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Abstract. Regulating the blood glucose level is a challenging control prob-
lem for the human body. Abnormal blood glucose levels can cause serious

health problems over time, including diabetes. Although several mathematical

models have been proposed to describe the dynamics of glucose-insulin interac-
tion, none of them have been universally adopted by the research community.

In this paper, we consider a dynamic model of the blood glucose regulatory

system originally proposed by Liu and Tang in 2008. This model consists of
eight state variables naturally divided into three subsystems: the glucagon

and insulin transition subsystem, the receptor binding subsystem and the glu-

cose subsystem. The model contains 36 model parameters, many of which are
unknown and difficult to determine accurately. We formulate an optimal pa-

rameter selection problem in which optimal values for the model parameters
must be selected so that the resulting model best fits given experimental data.

We demonstrate that this optimal parameter selection problem can be solved

readily using the optimal control software MISER 3.3. Using this approach,
significant improvements can be made in matching the model to the exper-

imental data. We also investigate the sensitivity of the resulting optimized

model with respect to the insulin release rate. Finally, we use MISER 3.3 to
determine optimal open loop controls for the optimized model.

1. Introduction. Blood glucose is crucial to maintaining health. The normal con-
centration of blood glucose in a healthy person is between 80 to 120 (mg/dl); con-
centrations beyond this range may cause hyperglycaemia (above 120) or hypogly-
caemia (under 80). Prolonged irregularities in the blood glucose level can result in
major health problems such as diabetes, an incurable disease caused when the pan-
creas no longer makes insulin (type 1 diabetes), or when the pancreas cannot make
enough insulin and the body develops insulin resistance (type 2 diabetes). Diabetes
is considered a major international health problem. Approximately 3.61 million
Australians have diabetes or pre-diabetes, and 366 million people have diabetes
worldwide [3].

To date, several mathematical models for the blood glucose regulatory system
have been proposed. These models aim to describe the glucose-insulin interaction
within the human body. The Bergman minimal model (1980) is considered to be the
fundamental model in this area [1]. Several control models, such as proportional-
integral-derivative (PID) control [10], robust servo control [6], and model predictive
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control (MPC) [2], have been developed based on the Bergman minimal model. In
most of the existing models, the glucose regulatory system is greatly simplified and
only glucose and insulin are considered.

Liu and Tang [8] have developed a new feedback control model at the molecu-
lar level, which considers the role of the liver, the glucagon and insulin signaling
pathways and the conversion between glucose and glycogen. However, one of the
difficulties in working with this model is that it contains many model parameters
that are not well-defined. Thus, in this paper, we formulate an optimal parameter
selection problem that can be solved using the software package MISER 3.3 [4]. As
we will see, this approach results in significant improvements in matching the model
to experimental data.

This paper is organized as follows. We first introduce the dynamic model of blood
glucose levels proposed in [8] in Section 2. Then, in Section 3, we formulate an
optimal parameter selection problem to determine optimal values for the uncertain
model parameters in the dynamic model. The objective here is to match the model
to given experimental data as closely as possible. For this purpose, we consider three
possible objective functions and solve the resulting problems using MISER 3.3. In
Section 4, we perform a sensitivity test, as proposed in Liu and Tang [8], on the
resulting optimized model to test its sensitivity with respect to the insulin release
rate. In Section 5, based on the optimized model, we formulate an optimal control
problem in which the aim is to optimize the release rate for both insulin and glucose.
This optimal control problem can also be solved using MISER 3.3. Finally, we
conclude the paper with a discussion of the numerical results and future work.

2. Mathematical model. The dynamic model in Liu and Tang [8] consists of
eight state variables. These state variables are defined as follows:

x1 = concentration of plasma glucagon (in moles per liter);
x2 = concentration of plasma insulin (in moles per liter);
x3 = intracellular concentration of glucagon (in moles per liter);
x4 = intracellular concentration of insulin (in moles per liter);
x5 = concentration of glucagon receptor (in moles per liter);
x6 = concentration of insulin-bound receptor (in moles per liter);
x7 = blood concentration of glycogen (in milligrams per liter);
x8 = blood concentration of glucose (in milligrams per liter).

