
©2008 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195648763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Checklist Based Reading’s Influence on a Developer’s Understanding

David A. McMeekin, Brian R. von Konsky, Elizabeth Chang, David J.A. Cooper
Curtin University of Technology

Department of Computing,
Digital Ecosystems and Business Intelligence Institute

Perth, Western Australia
d.mcmeekin@curtin.edu.au

Abstract

This paper addresses the influence the Checklist Based
Reading inspection technique has on a developer’s ability
to modify inspected code. Traditionally, inspections have
been used to detect defects within the development life cy-
cle. This research identified a correlation between the num-
ber of defects detected and the successful code extensions
for new functionality unrelated to the defects. Participants
reported that having completed a checklist inspection, mod-
ifying the code was easier because the inspection had given
them an understanding of the code that would not have ex-
isted otherwise. The results also showed a significant differ-
ence in how developers systematically modified code after
completing a checklist inspection when compared to those
who had not performed a checklist inspection. This study
has shown that applying software inspections for purposes
other than defect detection include software understanding
and comprehension.

1 Introduction

Traditionally, software inspections have been imple-
mented to detect defects. A vast amount of empirical re-
search has been conducted using inspections and results
have shown over 80% of defects can be removed prior to
release, as well as saving large amounts of programmer
time [5, 6]. The dominant inspection technique remains the
Checklist Based Reading technique (CBR) [9, 16].

Software development methodologies, tools and the
technology used to develop and deploy software have
evolved since inspections were introduced. Siy and
Votta [12] indicate with these evolutions in areas such as
strongly typed languages, automated tools and improved
testing environments, many defect groupings no longer ex-
ist. These changes can cause some managers, already ques-
tioning the continued relevance of inspections or their im-

plementation, to look at redirecting resources away from
inspections into other areas. This research investigates the
benefits of using software inspections to increase a devel-
oper’s understanding of the code for the purposes of adding
new functionality to existing software systems.

This paper reports on an empirical study conducted to:

• examine if participants thought an inspection assisted
them in performing subsequent modifications (adding
functionality) to the inspected code

• investigate if there was a relationship between the
number of defects a participant discovered and the
number of modifications they successfully made (mod-
ifications were not related to the defects)

• determine if participants approach code modifications
in significantly different ways if they have previously
performed a code inspection on that code

2 Background and Definitions

Software inspections are a process implemented in the
software development life-cycle to detect defects in the soft-
ware artefacts under inspection [5, 15, 11]. Laitenberger
and DeBaud [9] state a purpose for software inspections is
for inspectors to gain insightful understandings of the arte-
fact being inspected. Sjøberg et al. [13] describe a large
body of literature on topics in software inspections. This lit-
erature generally reports on inspection techniques, the way
in which inspection techniques were implemented, and the
resulting number of defects discovered. Siy and Votta [12]
examine the usefulness of inspections in non-traditional ar-
eas: maintainability, code understandability, reduction in
redundant code, increased safety, improved portability and
improved documentation quality.

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.7

489

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.7

489

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.7

489

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.7

489

2.1 Inspection Techniques

The Ad-hoc technique is an informal but common in-
spection technique [9]. Applying this technique requires no
formal training or instruction, as there are no instructions
or directions for the inspector. The underlying assumption
is that the inspector will carry out a thorough and system-
atic inspection of the artefact by using their personal expe-
rience and understanding [9]. This method is considered
very effective, but is best applied by an experienced devel-
oper. Dunsmore [4] points out that a new developer may
not have the experience and understanding needed to suc-
cessfully apply this inspection technique.

The CBR technique, first described by Fagan [5] is the
most common inspection methodology used today [16]. In
CBR, the inspector answers a series of questions regard-
ing the artefact being inspected. A ‘yes’ answer indicates
there is no defect and a ‘no’ answer indicates the possibil-
ity of a defect requiring further investigation. The checklist
questions must be created using historical defect data from
within the organization [7, 8]. The checklist should also
fit on one side of a single sheet of paper [1], preventing an
inspector from having to continuously turn pages. CBR is a
highly structured inspection methodology with little space
for the inspector to apply previously gained expertise. This
technique is beneficial for new developers as it gives clear
instructions and structure in how to go about the inspec-
tion and to identify defects. Yet for the experienced devel-
oper, this methodology has been reported as being limiting,
tending to focus developers on program structure rather than
business logic (work by the authors pending publication).

