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Abstract 14 

Detailed knowledge about the long-term interface of climate and rainfall variability is essential 15 

for managing agricultural activities in Eastern African countries. To this end, the space-time 16 

patterns of decadal rainfall variability modes over East Africa and their predictability potentials 17 

using Sea Surface Temperature (SST) are investigated. The analysis includes observed rainfall 18 

data from 1920-2004 and global SSTs for the period 1950-2004. Simple correlation, trend and 19 

cyclical analyses, Principal Component Analysis (PCA) with VARIMAX rotation and Canonical 20 

Correlation Analysis (CCA) are employed. The results show decadal signals in filtered observed 21 

rainfall record with 10 years period during March - May (MAM) and October – December 22 

(OND) seasons. During June - August (JJA), however, cycles with 20 years period are common. 23 

Too much / little rainfall received in one or two years determines the general trend of the decadal 24 

mean rainfall. CCA results for MAM showed significant positive correlations between the 25 

VARIMAX-PCA of SST and the canonical component time series over the central equatorial 26 

Indian Ocean. Positive loadings were spread over the coastal and Lake Victoria regions while 27 

negative loading over the rest of the region with significant canonical correlation skills. For the 28 

JJA seasons, Atlantic SSTs had negative loadings centred on the tropical western Atlantic Ocean 29 

associated with the wet / dry regimes over western / eastern sectors. The highest canonical 30 

correlation skill between OND rainfall and the Pacific SSTs showed that El Niño-Southern 31 

Oscillation (ENSO)/La Niña phases are associated with wet/dry decades over the region. 32 

 33 
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1. Introduction 35 

Decadal variations of extreme climate impact negatively on agricultural production resulting into 36 

massive losses amongst the affected communities and thus deleterious effect on the economy of 37 

Eastern African countries. Understanding the nature and causes of decadal fluctuations in 38 

climate system is an unresolved problem, partly because observed records are relatively short or 39 

sparse and because dynamical processes that operate on this time-scale have not firmly been 40 

understood. Over the region, much attention has been devoted to how and why precipitation 41 

varies in association with the El Niño-Southern Oscillation (ENSO) (Mutemi 2003; Indeje et.al., 42 

2000, Ogallo 1988) at diurnal, seasonal and inter-annual time-scales.  The impacts of persistent 43 

decadal climate anomalies have far reaching socio-economic implications due to persistent 44 

climate stress that they would impose on the regional socio-economic systems. 45 

 46 

For example, decadal scale fluctuations are crucial because they control water supplies, affect 47 

biota, and may modulate higher-frequency events such as floods and droughts. Furthermore, low 48 

frequency natural variability is important in global climate change issues because it may obscure 49 

human influences on hydrological variations. Climate parameters have been observed in a global 50 

scale during the last several decades (Ryan and Bromwich, 2006; Wu and Liu, 2005, Becker et 51 

al. 2010). Examples of such variability include the North Atlantic Oscillations (NAO) 52 

phenomenon; drought in California, parts of Australia, or the Sahel and Eastern Africa. Their 53 

influences have been observed in lake level fluctuations and inter-annual rainfall records 54 

(Awange et al., 2008). Impacts of such decadal variability of extreme climate events would 55 

generally require more challenging mitigation strategies. Mitigation and adaptation to any of the 56 

climate anomalies would depend on the magnitude and duration of the persistence of the 57 

anomalies. Mitigation and/or adaptation measures are likely to involve investment in 58 

infrastructure and changes in policy due to the potentially large magnitude of their effects. 59 
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 60 

Over Eastern Africa region, Omondi (2005), Schreck and Semazzi (2004), Nicholson (1996, 61 

1998, 2000) have shown some evidence of decadal climate variability in the observed rainfall 62 

records. Using Climate Prediction Centre (CPC) Merged Analysis of Precipitation (CMAP) data 63 

and the Principle Component Analysis (PCA) method, Schreck and Semazzi (2004) investigated 64 

variability on the October to December (OND) rainfall over Eastern Africa region based on the 65 

period 1961–2001.  They found that the most dominant mode (EOF1 explaining about 29% of 66 

variance) to correspond to ENSO climate variability.  They associated the second empirical 67 

orthogonal function (EOF2 explaining about 14% of variance) to decadal trend mode. From their 68 

results, the long-term rainfall variability was characterized by positive anomalies over the 69 

northern sector of Eastern Africa and opposite conditions over the southern sector. 70 

 71 

Several studies in the region on inter-annual variations of East African rainfall and their possible 72 

linkages to global Sea Surface Temperature (SST) changes have been undertaken (e.g., Indeje et 73 

al., 2000; Mutemi, 2003; Mutai 2003; Owiti, 2005; Nyakwada 2009). The main focus of these 74 

studies were especially on the relation between rainfall anomalies and SST perturbations over 75 

the equatorial Pacific and Indian Ocean basins, and to some extent, the Atlantic Ocean (Ogallo et 76 

al, 1988; Nicholson and Entekhabi, 1987; Mutai and Ward, 2000; Indeje et al., 2000; Saji et al., 77 

