBE
SIGNAL INJECTION

This section highlights the fact that there is some bias in
the optimal solution when a probe signal is used to drive
the feedback canceler. Furthermore, it presents conditions in
which the solution’s bias can be reduced or even removed
completely.

Fig. 1 illustrates the case where w(n) is the input to the
feedback canceler. Minimizing the mean square error (MSE)
cost function in (2), i.e.,

δE
{
|e(n)| 2

}
δĝT

= 0 (10)

results in the Wiener filter [11]

ĝo = E
{
w(n)wT (n)

}−1
E {w(n)m(n)} (11)

where

w(n) =
[
w(n) w(n− 1) . . . w(n− Lĝ + 1)

]T
(12)

and ĝo is the set of optimal coefficients.
Using (5)-(7) we expand (3) as

m(n) = u(n) +AFIR(q)ȳ(n) + (A(q)−AFIR(q)) ȳ(n)

= u(n) + K̄ ·AFIR(q)u(n− dk) +AFIR(q)w(n) + ξ(n)
(13)

where

A(q) = G(q)S(q) (14)

is a causal IIR filter, which may be specified as A(q) = a0 +
q−1a1 + . . .. The filter AFIR(q) corresponds to the first Lĝ
coefficients of A(q) and

ξ(n) = (A(q)−AFIR(q)) ȳ(n)

= q−LĝAr(q)ȳ(n) (15)

represents the residual impulse response q−LĝAr(q).
Assuming a sufficient-order filter and using (13) in (11)

results in

ĝo = aFIR + E
{
w(n)wT (n)

}−1
E {w(n)ξ(n)}

= aFIR + E
{
w(n)wT (n)

}−1
E
{
w(n)wT

ar (n− Lĝ)
}

(16)
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as w(n) and u(n) are uncorrelated by construction of w(n).
In this paper we assume that w(n) is a white Gaussian noise
sequence and, as a result, E

{
w(n)wT (n− Lĝ)

}
= 0 and

(16) becomes

ĝo = aFIR. (17)

However, if the probe noise signal w(n) is
masked/shaped to reduce its influence on sound quality,
then E

{
w(n)wT

ar (n− Lĝ)
}

may not be zero and, as a
result, will contribute to the bias term in (16).

Therefore, assuming that w(n) is white Gaussian noise, it is
shown that the optimal solution of the feedback canceler Ĝ(q)
is not the feedback path G(q) but the product of the feedback
path G(q) and the sensitivity function S(q) and hence, the
solution is biased.

A. Conditions for identifiability

Now, we present conditions for identifiability where the
desired solution Ĝ(q) = G(q) can be obtained from (17).

If we write (14) as

A(q) = G(q) + q−dkA(q)K̄(q)E(q) (18)

where

E(q) =
(
G(q)− Ĝ(q)

)
(19)

then, it can be seen from (18) that as a delay, dk, is contained in
K(q)E(q) the first dk coefficients of A(q) coincide with the
impulse response of the feedback path

[
g0 . . . gdk−1

]
,

i.e., the first dk coefficients will not be biased. If dk ≥ Lg then
G(q) can be completely obtained from the first dk coefficients
of A(q), such as,

A(q) = g0 + . . .+ q−Lg+1gLg−1 + . . .+ q−dk+1adk−1 + . . .
(20)

As we have influence over the design of the forward path,
we can vary dk to reduce, or even remove, the bias term.
Thus, by using an adequate delay, dk ≥ Lg , the solution is
decoupled and an unbiased optimal solution for G(q) can be
obtained from using the first Lg coefficients of A(q), assuming
sufficient filter order.

Lower gain values for K(q) could also be used to reduce
the bias term, however, this goes against assistive listening
devices’ main objective which is to provide its users with an
amplified signal to compensate for their hearing impairment.

If we define

Â(q) = Ĝ(q)S(q) (21)

as the canceler, then Â(q) is an unbiased estimate of A(q). It
is interesting to consider what happens to the biased solution
in (18) as Â(q)→ A(q). From multiplying both sides of (19)
by S(q) we can write E(q) as

E(q) =
A(q)− Â(q)

1 +K(q)
(
A(q)− Â(q)

) (22)

then as Â(q)→ A(q) it can be seen from (22) that E(q)→ 0
and, as such, the bias term is reduced over time if the system
converges, i.e. A(q)→ G(q).