CBR is considered the industry standard inspection tech-
nique and Thelin et al. [14] recommended it be used as the
baseline inspection technique in empirical studies. Conse-
quently, CBR was chosen to be tested first in this study.

3 Methodology

A pilot study was carried out in which participants per-
formed a CBR code inspection. After completing the code
inspection, participants were informed of modifications to
be implemented within the code. This study investigated
the objectives presented in Section 1 and was approved by
the Human Research Ethics Committee at Curtin University
of Technology.

3.1 Artefacts

The software system inspected was created specifically
for use in a tutorial in a third year software engineering
course. It was a navigation recording system in which
users entered their current latitudinal and longitudinal po-
sitions. The class inspected stored these positions, gave ac-

cess to past positions and enabled the distance between two
recorded points to be calculated. The modification was to
store the user’s altitudinal position and use it in the calcula-
tions. The class contained 126 executable lines of code.

The artefacts for the inspection were paper based and
participants were requested not to compile or execute the
code. Participants were informed that the code compiled,
executed and produced results. During the inspection par-
ticipants also had access to the Java API documentation.

Inspectors were presented the following artefacts:

1. natural language specification
2. class diagram of the system
3. the Java code to be inspected
4. checklist for guidance through the inspection process
5. defect recording sheet
6. questionnaire

3.2 Choosing Participants

Two participant groupings were established. Group one
consisted of students in the third year of their undergraduate
bachelor degrees in Computer Science, Information Tech-
nology or Software Engineering. Participants were required
to have passed two introductory Java programming courses
and two software engineering courses. These criteria were
established in order for an assumption to be made that par-
ticipants in group one had similar level base knowledge.
Group two consisted of students doing the undergraduate
bachelor degrees in Software Engineering. These students
met the same requirements as group one.

Group one performed the code inspection followed by
the modification. Group two performed only the code mod-
ification and were given the natural language specification,
class diagram of the system and questionnaire. Group two
participants were recruited for the purpose of determining
if participants approached code modifications differently if
they had previously performed a code inspection on that
code.

3.3 Carrying out the Experimental Study

The first section of this study extended a tutorial used in
a third year software engineering course. The tutorial re-
quired participants to perform a CBR inspection on a single
class. The second section of this study required participants
to modify the code they had just inspected. Participation
within this section was voluntary and was not part of the
course and no part of the material or learning done through
the study was examinable within participants’ degree pro-
gram course work. Upon completing the inspection tutorial,
students were presented with the option to participate in this
study. The study was conducted immediately following the

490490490490

inspection in the participant’s own time. No payments were
made to participants.

The inspection process was an individual task and par-
ticipants were required not to interact with others during
the inspection. Participants were given 30 minutes to per-
form the inspection. During the tutorial’s first 10 minutes,
a small inspection training example was conducted demon-
strating how to conduct the inspection. Using the checklist
provided, participants inspected the code by answering each
question with a “yes” or “no.” Participants were advised to
read the natural language specification first, followed by the
class diagram. Each defect discovered was recorded in a de-
fect recording sheet with the line number it appeared on and
a sentence or two describing it. Participants did not have to
correct the defect, just identify it.

The study’s second section required participants to add
new functionality to the code inspected. The new func-
tionality requirement was explained to participants and they
were given 30 minutes to make the modifications. The
modification was an individual task and participants were
not permitted to interact with others during the modifica-
tion. The modification was conducted online and partici-
pants were able to compile their code as often as they chose.

3.4 Seeded Defects

Twelve defects were seeded in the inspected class. An
example was three defects that were replications of the same
error type, i.e. when writing code. It is not unusual to copy
and paste similar code and then makes changes to that code.
For this defect, the original code contained a logic error in
the processing of an if-then-else statement prior to copying
and pasting and hence was replicated in three different loca-
tions. The remaining defects were seeded based upon prior
research [2, 3, 4] and also errors the authors were known to
make while writing code.