The model can be naturally divided into three subsystems, each of which is described
below. See Figure 1 for a graphical representation.

2.1. Insulin and glucagon transition subsystem. This subsystem governs x1
and x2. The model assumes that plasma insulin does not act directly on the glucose
metabolism, but instead through remote cellular insulin. The model also assumes
that intracellular insulin does not move back to plasma. Under these assumptions,
the dynamics for x1 are given by

dx1
dt

= −(kp1,1 + kp1,2)x1 + w1, (1)

where kp1,1 is a transition rate, kp1,2 is a degradation rate, and w1 is the glucagon

release rate (GRR) defined by

w1 =
Gm

1 + b1 exp a1(x8 − C5)
. (2)
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Figure 1. A simplified model of the regulatory system for blood
glucose (adapted from reference [8]). Glucose is input from
food and the liver, and used by brain and nerve cells (insulin-
independent, solid arrow) and by tissue cells (insulin-dependent,
dashed arrow). Glucose is transported to and from liver cells by
the concentration-driven GLUT2, which is insulin-independent. In
response to low blood glucose levels, the α cells of the pancreas
produce the hormone glucagon. The glucagon initiates a series of
activations of kinases (the black arrows indicate such activations),
and which ultimately leads to the activation of the enzyme glycogen
phosphorylase, to catalyze the breakdown of glycogen into glucose.
In response to high blood glucose levels, the β cells of the pan-
creas secrete insulin. Insulin triggers reactions to activate glycogen
synthase, which catalyses the conversion of glucose into glycogen.

Furthermore, the dynamics for x2 are given by

dx2
dt

= −(kp2,1 + kp2,2)x2 + w2, (3)
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where kp2,1 is a transition rate, kp2,2 is a degradation rate, and w2 is the insulin

release rate (IRR) defined by

w2 =
Rm

1 + b2 exp a2(C1 − x8)
. (4)

The fractions w1 and w2 in equations (1)-(4) model the natural feedback control
mechanisms in the body. Note that Gm is the maximum glucagon infusion rate,
Rm is the maximum insulin infusion rate, and a1, a2, b1, b2, C1 and C5 are positive
constants.

2.2. Insulin and glucagon receptor binding subsystem. This subsystem gov-
erns x3, x4, x5 and x6. The model assumes that receptor recycling is a closed
subsystem; the synthesis rate of receptors is equal to their degradation rate. The
dynamics for this subsystem are given by

dx3
dt

= −ks1,1x3(R0
1 − x5)− ks1,2x3 +

kp1,1Vpx1

V
, (5)

dx4
dt

= −ks2,1x4(R0
2 − x6)− ks2,2x4 +

kp2,1Vpx2

V
, (6)

dx5
dt

= −ks1,1x3(R0
1 − x5)− kr1x5, (7)

dx6
dt

= −ks2,1x4(R0
2 − x6)− kr2x6, (8)

where ks1,1 and ks2,1 are the hormone-receptor association rates, ks1,2 and ks2,2 are

the degradation rates, R0
1 and R0

2 are the total concentrations of receptors, kr1 and
kr2 are the inactivation rates, Vp is the plasma insulin volume, and V is the cellular
insulin volume.

2.3. Glucose production and utilization subsystem. This subsystem, which
governs x7 and x8, models the production of glucose. Plasma glucose has two
sources: hepatic glucose produced by converting glycogen into glucose in the liver
and exogenous glucose taken from food. Glucose utilization can be classified into
two classes: insulin-independent (by brain and nerve cells) and insulin-dependent
(by the muscle and fat cells). The dynamics for x7 are given by

dx7
dt

= f4 − f5, (9)

where

f4 =
k1x6

1 + k2x5
· V

gs
maxx8

kgsm + x8
, (10)

f5 = k3x5
V gpmaxx7
kgpm + x7

. (11)

Here, k1, k2 and k3 are the feedback control gains, V gpmax is the maximum velocity of
glycogen phosphorylase, V gsmax is the maximum velocity of glycogen synthase, and
kgsm and kgpm are the Michaelis-Menton constants.