1999; and Goddard and Graham 1999). These studies determine the dominant role played by the 78 

ENSO anomaly patterns in influencing the inter-annual variabilities of the equatorial East Africa 79 

rainfall (Ogallo et al, 1988; Indeje et al., 2000). Note that the zonal temperature gradient over the 80 

equatorial Indian Ocean, often referred to as the Indian Ocean Dipole Mode (IOD) (Saji et al., 81 

2003a and 2003b), therefore, the coupled IOD-ENSO influence have also been linked to some of 82 

the wettest periods in the region, such as rainfalls in 1961 and 2006 (Black et al., 2003; Black, 83 

2004; Bowden and Semazzi, 2007).  84 

 85 
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In this paper, we present attempts made to examine decadal trend mode in observed East Africa 86 

rainfall records and its possible linkage to decadal patterns of global SST records. Our 87 

investigation extends the previous studies by considering a relatively longer period of rainfall 88 

data from 1920-2004 and global SSTs for the period 1950-2004 and studying their interactions 89 

within their overlap periods. We made use of advanced multivariate statistical analysis 90 

techniques such as VARIMAX-PCA and Canonical Correlation Analysis (CCA) which allow an 91 

in-depth investigation of possible correlations between decadal SST and rainfall variations.  92 

 93 

The remainder of the paper is organized as follows: In the next section, we briefly describe the 94 

data and method used in the study. The trend results are presented in Section 3. Section 4 and 5 95 

summarize the main decadal patterns of rainfall and SST variabilities. The link between SSTs 96 

and decadal rainfall patterns over the region is discussed in Section 6. Section 7 gives a 97 

summary, the major findings and conclusion of the study.  98 

2. Data and methods  99 

2.1 Data 100 

In this analysis, monthly observed rainfall data was obtained from IGAD Climate Prediction and 101 

Applications Centre (ICPAC), the Kenya Meteorological Department (KMD), Tanzania 102 

Meteorological Agency (TMA) and Uganda Meteorological Department (UMD). The observed 103 

monthly rainfall data used are from 37 stations (Figure 1) unevenly distributed over East Africa 104 

(Omondi 2005). Also used in the study are reconstructed Reynolds SST data for the period 1950 105 

to 2004 obtained from the United States (US) National Oceanic and Atmospheric Administration 106 

(NOAA) official website
1
. The data are archived as the optimum interpolation (OI), version 2, 107 

global SST values on 1
o
 by 1

o
 grid points. The SST values include in-situ and satellite SSTs 108 

                                                            
1  http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.oisst.v2.html  

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.oisst.v2.html
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observations plus those SSTs that are simulated by sea-ice cover. More on the SST data can be 109 

obtained from Reynolds and Marsico 1993, Reynolds and Smith 1994, and Reynolds et al. 2002. 110 

 2.2 Method  111 

Since our attention is primarily on the lower frequency (long wave-length) variabilities, a 9-point 112 

binomial coefficient filter is employed to smooth both the rainfall and SST time series so that all 113 

fluctuations of period shorter than 10 years are considerably suppressed. A Graphical method is 114 

then used to extract decadal trend modes while Mann-Kendall and the Spearman rank tests 115 

statistical methods that are based on rank statistics (Kendall 1976; Kendall and Stuart 1961; 116 

WMO 1966) were employed to test the significance of the observed trends.  117 

 118 

The PCA method is a statistical signal extraction technique based on diagonalization of the auto-119 

covariance or auto-correlation matrix of a data set (Wilks, 1995). In this study, the VARIMAX 120 

rotated version of PCA was applied to define dominant modes of variability of the low passed 121 

rainfall and SST series. The VARIMAX rotation is selected to improve the physical 122 

interpretation of the PCA modes and to derive more localized components (see, e.g., Richman, 123 

1986).  To define the relationship between the dominant modes of decadal rainfall variabilities 124 

and SST variations in the global oceans, the Canonical Correlation Analysis (CCA) technique 125 

was adopted. Unlike PCA, CCA is a statistical technique that identifies a sequence of pairs of 126 

patterns in two multivariate data sets and constructs sets of transformed variables by projecting 127 

the original data onto these patterns (Barnett and Preisendorfer (1987); Wilks (1995); Barnston 128 

and He (1996); Von Storch and Zwiers (1999); and Mutemi (2003)). CCA, therefore, can be 129 

regarded as a multivariate statistical technique that calculates linear combinations of a set of 130 

predictors that maximizes relationships, in a least square sense, to the similarly calculated linear 131 

combinations of a set of predictand. The patterns are chosen such that new variables defined by 132 

projection of the two data sets onto these patterns exhibit maximum correlation but are 133 