3.5 The Modification

The additional functionality to be implemented was not
correcting all defects previously detected. The new func-
tionality was to allow the class to store the user’s altitude.
Participants were requested to add this functionality ensur-
ing that their changes worked appropriately and produced
correct results. The defects remained in the code and hence
those defects that affected the modification needed to be
fixed to ensure the added functionality returned correct re-
sults. The model solution required 37 modifications. Partic-
ipants from both groups were given 30 minutes to perform
this modification. During this time a screenshot was auto-
matically taken every five seconds capturing:

• the code being viewed;

• the changes to the code;
• the order in which changes were made; and
• the way in which they went about making those

changes.

3.6 Threats to Validity

Empirical research is subject to internal and external va-
lidity threats. In this study, several internal threats were
identified. The selection threat was the first internal threat.
This is where the participant selection can be stacked in or-
der to produce more favourable results. In order to limit this
effect, a general invitation was issued to students to partic-
ipate within the study. Students were not approached indi-
vidually and students who asked to participate did partici-
pate. No student was refused participation.

The second internal threat to this study, and to many soft-
ware engineering studies, is that of a participant’s experi-
ence. It is possible that some participants will have had a
small amount of industry experience, some may have had
considerable industry experience and there may be some
who have had no industry experience. This is further com-
plicated, as some may have industry experience but nothing
reflecting what is required of them in this study. In order
to reduce or monitor this threat, demographic data was col-
lected from each participant to note if these situations were
present within this participant grouping. Participants within
each group were of similar experience levels and met the
minimum requirements described in Section 3.2.

An external validity threat to this study was in the sample
population. Students who participated may not be represen-
tative of the wider community. In order to minimise this
effect, students were invited to participate and participation
was voluntary. Group two participants, as noted, were com-
pleting a degree in Software Engineering. These students
were in their fourth year and were participating in an indus-
try based project. This experience was on a part time basis
and still within the context of being part of a predefined un-
dergraduate course. To minimise the threat to validity, these
students were in group two and their data was only used to
compare how participants implemented modifications when
they had and had not previously carried out a code inspec-
tion.

Another external threat was in defect seeding was arti-
ficial and hence may not represent defect types currently
encountered in the software industry. Section 3.4 addresses
the manner in which defects were seeded.

4 Data Collection, Analysis and Results

During this study, the defect data was collected by par-
ticipants entering data into a defect recording sheet. The

491491491491

Figure 1. Number of defects found and modi-
fications made by each participant.

false positive data collected was generated through exam-
ining the defect reporting data. The modification data was
collected via the automatic screen-shots and the qualitative
data was collected via a demographic sheet and a ques-
tionnaire participants completed. The quantitative data was
analysed using the R (R 2.5.0 GUI 1.19 (4308)) statistical
software package.

Eighteen participants took part in this study. Group one
contained 11 participants and group two contained seven.
There was one attrition in group one’s data set, participant
number three’s results were removed from the data as they
failed to detect a single defect and only reported modifica-
tions. In the screen shot analysis, four participants’ results
from group one were excluded from the set due to a server
error that prevented a large portion of the data from being
written to disk.

4.1 CBR Inspection followed by modifica-
tion

Figure 1 shows the number of defects detected and the
number of modifications made by participants in group one.
In viewing this graph, and other remaining comparisons be-
tween these groupings, it must be noted that there were 12
seeded defects and 37 modifications. Figure 2 and Fig-
ure 3 are the box plots from group one’s defect detection
and modification data. The plots show there are no outliers
and results are normally distributed.

Table 1 lists the descriptive statistics for the defects de-
tected and modifications made. The mean number of de-
fects detected is similar to those found in a previous study
conducted by the authors where inspections were a new pro-
cess that student participants were being introduced to [10].