The dynamics for x8 are given by

dx8
dt

= −f4 + f5 − f1 − f2f3 +G, (12)
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where

f1 = Ub

(
1− exp

(
− x8
C2

))
, (13)

f2 =
x8
C3
, (14)

f3 = U0 +
(Um − U0)xβ4

Cβ4 + xβ4
. (15)

Note that U0, Ub, Um, C2, C3, C4 and β are positive constants, and G is the
exogenous glucose intake derived from digesting food.

2.4. Initial conditions and model constants. We assume that the system is
modelled over a 9 hour period, i.e., t ∈ [0, 540], where t is the time in minutes. The
initial conditions prescribed for the model in Liu and Tang [8] are

x1(0) = 1.4× 10−11, (16)

x2(0) = 1.389× 10−11, (17)

x3(0) = 0, (18)

x4(0) = 6.945× 10−14, (19)

x5(0) = 0, (20)

x6(0) = 0, (21)

x7(0) = 200, (22)

x8(0) = 918. (23)

The complete model defined by equations (1)-(23) includes 36 model constants
as listed in Table 1. Although Liu and Tang [8] give explicit values for each of these
constants, they also acknowledge that many of these values are merely informed
guesses, usually based on biological understanding or adopted from other publica-
tions. In Table 1, we have indicated which of the constants are well-defined and
which have some uncertainty as to their true values. Note that the values of some of
the constants in Table 1 differ from the original values given by Liu and Tang in [8].
These changes were made based on the advice received in private communication
with Liu and Tang. In particular, we have changed the units of measurement for
the parameters ks2,1, R0

2, C4, Rm and k1, and we also use different values for ki,
i = 1, 2, 3. These new values are reported in Table 1 and used throughout this paper.
In addition, Liu and Tang gave the following guidance on the behaviour of some of
the uncertain parameters: the degradation rates of glucagon and its receptor (ks1,2,
kr1) can be assumed to be the same as the respective rates for insulin (ks2,2, kr2); the
maximum glucagon infusion rate Gm can be selected to be much smaller than Rm;
a1 and b1 can be selected so that the glucagon secretion w1 increases rapidly when
the blood glucose level x8 drops to around 800 mg/l; kp2,1 can be assumed to be the

same as kp1,1.

3. Parameter estimation. Our goal in this paper is to optimize the model param-
eters in (1)-(23), so that the model matches experimental data as closely as possible.
As in Liu and Tang [8], we use the experimental data reported in Korach-André et
al. [5]. This data set consists of blood glucose measurements from a healthy indi-
vidual taken after meals. We denote this data set by {(τi, x̂i8)}9i=1, where τi denotes
the i-th observation time and x̂i8 denotes the blood glucose concentration observed



6 ZAHRA AL HELAL, VOLKER REHBOCK AND RYAN LOXTON

Constant Value Unit Status

kp1,1 0.14 min−1 uncertain

kp2,1 0.14 min−1 uncertain

kp1,2 0.3 min−1 well-defined

kp2,2 1/6 min−1 uncertain

ks1,1 6 × 107 M−1 min−1 well-defined

ks2,1 6 × 107 M−1 min−1 well-defined

ks1,2 0.01 min−1 uncertain

ks2,2 0.01 min−1 uncertain

kr1 0.2 min−1 uncertain

kr2 0.2 min−1 well-defined

R0
1 9 × 10−13 M well-defined

R0
2 3.6114 × 10−12 M well-defined

vgpmax 80 mg/l/min uncertain

kgpm 600 mg/l well-defined

vgsmax 3.87 × 10−4 mg/l/min uncertain

kgsm 67 mg/l well-defined

k1 2.76900924 × 1011 M−1 well-defined

k2 1.1111111 × 1014 M−1 well-defined

k3 1.1111111 × 1012 M−1 well-defined

V 11 l uncertain

Vp 3 l uncertain

Ub 7.2 mg/l/min uncertain

U0 4 mg/l/min uncertain

Um 94 mg/l/min uncertain

Gm 2.23 × 10−10 M/min uncertain

Rm 4.8615 × 10−10 M/min uncertain

C1 2000 mg/l uncertain

C2 144 mg/l uncertain

C3 1000 mg/l uncertain

C4 5.556 × 10−10 M/l uncertain

C5 1000 mg/l uncertain

β 1.77 - uncertain

a1 0.005 (mg/l)−1 uncertain

a2 1/300 (mg/l)−1 uncertain

b1 10 - uncertain

b2 1 - uncertain

Table 1. Constants in the dynamic model (1)-(23), where M de-
notes moles.
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Figure 2. Experimental data from Korach-André et al. [5]