6 

 

uncorrelated with the projections of the data onto any of the other identified patterns. The 134 

superiority of CCA over other several techniques is its ability to operate on full fields of 135 

information and to objectively define the most highly related patterns of predictor and predictand 136 

(Barnett and Preisendorfer 1987; Indenje et al., 2000; Mutemi 2003; Omondi 2005; Nyakwada 137 

2009).  138 

Canonical Correlation Analysis (CCA) goes beyond the limitation of the simple correlation 139 

analysis by taking into consideration the full space and time dimensions of the fields analyzed 140 

and this is an exceptional skill capability of the technique. It also gives an extensive set of 141 

diagnostics that offer some insight into the physical base of the relationships used to form the 142 

predictions. The advantages of CCA include ability to operate on full fields of information and 143 

to objectively define the most highly related pattern of predictors and predictands. Its capability 144 

to define both the space and time evolution of the predictor dataset that best predicts an 145 

associated pattern of a predictand is efficient compared to simple correlation technique.     146 

In this study, CCA was used to select pairs of spatial patterns of the two space / time 147 

dependent variable sets (VRIMAX-PCA of rainfall data and SSTs) such that the (time 148 

dependent) pattern amplitudes are optimally correlated. The strength and the sign of the 149 

corresponding patterns are described by the canonical correlation coordinates. Since the 150 

canonical series are normalized to unit variance, the canonical correlation patterns are expressed 151 

in the units of the variable they represent and indicate the "typical" strength of the mode of co-152 

variation described by the patterns. The correlation between the canonical coordinates measures 153 

the degree of association between the canonical patterns of predictor and predictand variables ( 154 

Xoplaki et al., 2003). 155 
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A CCA transform pairs of original centred data vectors x
/
 and y

/

 into sets of new 156 

variables, called canonical variates,
m

v  and
m

w , defined by the dot products  157 
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This construction of canonical variates is similar to that of the principal components 
m

u , in that 161 

each is a linear combination of (a sort of weighted average) of elements of the respective data 162 

vectors x
/
 and y

/

.  These vectors of weights, am
andbm

, are called the canonical vectors.  One 163 

data- and canonical-vector pair need not to have the same dimension as the other. Therefore, in 164 

Equations 1a, vectors x
/
 and am

 each have I elements, while those of y
/

 and bm
in Equation 165 

1b have J elements each.  m  is the number of canonical pairs, so called „canonical variates‟ that 166 

can be extracted from the two data sets. In practice, m is derived as m = min (I, J).  167 

The canonical vectors am
andbm

are the unique choices that result in the canonical 168 

variates having the properties 169 
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Equation 2a shows that each of the m successive pairs of canonical variates exhibits no greater 174 

correlation than the previous pair. These correlations between the pairs of canonical are called 175 
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the canonical correlations,rC
. Equation 2b states that each canonical variate is uncorrelated 176 

with all of the other canonical variates except its specific counterpart in the m
th

 pair. Finally, 177 

Equation 2c states that each canonical variate has unit variance. 178 

3. Results of the Decadal Trend Modes 179 

 180 
Some examples of patterns of the decadal rainfall trend for both the smoothed and unsmoothed 181 

time series obtained are shown in Figure 2a and Figure 2b associated with the long rainy season 182 

of March-May (MAM). The ten year cycles are clearly discernible in the smoothed series. These 183 

modes are better illustrated when the time series of smoothed series are plotted as anomalies in 184 

Figure 3a and Figure 3b. The trend mode for the third short rainfall season associated with June-185 

August (JJA) rainfall shows that western and coastal parts of the region receive substantial 186 

amount of rainfall, which unlike MAM and OND seasons, are dominated by twenty years cycles 187 

(Figure 3b). The major decadal signals observed from the graphs indicated that for MAM 188 

seasons, the wet decades were 1921-1930, 1961-1970 and the late 1981-90 while the dry ones 189 

included 1931-1940, 1941-1950, 1951-1960, early parts of 1971-1980 and 1991-2000. 190 

 191 
There were significant spatial variations in the observed decadal trend signals, with no 192 

noticeable decade with one specific dominant trend over the whole region. This could be 193 

attributed to the influence of regional and local factors including the existence of many large 194 

inland water bodies and complexity in the East Africa topography. 195 

 196 

The short rainfall season of OND is the second major rain season for the region. The extreme 197 

events in one or two years within a decade influenced the general trend of the decadal mean 198 

rainfall. Example is the 1997/98 El Niño related floods that made 1991-2000 be a wet decade in 199 

most zones. The 1961/1970 decade was wet due to the heavy rainfall that was received over 200 
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most parts of the region in 1961/1962 that resulted into the rise of Lake Victoria level by over 201 

2.5 meters (Yin and Nicholson, 1998, Nicholson, 1998, Phoon et al., 2004). 202 

The major decadal signals observed for OND seasons were wet decades of the late 1941-1950, 203 

the early 1961-1970, the early 1981-1990 and 1991-2000 while the dry ones included 1921-204 