Figure 4 demonstrates the relationship between the num-
ber of defects detected within the 30 minute inspection and

Defects Modifications
Mean 4.60 22.50
Std. Deviation 2.12 8.64
Std. Error 0.67 2.73
Minimum 2 8
Maximum 9 35

Table 1. Descriptive statistics from group 1.

Figure 2. Boxplot of the defects detected by
participant group one.

Figure 3. Boxplot of the modifications made
by participant group one.

492492492492

Figure 4. Scatterplot demonstrating the re-
altionship between discovering defects and
modification ability.

the number of modifications each participant made during
the 30 minute modification session. A linear regression
analysis was performed on the results, R-squared = 0.32
and the line of best fit is shown on the graph. The line and
R-squared values indicate a weak correlation between the
number of defects detected and the number of successful
modifications made.

A Pearson Product-Moment correlation analysis was
also performed upon the data, r = 0.56 and p-value = 0.09.
These two values indicate a significant correlation, between
the number of defects discovered and the number of suc-
cessful modifications made to the code, at the 90% confi-
dence interval.

4.2 Defect and Modification Types

Figure 5 displays how many times each defect was de-
tected. Defect 1, 5, 9 and 11 had the highest detection lev-
els. The code for defects 9, 10 and 11 assign an incorrect
Boolean value when validating latitude, longitude and map
number respectively. Defect 1 has incorrect parameter or-
dering, longitude and latitude were reversed. Defect 5 was
the failure to use a parameter within the method. When
using the checklist and walking through the code these de-
fects were expected to be detected. The basis for this expec-
tation was a checklist question which directly asked about
this defect type. Defects 6 and 7 were not detected. Defect
6 used the ‘==’ to compare doubles for equality and defect
7 used ‘==’ to compare Vector objects for value equality.

Figure 5. Number of times each defect was
found (ordered from highest to lowest).

The checklist did not ask a direct question related to this
defect type. From examining the data, detection of these
defect types would have required a question directly ask-
ing about this error type. A checklist guides inspectors as
they search for defects, but cannot be expected to ask every
possible question as this would lead to the list length vio-
lating the recommendation that it be no more than 1 page
long [1]. Defect 4 was detected once. This defect returns
a Vector object, but in Java it actually returns a reference
to the Vector object. This may cause the system to fail in
an unexpected manner. Data expected to be in the Vector is
no longer there or has been modified as the operations per-
formed on the Vector object were in fact performed on the
original object.

Figure 6 displays the number of times each modification
was made. Modifications 1, 2 and 3 were made by all par-
ticipants. These were adding the class field altitude and the
class constants for the maximum and minimum values for
it. The first modification was essential as without it no other
modifications were needed. Modifications 2 and 3 were not
always the second and third modification performed but on
several occasions they were implemented when participants
realised they were needed. Modifications 5, 8 and 21 were
completed the least number of times. Modifications 5 and
8 were in two different constructor calls both requiring the
initial Vector size be modified for it to grow in the correct
increment sizes if needed. Modification 21 required a tol-
erance value be created for accurate comparison between
doubles. Although this was not directly related to the de-
fect of the same nature, it was not surprising that this was
not completed as a defect of the same nature was also not
detected. These two instances highlight the need for check-
lists to be continuously evolving as the defect that was not
detected has now been introduce in a third location inside
the inspected class.

493493493493

Figure 6. Number of times each modification was made (ordered).

4.3 Analysis of Participants’ Perceptions

Upon completing the modification, participants were
asked a series of questions regarding the inspection and
modification. These questions provided qualitative data re-
lated to the impact participants thought the inspection had
upon their ability to modify the code. Three questions were:

1. Did inspecting the code prior to modifying it assist you
to make the changes: Yes or No?

2. From doing the inspection and changes, would you
find it easier to add a new class: Yes of No? and

3. Do you agree with this statement: Performing the code
inspection helped me to better understand the software:
Strongly agree, Agree, Disagree, Strongly disagree