IV. SIMULATION VERIFICATION

The goal of the simulations is to verify the derived theo-
retical expression in (18). To assess the performance of the
algorithm, the misalignment between the true feedback path
G(q) and A(q) is used. The misalignment curve is defined, in
the frequency domain, as

∆(G(q), A(q)) = 10 log 10

´ π
0
|G(ω)−A(ω)|2 dω´ π

0
|G(ω)|2 dω

. (23)

In order to perform simulations, experiments were first
conducted to obtain the feedback path’s characteristics and
variations. The assistive listening device used in our experi-
ments was a Sensear ear plug SP1x with 16 kHz sampling
rate with a modified firmware to suit our real time experiment
requirements. Measurements were conducted in an anechoic
chamber on a Brï¿œel & Kjï¿œr head and torso simulator
type 4128C. The device’s microphone was set to record while
a Gaussian white noise probe signal w(n) was being injected
into the loudspeaker to excite the feedback path. With such
recordings we were able to identify the path G(q). Included
in the feedback path are the characteristics of the loudspeaker,
the microphone, the ADC, the DAC.

To reduce complexity, the feedback path is therefore mod-
eled as a cascade of a delay dg and a shorter feedback canceler.
The delay dg was set to 32 samples, Lg = 96, and Lĝ = 48.
The last 16 samples of G(q) is not modeled as the main
impulse is contained within the first 80 samples, see Fig.
2 for the feedback path characteristics. The incoming signal
u(n) = 0.

The update of the feedback canceler’s coefficients, ĝ, with
step size µ = 0.01 is performed using the normalized least-
mean-square (NLMS) algorithm

ĝ(n) = ĝ(n− 1) +
µ

w(n)Tw(n)
w(n)e(n). (24)

It can be seen from (18) that K(q) = q−dkK̄(q) has an
influence on the amount of bias in the solution. It is expected
that the higher the gain K̄(q) the more the solution will be
biased. Also, the longer the delay dk in K(q), the less the
solution will be biased. With this in mind, we present two
plots. In the first plot, the delay is fixed to its lowest value
dk = 1 and the gain is varied. In the second plot, the gain
K̄(q) is fixed and the delay dk varied. Each misalignment
curve presented is an average of 50 simulations run where in
each run a new realization of white Gaussian noise sequence
is drawn for w(n).

Fig. (3) presents the first plot where the gain is varied from
0 dB to 30 dB in 10 dB increments. The delay dk is kept
constant dk = 1. As the gain is increased, the misalignment
between G(q) and A(q) increases. If K(q) were to be an open
circuit, A(q) = G(q) as per (18).

Fig. (4) presents the second plot where the delay dk is
varied. Here the gain is kept constant K̄(q) = 30 dB. As the
delay is increased, the misalignment curves shifts downwards
as K(q)E(q) and G(q) are decoupled. If dk ≥ Lg the
misalignment value is −∞, which is not shown in the plot.
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Figure 2. Feedback path characteristics.
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Figure 3. Misalignment between G(q) and A(q) with varying gain K̄ with
dk = 1. As the gain is increased, the misalignment between G(q) and A(q)
increases. If K(q) were to be an open circuit, A(q) = G(q).

With both plots, it can be seen that the misalignment
between G(q) and A(q) is reduced over time as E(q) → 0
resulting in A(q)→ G(q).

V. CONCLUSION

This paper presented new insights into the bias problem for
acoustic feedback cancellation when a probe signal is used.
It was presented, using theoretical results, that the feedback
canceler’s optimum solution is not the feedback path G(q)
but the product of the feedback path G(q) and the sensitivity
function S(q) and hence, the solution is biased.

The novelty of this paper also consists of the derivation
of the conditions for unbiased feedback cancellation when
a probe signal is used as input to the canceler. It was
demonstrated that by manipulating the forward path K(q) the
bias term resulting from the sensitivity function S(q) can be
reduced, and even removed. Lower gains and/or higher delays
in the forward path results in a reduction of the solution’s bias.
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Figure 4. Misalignment between G(q) and A(q) with varying delay dk
with K̄ = 30 dB. As the delay is increased, the misalignment curves
shifts downwards as K(q)E(q) and G(q) are decoupled. If dk ≥ Lg the
misalignment value is −∞ (not shown in the plot). Also note that dg = 32.
Plot with dk = 1 is presented in Fig. (3).

However, assistive listening devices normally require higher
gains, so it is recommended to add an adequate delay, ideally
dk ≥ Lg , to deal with the biased solution. Thus, by adding an
adequate delay in the forward path an unbiased solution can
be obtained.

The theoretical analysis was verified with simulation results.
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