1930, 1931-1940, early part of 1951-1960 and 1971-1980 (Figure 4 ).  For the JJA seasons, the 205 

major decadal variability was relatively longer than ten years. The wet decades included 1941-206 

1950, 1951-1960, 1981-1990, 1991-2000 while the dry ones included 1921-1930, 1931-1940, 207 

1961-1970, 1971-1980 for the western parts of the region (Figure 4). The scenario was exactly 208 

opposite along the coastal region, i.e., the wet decades were generally 1921-1930, 1931-1940, 209 

1961-1970, 1971-1980 while the dry decades were 1941-1950, 1951-1960, 1981- 1990, 1991-210 

2000. There was significant spatial variation in the observed trends (Figure 4). 211 

In order to establish whether the observed decadal trend and cyclic modes are significant, 212 

statistical tests on the differences amongst some decadal means and the Spearman rank were 213 

carried out (Maritz, 1981). A comparison of decadal means and with the long-term seasonal 214 

rainfall means showed that the decades of 1921-1930 and 1961-1970 were generally wet while 215 

1931-1940, 1951-1960 and 1991-2000 were generally dry during the long rainfall (MAM) 216 

seasons of the study period. In order to establish whether there was existence of any spatially 217 

coherent decadal differences, the spatial patterns of the various means were plotted in Figure 4. 218 

Large scale wet / dry cases were, however, evident for a few specific years. Similar to the MAM 219 

seasons as already stated, this could have been due to the influence of regional and local factors, 220 

e.g., including the existence of many large inland water bodies and topographical complexity in 221 

the region (Mukabana and Pielke 1996; Anyah 2005). 222 

4. Results of VARIMAX-PCA analysis on rainfall 223 

4.1. VARIMAX-PCA of OND rainfall 224 
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The VARIMAX-PCA method was applied on OND rainfall time series. According to the Scree, 225 

Kaiser's criterion and North et al. (1982) sampling errors tests, the first five modes accounting 226 

for 81.3% of total OND rainfall variance are statistically significant (see Table 1 and Figure 5). 227 

For brevity, here, we only show the first 3 dominant modes of OND seasons in Figure 6. The 228 

first mode is extended nearly in all parts of the region except the south-eastern segment of 229 

Tanzania. Schreck and Semazzi (2004) also found a remarkably similar distribution of EOF 230 

loadings, although their analysis covered slightly a bigger domain. The variance in EOF1 of 231 

Schreck and Semmazi (2004) was 28%, compared with 15.9% of our corresponding mode. This 232 

difference may be attributed to the larger region covered by their analysis. The corresponding 233 

PC time series (Figure 6 (b)) indicates some consistence with ENSO variability (so called `cold 234 

ENSO' signal in Ogallo et al. (1988) and Indeje et al. (2000)). According to PC1, the average 235 

cold ENSO events were pronounced in the decades 1980-1990 and this brought about general 236 

depressed rainfall in the region corresponding to the high peaks of the time series. The reverse 237 

condition is represented by PC2 in Figure 6(b) with a dipole spatial pattern over the region. The 238 

third mode is related to the decadal trend mode (Bowden and Semazzi, 2007), showing positive 239 

mode over the north and south of Lake Victoria and a decrease mainly over the eastern coastal 240 

regions (Figure 6 (c)). 241 

 242 
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4.2. VARIMAX-PCA of MAM rainfall 243 

 We also applied VARIMAX-PCA on MAM rainfall seasons. Results of the Scree and North et 244 

al. (1982) test show that the first six modes accounting for about 80% of variance are statistically 245 

significant (see Table 2 and Figure 7). Like in the previous section, we only show the first three 246 

dominant modes. Mode one (EOF1 and PC1) depicts the north-south rainfall dipole brought 247 

about by the movement of the Sun from one hemisphere to the other i.e. due to the Inter-Tropical 248 

Convergence Zone (ITCZ), while the second mode was related to the positive IOD mode and the 249 

decadal trend  in EOF3 and PC3 (Figure 8). 250 

4.3. VARIMAX-PCA of JJA rainfall 251 

Implementing VARIMAX-PCA on JJA seasons show that parts of the equatorial sector, 252 

covering northern Tanzania, western parts of East Africa and the coastal areas generally get 253 

rains. Figure 9 and Table 3 indicate that seven PCA modes, accounting for about 93% of the 254 

total JJA variance, were significant.  255 

Figure 10(a) displays the spatial pattern for the Eastern Africa region in which EOF 1 explains 256 

28.6% of the total JJA variance. The distribution of the loadings is characterised by moisture 257 

incursion from the Congo air basin causing wetness in the western sector of the region 258 