To question one, all participants answered yes. Partici-
pant three, who reported no detected defects also answered
yes to this question. Even though participant three found no
defects in the inspection process, in their opinion, it is still
better prepared him to modify the code than having per-
formed no inspection. This indicates that code inspections
may be successful at improving the inspector’s understand-
ing, even though it was not entirely successful at detecting
defects. For the second question, 9 participants answered
yes and one stated no. When justifying their response to the
second question, participants stated things such as: ‘Easy
to see the public methods for purposes for interfacing with
a class,’ ‘seen how public methods work,’ ‘gained better
understanding,’ ‘comfortable to work with the code,’ ‘be-
cause you have looked at the code and understood it.’ These
statements indicate the participants thought they had a bet-
ter grasp and understanding of the code to be modified and

added to from the inspection because of the knowledge they
acquired about the code during the inspection. With the
third question, 7 strongly agreed, 2 agreed and 1 failed to
answer the question. This qualitative data clearly indicates,
in the participants’ minds, performing an inspection prior
to modifying the code assisted their understanding and com-
prehension of the system enabling them to add the function-
ality and, had they been asked, to add other functionality to
the system through adding more classes.

4.4 The Modification Order

The screen shots taken as participants modified the code
showed the manner in which participants went about per-
forming the modifications. Two sample solutions were cre-
ated by the authors demonstrating two possible ways the
modifications could be made. The base assumption used in
both solutions was: to perform any modification to the code
the class field must be present. Following this, the constants
that controlled the class field’s maximum and minimum val-
ues needed to be established. The next step was to initialise
the class field in the constructors. At this stage the two sam-
ple solutions begin to vary. The first solution then contin-
ued to work through the class in a top to bottom manner.
The second solution worked through the code by modifying
it on an as encountered make the change manner. For ex-
ample, if the participant was modifying method A and that
method called method B, the participant would immediately
move to method B, implement the needed changes there and
then return to method A and continue modifying it. If while
modifying method B, it called method C the same pattern
as described would be followed. This continued until all

494494494494

Group Sample Solution 1 Sample Solution 2
One 0.81 0.51
Two 0.37 0.21

Table 2. The average R2 values for the way in which each
group modified the code.

modifications were completed.
Table 2 shows the average R2 values for the way in

which each group went about modifying the code. A two
way t-test was carried out comparing how the two groups
implemented the modifications compared to sample solu-
tion one, top to bottom of the class. A p-value of 0.001
was returned. This shows a significant difference in how
the code was modified between the two groups. The partic-
ipants who performed the inspection modified the code in
a more systematic manner, one that more closely reflected
sample solution one, than those participants who did not
perform the inspection.

A two way t-test was carried out comparing how the two
groups implemented the modifications compared to sample
solution two, starting at the top and modifying the code on
a as encountered and/or used method. A p-value of 0.02
was returned. This shows a significant difference in how
the code was modified between the two groups. The partic-
ipants who performed the inspection modified the code in
a more systematic manner, one that more closely reflected
sample solution two, than those participants who did not
perform the inspection.

These results indicate that having performed an inspec-
tion, developers were able to modify the code by systemati-
cally working through it in a structured manner. Those who
did not perform the inspection worked through the code but
in an ad-hoc manner. This may be attributed to the fact
that the developers knew the code structure as well as the
location of methods that needed to be modified. With this
knowledge they were able to move more directly to the code
areas needing to be changed than those who had not per-
formed the inspection and therefore also needed to search
the code looking for where the changes may need to be
made. The results also show that among participants who
had performed the code inspection, when modifying code
they tended to use a solution resembling sample solution
one, working from top to bottom of the class.

5 Research Findings

This pilot study investigated if participants thought an
inspection assisted them in performing modifications, in-
vestigated if a relationship existed between the number of
defects detected and the number of successful modifications

the inspector made to the code while and observing the way
in which participants performed code modifications. The
results clearly indicate that inspectors strongly believe per-
forming an inspection prior to modifying code helps their
understanding of the code and their ability to carry out the
modification. The inspectors also believe that performing
the inspection would assist them to add more functional-
ity to the system due to their acquired knowledge about the
system stemming directly from the inspection performed.