i 1 2 3 4 5 6 7 8 9

τi 0 60 120 150 180 240 380 420 540

x̂i8 900 1785.29 1530.27 1330.88 1300.55 1244.95 1113.53 1078.2 900.72

Table 2. Experimental data from Korach-André et al. [5]

at the i-th observation time. The experimental data is shown in Figure 2 and listed
in Table 2. We assume that the experimental data can be interpolated linearly as
shown in Figure 2 to yield the function gexp(t). Using the original parameter values
in Liu and Tang [8], the resulting trajectory for the blood glucose history is shown
in Figure 3. We will improve the Liu-Tang model by formulating an optimal pa-
rameter selection problem to find more appropriate values for the uncertain model
parameters in Table 1. To do this, for each uncertain parameter, we need to specify
upper and lower bounds. For parameters V , Ub, U0 and β, appropriate bounds
were suggested by Liu and Tang [8] in our personal correspondence as shown in
Table 3. For the other parameters, we use an iterative approach as follows. We
initially guessed the lower and upper bounds and solved the resulting parameter
estimation problem. Then, for those parameters whose optimal value was equal
to the lower or upper bound, we decreased/increased the respective bound by 10
percent. This process continued until all optimal parameter values were contained
in the interior of the respective intervals. This iterative approach is needed because
the model (1)-(23) is quite sensitive to some of the model parameters, and is difficult
to integrate numerically when the model parameter values are too far from those in
the previous stage. For the purpose of model matching, we consider three possible
objectives and solve the resulting parameter estimation problem with MISER 3.3.
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Figure 3. Comparison of two blood glucose trajectories: the solid
trajectory is the simulated trajectory from (1)-(23) using the pa-
rameter values in Liu and Tang [8]; the dashed trajectory is the
experimental data from Korach-André et al. [5]

Parameter Lower bound Upper bound

V 10 25

Ub 4 12

U0 4 12

β 1 2

Table 3. Lower and upper bounds for V , Ub, U0, and β

3.1. Case 1. In this case, our aim is to match the simulated blood glucose level
to the experimental data gexp(t) over the entire time horizon. Thus, the aim is to
minimize

J =

∫ 540

0

(x8(t)− gexp(t))2 dt (24)

subject to the dynamic model defined by equations (1)-(23).
The glucose trajectory generated from (1)-(23) using the optimal parameter esti-

mates is shown in Figure 4. Looking at Figures 3 and 4, it is clear that the optimal
parameter estimates yield significant improvements in model accuracy compared
with the estimates in [8]. However, there appears to be some mismatch between the
model trajectory and experimental data at the terminal time. Hence, we consider
a modified version of the objective function (24) in the next case.
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Figure 4. Comparison of two blood glucose trajectories: the solid
trajectory is the simulated trajectory from (1)-(23) using the op-
timal parameter values for Case 1; the dashed trajectory is the
experimental data from Korach-André et al. [5]

3.2. Case 2. Here, we add another term to the objective function that measures
the difference between the predicted and actual blood glucose levels at the terminal
time. Specifically, the aim is to minimize

J = w (x8(540)− 900.72)
2

+

∫ 540

0

(x8(t)− gexp(t))2 dt (25)

subject to the dynamics (1)-(23), where the weight w is chosen as w = 1000. The
idea here is to force better agreement between the model output and the experi-
mental data at the end of the time horizon. As seen from Figure 5, this can be
achieved at the expense of increased error earlier in the time horizon.