(Nyakwada 2010). The corresponding time series (Figure 10(b) exhibits both strong inter-annual 259 

variability and low-frequency background variability. The evolution of the background 260 

variability has positive trend in 1980/1990 decade which reached its highest levels during the 261 

early 1998. There is indication of subsequent decline in the amplitude during the late 1990s and 262 

early 2000. Combined interpretation of the Regional-EOF1 distribution of loadings (Figure 263 

10(a)) and the corresponding time series suggests that the western sector of Eastern Africa had 264 

1980/1990 decade wet while the southern sector drier. The southern sector during this season is 265 

usually dry and this could have resulted into the negative anomalies.  266 

5. Results for S-mode VARIMAX-PCA analysis for the specific basins’ SST anomalies 267 
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 268 
This section presents the results of implementing the VARIMAX-PCA method on the SST 269 

records of some specific oceanic basins during OND, JJA and MAM seasons in order to 270 

compare the SST behaviours of these oceanic basins with the rainfall patterns over East Africa. 271 

The derived VARIMAX solutions are summarized in Table 4 and the derived spatial patterns are 272 

shown in Figure 11. The first mode of VARIMAX-PCA derived from decadal SST of the Indian 273 

Ocean during OND seasons accounts for 38% of the total variance of SST. The positive loading 274 

is centred on the tropical equatorial Indian Ocean and the negative centre is located over the 275 

south-western Indian Ocean (Figure 11 (a)). The Indian Ocean EOF 1 for MAM (Figure 11(c)), 276 

however, had a dipole structure like pattern of SSTs with positive centre near the Indo-Pacific 277 

area while negative centre located near the south-western Indian Ocean. The total variance 278 

accounted for this mode is 45.4% (Table 4).  279 

Figure 12 (a) shows the spatial patterns for Atlantic Ocean during the same OND seasons. 280 

Generally, the equatorial basin of Atlantic shows positive loadings while its northern sector 281 

exhibits negative loadings with the highest variance of 64.1% during OND season. It is 282 

noteworthy that the OND season had the first and second variances taking nearly all the total 283 

variances (Table 4). In other seasons, three variances explained nearly the total variances. This 284 

could be attributed to the strong and alternating north-south dipole pattern reflecting the known 285 

patterns of the Atlantic Tropical Dipole Oscillation (Chang and Li, 1997).   In the Pacific Ocean, 286 

the first dominant mode for the four seasons seems to have positive / negative loadings over 287 

equatorial eastern / western ocean basin regions (Figure 13) that seem to reflect the ENSO 288 

variability mode (Ogallo et al., 1988; Indeje et al., 2000; Mutemi, 2003; Owiti, 2005). This 289 

dipole structure like pattern of SSTs has negative centre near the Indo-Pacific area while the 290 

positive centre was located near the eastern equatorial Pacific Ocean.  291 
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The results seem to reflect the El Niño / La Niña variability mode (Tanimoto et al, 1993; 292 

Trenberth and Hurrel, 1994 and Mantua et al, 1997).  293 

6. Results from canonical correlation analysis (CCA) 294 

In this section, the strength and the sign of the corresponding patterns are described by the 295 

canonical correlation coordinates. The CCA method takes into account analysis of the full space 296 

and time dimensions of the two fields (rainfall and SSTs) which make it superior comparing to a 297 

conventional correlation analysis. 298 

6.1. CCA results for MAM rainfall seasons 299 

The average December-February (DJF), JJA and MAM SSTs from the various ocean basins 300 

were independently correlated with MAM rainfall time series. MAM is the major rainfall season 301 

for the region and the skill of its predictability is still very low. Three significant modes were 302 

discernible for the Indian Ocean basin with DJF and MAM SSTs. The canonical modes 303 

accounting for about 72% and 86.8% respectively of the total variance were selected as inputs 304 

into the CCA model. Figures 14 and 15 give examples of the CCA loading patterns for the DJF 305 

and MAM SSTs of the Indian Ocean respectively. An area of high significant positive 306 

correlation between the mentioned SSTs and the canonical component time series was evident 307 

over the central equatorial Indian Ocean (Figure 14 (a)). Similarly, there was significant 308 

correlation at most locations with positive loadings over the coastal and Lake Victoria regions 309 

and a negative loading over the rest of the region (Figure 14 (b)). The canonical correlation skill 310 

between rainfall and the predictor SST modes was about -0.79 (Figure 14 (c)). The canonical 311 

correlation score between rainfall and the predictor SST modes was 0.72 and 0.96 for one and 312 

zero lags, respectively. The canonical scores of the pattern with warm SST in the Indian Ocean 313 

were increasing since the mid 1970s whereas the negative coupling was decreasing. Power et al., 314 

(1998) in his analysis of decadal climate variability showed that decadal variability in Indian 315 

Ocean SST south of 40
0
 is associated with rainfall variability over East Australia. 316 
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6.2. Results for JJA rainfall season 317 