The statistical analysis results indicated there is a signif-
icant influence at the 90% confidence interval between the
number of defects detected by an inspector and the number
of successful modifications they are able to make (n = 18).

By performing an inspection prior to modifying the code,
developers more systematically, succinctly and directly ap-
plied the needed modifications to the code. Further investi-
gation of this point is needed to measure time savings that
may be introduced in code modification by having devel-
opers first inspect the code and then perform enhancements
and modifications to it.

6 Conclusion

This study’s results clearly demonstrate that performing
a CBR inspection positively affects a developer’s ability to
modify code. After performing a CBR inspection develop-
ers worked changes through the code more systematically
than those who did not perform a CBR inspection. Par-
ticipants ranked their system understanding and ability to
modify the code as higher than if they had not performed
the inspection. The application of inspections into the area
of program comprehension is an under researched field.
The varying inspection techniques need to be applied and
tested in different development environments to measure
how they affect developers’ program comprehension in dif-
fering development environments and improve overall soft-
ware quality.

References

[1] B. Brykczynski. A survey of software inspection checklists.
SIGSOFT Softw. Eng. Notes, 24(1):82, 1999.

[2] A. Dunsmore, M. Roper, and M. Wood. Object-oriented
inspection in the face of delocalisation. In ICSE ’00: Pro-
ceedings of the 22nd international conference on Software
engineering, pages 467–476, Limerick, Ireland, 2000.

[3] A. Dunsmore, M. Roper, and M. Wood. Systematic object-
oriented inspection - an empirical study. In ICSE ’01: Pro-
ceedings of the 23rd International Conference on Software
Engineering, pages 135–144, Toronto, Ontario, Canada,
2001.

[4] A. Dunsmore, M. Roper, and M. Wood. Further investiga-
tions into the development and evaluation of reading tech-
niques for object-oriented code inspection. In ICSE ’02:

495495495495

Proceedings of the 24th International Conference on Soft-
ware Engineering, pages 135–144, Orlando, Florida, U.S.A,
2002.

[5] M. E. Fagan. Design and code inspections to reduce errors
in program development. IBM Systems Journal, 15(3):182–
211, Mar. 1976.

[6] M. E. Fagan. Advances in software inspections. IEEE Trans-
actions on Software Engineering, 12(7):744–751, July 1986.

[7] T. Gilb and D. Graham. Software Inspection. Addison–
Wesley, Wokingham, 1993.

[8] W. Humphrey. A Discipline for Software Engineering.
Addison–Wesley, Boston, 1995.

[9] O. Laitenberger and J. DeBaud. An encompassing life cycle
centric survey of software inspection. Journal of Systems
and Software, 50(1):5–31, 2000.

[10] D. A. McMeekin. A comparison of code inspection tech-
niques. Honours Thesis, Curtin University of Technology,
2005.

[11] F. Shull, I. Rus, and V. Basili. Improving software inspec-
tions by using reading techniques. In ICSE ’01: Proceedings
of the 23rd International Conference on Software Engineer-
ing, pages 726–727, Toronto, Ontario, Canada, 2001.

[12] H. Siy and L. Votta. Does the modern code inspection have
value? icsm, 00:281, 2001.

[13] D. Sjøberg, J. Hannay, O. Hansen, V. Kampenes, A. Kara-
hasavanovic, N. Liborg, and A. Rekdal. A survey of con-
trolled experiments in software engineering. IEEE Transac-
tions on Software Engineering, 31(9):733–753, Sept. 2005.

[14] T. Thelin, P. Runeson, and C. Wohlin. An experimen-
tal comparison of usage-based and checklist-based reading.
IEEE Transactions on Software Engineering, 29(8):687–
704, Aug. 2003.

[15] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili.
Detecting defects in object-oriented designs: using read-
ing techniques to increase software quality. In OOPSLA
’99: Proceedings of the 14th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and ap-
plications, pages 47–56, Denver, Colorado, United States,
1999.

[16] C. K. Tyran and J. F. George. Improving software inspec-
tions with group process support. Communications of the
ACM, 45(9):87–92, 2002.

496496496496