3.3. Case 3. Since the experimental data in Table 2 is only measured at a small
number of isolated times, the actual glucose level between these times is unknown.
Thus, our definition of gexp(t), as a piecewise linear interpolating function, and the
use of the integral terms in (24) and (25), may not be appropriate. An alternative
parameter estimation problem is to minimize

J =

9∑
i=1

(
x8(τi)− x̂i8

)2
subject to the dynamics (1)-(23), where x̂i8 and τi, i = 1, . . . 9, are as defined in
Table 2. Note that this objective function is not in the standard canonical form
due to the presence of multiple non-integral terms that depend on the state at
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Figure 5. Comparison of two blood glucose trajectories: the solid
trajectory is the simulated trajectory from (1)-(23) using the op-
timal parameter values for Case 2; the dashed trajectory is the
experimental data from Korach-André et al. [5]

intermediate times (called characteristic times in the optimal control literature).
Nevertheless, objective functions of this form can be handled using the techniques
developed in [9] and [11], which have been incorporated into the MISER 3.3 software
[4].

As shown in Figure 6, the resulting blood glucose level tracks the individual
experimental measurements very closely, although as expected it does not follow
the interpolating function gexp(t) as closely as we observed for Case 1.

4. Model sensitivity. The optimal parameter values for Cases 1, 2 and 3 are
reported in Table 4. In Liu and Tang [8], a sensitivity test was performed by
doubling and halving the insulin feedback rate and observing the corresponding
model response. For comparison, we perform the same sensitivity test on the model
with the optimized parameters from Case 1. This involves replacing the original
insulin feedback rate w2 in (4) by

w2 =
2Rm

1 + b2 exp a2(C1 − x8)
, (26)

and

w2 =
1
2Rm

1 + b2 exp a2(C1 − x8)
, (27)

respectively. The resulting blood glucose levels are shown in Figures 7 and 8,
respectively. Compared to the corresponding figures in Liu and Tang [8], the glucose
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Parameter Original value Case 1 Case 2 Case 3

kp1,1 0.14 1.28929 2.19177 1.37664

kp2,1 0.14 0.100804 0.114719 0.154412

kp1,2 0.3 0.3 0.3 0.3

kp2,2 1/6 0.437605 0.743780 0.743944

ks1,1 6 × 107 6 × 107 6 × 107 6 × 107

ks2,1 6 × 107 6 × 107 6 × 107 6 × 107

ks1,2 0.01 7.19985 × 10−3 2.16 × 10−3 7.6107 × 10−2

ks2,2 0.01 9.52782 × 10−3 8.5 × 10−3 8.95549 × 10−3

kr1 0.2 2.59194 × 10−2 7.776 × 10−3 2.4 × 10−1

kr2 0.2 0.2 0.2 0.2

R0
1 9 × 10−13 9 × 10−13 9 × 10−13 9 × 10−13

R0
2 3.6114 × 10−12 3.6114 × 10−12 3.6114 × 10−12 3.6114 × 10−12

vgpmax 80 25.0197 24.6129 24.7160

kgpm 600 600 600 600

vgsmax 3.87 × 10−4 3.41805 × 10−3 5.811 × 10−3 5.811 × 10−3

kgsm 67 67 67 67

k1 2.76901 × 1011 2.76901 × 1011 2.76901 × 1011 2.76901 × 1011

k2 1.11111 × 1014 1.11111 × 1014 1.11111 × 1014 1.11111 × 1014

k3 1.11111 × 1012 1.11111 × 1012 1.11111 × 1012 1.11111 × 1012

V 11 10.0004 10.3573 10.0181

Vp 3 2.41375 3.44929 2.77484

Ub 7.2 4 4 7.80699

U0 4 4 4 8.14836

Um 94 227.508 227.972 227.642

Gm 2.23 × 10−10 2.05367 × 10−9 3.49116 × 10−9 1.87341 × 10−9

Rm 4.8615 × 10−10 2.29663 × 10−10 3.98353 × 10−10 4.22818 × 10−10

C1 2000 1114.19 1114.07 1114.29

C2 144 345.384 345.434 345.378

C3 1000 1061.82 1061.77 1061.77

C4 5.556 × 10−10 1.9556 × 10−9 3.32383 × 10−9 3.28142 × 10−9

C5 1000 1124.67 1124.67 1124.68

β 1.77 1.14055 1.17821 1.33999

a1 0.005 3.48467 × 10−2 5.9238 × 10−2 5.9238 × 10−2

a2 1/300 1.45946 × 10−2 8.59508 × 10−3 8.70603 × 10−3

b1 10 11.4710 11.4664 11.4667

b2 1 1.15002 1.1893 1.955

Table 4. Comparing the optimized parameter values with the val-
ues in [8]
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Figure 6. Comparison of two blood glucose trajectories: the solid
trajectory is the simulated trajectory from (1)-(23) using the op-
timal parameter values for Case 3; the dashed trajectory is the
experimental data from Korach-André et al. [5]