The averages of MAM and JJA SSTs from the various ocean basins were independently 318 

correlated with JJA rainfall. Figures 16 and 17 depict loading patterns for the MAM and JJA 319 

SSTs of the Atlantic Ocean with JJA seasonal rainfall modes together with the corresponding 320 

temporal functions respectively. The negative loadings over the equatorial north-western and 321 

central Atlantic Ocean regions (Figure 16(a) are associated with the wet/dry regimes over 322 

western/eastern sectors of Eastern Africa (Figure 16b). The canonical correlation score between 323 

rainfall and the predictor SST modes was 0.72 for lag one and 0.87 for zero lag. Lag zero that 324 

had maximum weights over the Atlantic Ocean basin and was positively correlated with JJA 325 

over the whole of western and coastal regions of Kenya together with Uganda (Figure 17b). 326 

Similar results have been derived by previous studies, including those of Preston (2005), 327 

Washington et al., (2003), Reason et al., (2004) over the Indian Ocean and South African 328 

rainfall. 329 

6.3. Results for October - December rainfall season 330 

The average JJA and OND SSTs from the various ocean basins were independently correlated 331 

with OND rainfall. Figures 18 and 19 represent CCA loading patterns for JJA and OND of the 332 

Pacific Ocean SSTs and OND rainfall respectively. The highly negative loading over the 333 

equatorial eastern Pacific Ocean seems to be the major mode associated with the wetness in 334 

nearly whole part of the region with pocket of dryness conditions over southern parts that 335 

generally have unimodal rainfall regimes. The canonical correlation skill between OND rainfall 336 

and the predictor SST modes was 0.88 at lag one showing stronger influence of eastern Pacific 337 

to the region.  338 

 339 

Figure 19 shows the CCA loading patterns for the OND rainfall and predictor of the Pacific 340 

Ocean SST modes at zero lag. The negative SST loading over the equatorial eastern Pacific 341 
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Ocean is linked to the generally dry conditions in the region. The canonical correlation skill 342 

between OND decadal rainfall and the predictor SST modes is 0.97. Thus cold ENSO phase 343 

would be associated with depressed rainfall season over the whole region, while warm phase (El 344 

Niño) would be associated with enhanced decadal rainfall over most parts of the region. 345 

7. Summary and Conclusion 346 

 347 
This study has provided some evidence of decadal variability in the inter-annual patterns of East 348 

Africa rainfall. The MAM and OND seasonal rainfall are dominated by 10 year cycles of wet 349 

and dry phases, while the JJA season showed a 20 years cycle of wet and dry phases. Some 350 

teleconnections were also evident between the observed decadal rainfall variability patterns and 351 

SST variability modes over parts of the global oceans. The significant correlation between the 352 

rainfall and SSTs offers a useful indicator in predicting rainfall of the region at decadal time 353 

scale. Specifically, the study has shown that: 354 

1. Trend analysis results showed that although no significant trend in the inter-annual 355 

patterns were discernible at many locations, too much or too little rainfall received in one 356 

or two years influenced the general trend of the decadal mean rainfall. Eight and one 357 

zones in OND and MAM showed significant positive trends during this period of study, 358 

respectively. For the JJA season, when only the western and coastal parts of the region 359 

receive substantial amount of rainfall, no significant trends were observed although the 360 

decades after 1961 were wetter than before in these western regions but drier along the 361 

coastal regions. No decade was observed to have the whole region dominated by one 362 

specific trend mode during the period of study except 1931-1940 and 1961-1970 during 363 

OND seasons. 364 

2. Results from CCA, applied independently on the average DJF and MAM SSTs from the 365 

various ocean basins and MAM rainfall, show that three significant modes were 366 

discernible. One area of high significant positive correlation between the SSTs and the 367 
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canonical component time series was evident over the central equatorial Indian Ocean. 368 

Similarly, there was significant correlation resulting into wet coastal and Lake Victoria 369 

regions with the rest of the region found out to be dry. 370 

3. The results from the average MAM and JJA SSTs correlated with JJA rainfall had 371 

negative loadings centred on the equatorial western and central Atlantic Ocean regions 372 

which were associated with the wet / dry regimes over western / eastern sectors of the 373 

region. Linkages between the Atlantic Ocean basin and Eastern Africa during JJA are 374 

largely influenced by the space-time pattern of both zonal and meridional arms of the 375 

ITCZ. 376 

4. The average JJA and OND SSTs with OND rainfall produced highly negative loading 377 

over the equatorial eastern Pacific Ocean that were associated with rainfall deficit in 378 

nearly the whole region but wet conditions over the southern parts of the region. The 379 

positive centre over the eastern equatorial Pacific Ocean, however, was associated with 380 

wet conditions in nearly all the region. 381 
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Tables 539 

Table 1: Eigenvalues, variance and accumulated variance extracted by each mode of the decadal 540 