levels in Figures 7 and 8 are further away from the experimental measurements. This
is expected, since optimizing the model parameters will generally lead to a more
sensitive model.

5. Optimal insulin and glucose release rates. The feedback controls (2) and
(4) model the physiology of the pancreas. Liu and Tang [8] have suggested that
these natural feedback controls may not be “optimal” in the sense of regulating the
blood glucose level. However, they did not check this conclusively by solving the
associated optimal control problem [8]. In this section, we demonstrate that the
optimal open loop controls for the insulin and glucose release rates can be readily
calculated using the MISER 3.3 software [4]. We replace the closed loop controls
w1 and w2 by corresponding open loop controls u1 and u2, respectively. Thus,
equations (1) and (3) become, respectively,

dx1
dt

= −(kp1,1 + kp1,2)x1 + u1, (28)

and
dx2
dt

= −(kp2,1 + kp2,2)x2 + u2. (29)

We assume that both u1 and u2 are parameterized as piecewise linear continuous
functions in accordance with the control parameterization method [7, 12]. The
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Figure 7. Blood glucose level when w2 is defined by (26).
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Figure 8. Blood glucose level when w2 is defined by (27).
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Figure 9. Optimal blood glucose trajectory corresponding to the
optimal solution in Section 5.

objective function (adopted from the suggestion in [8]) is given by:

J =

∫ 540

0

{(x8(t)− 918)2 + u21(t) + u22(t)}dt. (30)

This objective function penalizes both control effort and blood glucose deviation
from the initial level. The problem is to minimize (30) subject to the dynamic
model (1)-(23) with the optimized parameters from Case 1 (and with (1) and (3)
replaced by (28) and (29)). As the model is quite sensitive to changes in u1 and
u2, we use a homotopy approach with the initial guesses of u1 and u2 as w1 and w2

(from the Case 1 optimized model), respectively. We initially imposed tight lower
and upper bounds on u1 and u2 around the initial guesses. These bounds were then
slowly relaxed over a series of optimization iterations until no more improvement
in the objective was observed.

The optimal blood glucose trajectory is shown in Figure 9 and the optimal con-
trols are shown in Figures 10 and 11. As can be seen from Figure 9, the blood
glucose level corresponding to the optimal open loop controls remains very close to
the initial blood glucose level (918 mg/l= 5.1 mmol/l) over the entire time horizon.
This clearly demonstrates that excellent glucose control is achievable with the open
loop formulation. However, the blood glucose response is quite different from that
observed in experimental results. This raises the question of why the blood glucose
regulatory system in the human body does not follow the ‘optimal’ approach calcu-
lated via the open loop formulation. One should note that the glucose regulatory
system forms only one part of a more complex metabolic system that controls the
human body. There are probably sound reasons why elevated blood glucose levels
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Figure 10. The optimal glucagon release rate.
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occur in humans after the ingestion of a meal, but these are not reflected in the
glucose regulatory model considered here.

6. Conclusions. We have solved a complex model matching problem in which a
glucose regulatory model must be fitted to experimental data to minimize total
error. We investigated several different model matching objectives and found that
significant improvement in matching the model to experimental data was achieved
in all cases when compared to the results in Liu and Tang [8]. As expected, we
also found that the optimized model was more sensitive to changes in the insulin
release rate. Finally, we showed that open loop optimal controls can be readily
calculated for the glucose regulatory system. However, the resulting glucose profiles
no longer match real profiles observed experimentally, which suggests that more
comprehensive models of the human body metabolism are needed.

Future work will consider the implementation of the glucose regulatory model
for diabetic individuals and how their conditions can be controlled optimally.
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