OND rainfall 541 

PERIOD FACTOR EIGENVALUE VARIANCE 

EXTRACTED (%) 

CUMMULATIVE  

VARIANCE (%) 

  

OND 

  

  

  

1 15.9 42.9 42.9 

2 5.3 14.2 57.1 

3 3.9 10.5 67.6 

4 2.7 7.2 74.8 

5 2.4 6.5 81.3 

 542 

Table 2: Eigenvalues, variance and accumulated variance extracted by each mode of the decadal 543 

MAM rainfall 544 

PERIOD FACTOR EIGENVALUE VARIANCE 
EXTRACTED (%) 

CUMULATIVE  

VARIANCE (%) 

MAM  

  

  

  

  

1 7.3 19.7 19.7 

2 6.9 18.6 38.3 

3 5.9 15.9 54.2 

4 4.2 11.4 65.6 

5 3.0 8.1 73.6 

6 2.3 6.3 80.0 

 545 
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Table 3: Eigenvalues, variance and accumulated variance extracted by each mode of the decadal 546 

JJA rainfall 547 

PERIOD FACTOR EIGENVALUE VARIANCE 
EXTRACTED (%) 

CUMULATIVE  

VARIANCE (%) 

JJA  

  

  

  

  

1 15.8 28.6 28. 6 

2 14.6 26.6 55.2 

3 11.4 20.7 75.9 

4 2.9 5.4 81.3 

5 2.8 5.1 86.4 

6 2.5 4.6 91.0 

7 1.2 2.2 93.2 
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Table 4: Percentage variance extracted by the first 4 RPCs of decadal SST 548 

  OND DJF MAM JJA 

 

Indian  

Ocean 

PC1 38.0 40.5 45.4 35.2 

PC2 26.0 15.8 41.4 32.5 

PC3 20.1 15.7  24.9 

PC4 11.3 8.5   

Total Variance  95.4 80.5 89.8 92.6 

 

Atlantic Ocean 

PC1 64.1 39.1 32.5 39.7 

PC2 34.9 30.6 31.5 34.9 

PC3  13.7 21.8 13.5 

PC4     

Total Variance  99.0 83.4 85.8 88.1 

 

Pacific  

Ocean 

PC1 31.0 40.1 40.9 32.0 

PC2 23.4 30.0 28.2 23.7 

PC3 22.9 11.5 9.6 23.5 

PC4 10.3    

Total Variance  76.6 81.6 78.7 79.2 

 549 
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Figure 1: Distribution of representative stations over the study region 552 
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Figure 2a: Smoothed inter-annual MAM rainfall anomalies for Voi in Kenya 555 
 556 
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Figure 2b: Unsmoothed inter-annual MAM rainfall anomalies for Voi in Kenya 558 
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Figure 3a: Graphical plot of the smoothed anomalies for OND decadal rainfall variability 560 

over Eastern Africa   561  Zone 1 (Mahenge)
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Figure 3b: Graphical plot of the smoothed anomalies for JJA decadal rainfall variability 563 

over western and coastal sub-regions 564 
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       565 

Figure 4: Spatial distribution of the mean decadal rainfall for MAM 566 
 Blue: statistically significant increase in mean decadal rainfall  567 
 Red: statistically significant decrease in mean decadal rainfall 568 
 Black: no significant increase / decrease in mean decadal rainfall569 
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Figure 5: Scree’s test selection of dominant Principal Components for OND rainfall 571 

seasons. 572 
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          578 

Figure 6: Spatial and temporal patterns for EOF1 and PC1 (first row); EOF2 and PC2 579 

(second row) and EOF3 and PC3 (third row) for OND decadal rainfall. Dashed / solid 580 

contours represent negative / positive values; contour interval is 0.2. 581 
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Figure 7: Scree’s test selection of dominant Principal Components for MAM rainfall 583 

seasons 584 
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Figure 8: Same as Figure 6 but for MAM decadal rainfall.  590 
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Figure 9: Scree’s test selection of dominant Principal Components for June-July rainfall 592 

seasons. 593 
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Figure 10: Same as Figure 6 but for JJA decadal rainfall.  597 
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(a) Indian Ocean October-December PC1           (b) Indian Ocean December-February PC1             (c) Indian Ocean March-May PC1                             (d) Indian Ocean June-August PC1                                     (a) Indian Ocean October-December PC1           (b) Indian Ocean December-February PC1             (c) Indian Ocean March-May PC1                             (d) Indian Ocean June-August PC1                  599 
(a) Indian Ocean October-December PC1           (b) Indian Ocean December-February PC1  
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(c) Indian Ocean March-May PC1                             (d) Indian Ocean June-August PC1 

     

 

        
 

 

 600 
(a) Indian Ocean October – December (OND) PC1                                          (b) Indian Ocean December – February (DJF) PC1 601 

(a) Indian Ocean October-December PC1           (b) Indian Ocean December-February PC1  

 

 

      
 

 
 

(c) Indian Ocean March-May PC1                             (d) Indian Ocean June-August PC1 

     

 

        
 

             

(a) Indian Ocean October-December PC1           (b) Indian Ocean December-February PC1  

 

 

      
 

 
 

(c) Indian Ocean March-May PC1                             (d) Indian Ocean June-August PC1 

     

 

        
 

  602 
(c) Indian Ocean March – May (MAM) PC1                                                     (d) Indian Ocean June – August (JJA) PC1 603 

Figure 11: The spatial patterns of the first 9-term binomial coefficient filtered SST PCA modes for the Indian Ocean.  604 
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 605 
(a) Atlantic Ocean October-December PC1                                                           (b) Atlantic Ocean December-February PC1 606 

 

                 

 

 607 
(c)  Atlantic Ocean March-May PC1                                                                      (d) Atlantic Ocean June-August PC1 608 

Figure 12: The spatial patterns of the first 9-term binomial coefficient of the filtered SST PCA modes for the Atlantic Ocean. 609 
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 610 

 (a) Pacific Ocean October - December PC1                                                   (b) Pacific Ocean December - February PC1 611 

  

 

        612 

  (c) Pacific Ocean March-May PC1                                                      (d) Pacific Ocean June-August PC1 613 

   Figure 13: The spatial patterns of the first 9-term binomial coefficient filtered SST PCA modes for the Pacific Ocean614 
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              615 

(a) CCA-1 December-February SST                                (b) CCA-1 MAM Rainfall 616 CCA MODE1 (COR = 0.79)
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 617 

(c) CCA MODE1 (CORRELATION = -0.79) 618 

Figure 14: The first spatial pattern pair for canonical correlation between decadal DJF of 619 

the Indian SST and MAM  rainfall ;(a) correlation between the predictor (SST) and the 620 

canonical vector (u); (b) correlation between the predictant (rainfall) and canonical vector 621 

(v) and; (c) normalized temporal functions (u and v) of the first CCA patterns for rainfall 622 

and SST 623 



40 
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(a) CCA-1 March – May SST 626 

          

(a) CCA-1 MAM SST                                                           

  

(b) CCA-1 MAM                            (c) CCA MODE1 (CORRÉLATION = 0.96) 
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 627 

(b) CCA-1 March – May Rainfall                            (c) CCA Model (Correlation 0.96) 628 

Figure 15: Same as Figure 14 but for MAM of the Indian Ocean SST (lag zero). 629 
630 
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(a) CCA-1 March-May SST                                   (b) CCA-1 June – August Rainfall 631  (a) CCA-1 MAM SST                                                          (b) CCA-1 JJA  

 

 

 

  
 
(C) CCA MODE1 (CORRELATION=0.72) 
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          632 

(a) CCA Model 1(Correlation = 0.72) 633 

 

 (a) CCA-1 MAM SST                                                          (b) CCA-1 JJA  
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 634 

Figure 16: The first spatial pattern pair for canonical correlation between decadal MAM 635 

Atlantic SST and JJA  rainfall ; (a) correlation between the predictor (SST) and the 636 

canonical vector (u); (b) correlation between the predictant (rainfall) and canonical vector 637 

(v) and; (c) normalized temporal functions (u and v) of the first CCA patterns for rainfall 638 

and SST. 639 
640 
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 641 (a) CCA-1 JJA SST                                                            

 
 

(b) CCA-1 JJA                               (C) CCA MODE1 (CORRÉLATION=0.87) 
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CCA-1 June – August Atlantic Ocean SST 643 

         

(a) CCA-1 JJA SST                                                            

 
 

(b) CCA-1 JJA                               (C) CCA MODE1 (CORRÉLATION=0.87) 
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 644 

(b) CCA-1 June – August Rainfall                         (c) CCA Model (Correlation = 0.87) 645 

Figure 17: Same as Figure 17 but for JJA SST (lag zero). 646 

 647 
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(a) CCA-1 June – August SST   649 

                     

CCA MODE1 (CORRELATION=0.88)
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 650 

 (b) CCA-1 October-December Rainfall         (c) CCA MODE1 (CORRELATION=0.88) 651 

Figure  18: The first spatial pattern pair for canonical correlation between decadal JJA 652 

Pacific SST and OND  rainfall; (a) correlation between the predictor (SST) and the 653 

canonical vector (u); (b) correlation between the predictant (rainfall) and canonical vector 654 

(v) and; (c) normalized temporal functions (u and v) of the first CCA patterns for rainfall 655 

and SST. 656 
 657 
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(a) CCA-1 October-December SST                           659 

            

CCA MODEL 1 (COR=0.97)
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 660 

     (b) CCA-1 OND Rainfall  (c) CCA MODEL (CORRELATION = 0.97) 661 

Figure 19: Same as Figure 19 but for OND SST (lag zero). 662 
 663 
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