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Abstract—We extend a recent Sparse Representation-based
Classification (SRC) algorithm for face recognition to work
on 2D images directly, aiming to reduce the computational
complexity whilst still maintaining performance. Our contri-
butions include: (1) a new 2D extension of SRC algorithm;
(2) an incremental computing procedure which can reduce the
eigen decomposition expense of each 2D-SRC for sequential
input data; and (3) extensive numerical studies to validate the
proposed methods.
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I. INTRODUCTION

Over the last decade, there has been rapid development of
face recognition technology, and many algorithms have been
proposed, such as Eigenface [8], Fisherface [2], subspace
learning [3], [4]. In a recent work, Wright et al. [9] pro-
posed a Sparse Representation-based Classification (SRC)
algorithm for robust face recognition, which is inspired from
the lately developed Compressive Sensing (CS) theory, and
this could help with the occlusion face recognition problem.
However, the computation cost of this SRC algorithm is very
expensive when the image size is large, thus the algorithm
is restricted only to small images.

In this paper we introduce a new formulation of the SRC
model working directly on 2D images. Further, we consider
applying the SRC algorithm in an incremental learning con-
text, and propose an incremental 2D-SRC learning procedure
which can be more efficient.

This paper is organized as follows. In Section II we review
the SRC algorithm and propose the 2D-SRC algorithm as
well as the incremental computing procedure. In Section III
we numerically demonstrate the advantages of 2D-SRC ver-
sus 1D-SRC over typical face datasets. Concluding remarks
are given in Section IV.

II. THE SRC ALGORITHM

The detail of the original SRC algorithm is reported
in [9]. Here, we only briefly describe its major aspects.
Essentially, it uses all known training face images to span
a face subspace, and for an unknown face image it tries to
reconstruct the image sparsely.

The motivation of this model is that given sufficient
training samples of each person, any new (test) sample for
this same person will approximately lie in the linear span
of the training samples associated with the person. To be
more precise, let us say, database A consists of k classes
{ν1,1, . . . , ν1,n1 ; . . . ; νk,1, . . . , νk,nk

}, where νi,l is the l-th
image of class i, by stacking pixels of each image into a
column vector vi,l , we can build up a matrix A to hold the
N training samples

A = [v1,1, . . . ,v1,n1 , . . . ,vk,1, . . . ,vk,nk
] ∈ �L×N (1)

where L = wh is the pixels count of an h× w image.
Once a new test image y is acquired, it can be represented

using samples from the database

y = Ax0 (2)

According to the assumption that an individual’s given
images are sufficient to represent themselves, the solution
x0 in linear equation (2) should be very sparse. This leads
to solving a noise-aware �1-minimization problem

(�1s) : x̂ = arg min
x

‖x‖1 s.t. ‖Ax− y‖2 ≤ ε. (3)

To recognize a probe image v, the SRC algorithm computes
per-class reconstructing residuals and identifies it as the class
having the minimum residual. The robust performance of
the SRC algorithm has been proved experimentally on face
datasets with noises and occlusions.
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A. The 2D-SRC Algorithm

The main disadvantage with (3) is that the problem size is
proportional to the size of matrix A, i.e. size(A) = L×N ,
where L is image pixel counts L = wh, and N is the training
samples count. This computation becomes very expensive
and potentially not practical when the image size is very
large (typical images have about 104 pixels or more) as �1

solvers have typical polynomial complexity.
To address this issue, we begin with a 2D-CS model

(�1s)
′ : x̂ = arg min

x
λ‖x‖1 + ‖A−

∑
i

xiAi‖2F (4)

Notice that we do not need to convert images into column
vectors as in the previous 1D-CS model. By expanding (4)
one can easily show that

‖A−
∑

i

xiAi‖2F = xT Qx− 2bT x + c (5)

where

Q =

⎛
⎜⎝
〈A1,A1〉F . . . 〈A1,AN 〉F

...
. . .

...
〈AN ,A1〉F · · · 〈AN ,AN 〉F

⎞
⎟⎠ ∈ �N×N

b =

⎛
⎜⎝
〈A1,A〉F

...
〈AN ,A〉F

⎞
⎟⎠ ∈ �N×1

c = ‖A‖2F
and Frobenius inner product is defined as

〈A,B〉F =
∑

i

∑
j

AijBij (6)

This shows that the 2D-CS model objective function
is actually a quadratic form, and the problem size is in
proportion to the input samples count N . As Q is symmetric
and positive semidefinite, we can always find vector columns
P = [p1, . . . ,pN ] such that

Q = PT P (7)

Once we have this decomposition of Q, then we can rewrite
the quadratic form (5) as

(5) = (Px)T (Px)− 2
(
PT z

)T
x + c (8)

= (Pz)T (Px)− 2zT (Px) + zT z− zT z + c (9)

= ‖Px− z‖2 − zT z + c (10)

where PT z = b. Thus, the original 2D-CS problem can be
transformed into an equivalent 1D-CS problem

(�1s)
′′ : x̂ = arg min

x
λ‖x‖1 + ‖Px− z‖22 (11)

The problem size now becomes size(P ) = r×N , which is
smaller than that of the 1D-CS model since we can require
r ≤ min(L,N).

The only question left is how to find suitable P and z
that satisfy (7)-(10). Generally, there exists infinite possible
P satisfying (7), but we prefer the column number of P to
be as small as possible. Luckily, the SVD of Q provides us
with a compact and “economy size” solution

Q = USUT =
(
US1/2

)(
US1/2

)T

(12)

It suggests that if we define

P =
(
US1/2

)T

(13)

then P is feasible. Furthermore, since the columns of U
is orthogonal, it can be shown that we can easily ensure
PT z = b by selecting

z = S†Pb (14)

This completes the solution of the 2D extension of sparse
representation model. We should point out that the com-
putation here only involves sample-pairwise inner product
values 〈·, ·〉F , so other inner product based transformation
(e.g. kernel tricks) can be combined with this model.

Based on the original 1D-SRC algorithm, we can describe
an 2D-SRC algorithm as following:

Algorithm 1: (2D-SRC)

1. Input: a set of k-class training images
{A1,1, . . . ,A1,n1 , . . . ,Ak,1, . . . ,Ak,nk

} ⊂ �h×w, a
test sample A ∈ �h×w.
2.(a) Compute inner products Q and vector b.
2.(b) Apply SVD on Q to find P and z by (13) and (14).
2.(c) (optional truncating) Remove columns of P corre-
sponding to the smallest singular values.
3. Solve the noise-aware �1-minimization (1D-CS) prob-
lem

x̂ = arg min
x

λ‖x‖1 + ‖Px− z‖22 (15)

4. Compute the per-class residuals

rp (A) = ‖A−
∑

i

δ(i)
p (x̂) Ai‖F for p = 1, . . . , k. (16)

where δp (x̂) , for p = 1, . . . , k is the components select-
ing vector for the p-th class whose entries are defined as

for i = 1, . . . , N, δ(i)
p (x̂) =

{
x̂i, if Ai in the p-th class
0, otherwise

(17)

5. Output: identity(A) = class (p∗) , p∗ = arg min
p

rp (A) .
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B. The Incremental 2D-SRC Algorithm

In the above approach, computing SVD of Q is an
important step. The size of the matrix Q is proportional to
the number of training images. In the case where the input
training images arrive sequentially, or when the number of
training images N is very large, direct SVD might not be
numerically feasible. To further improve the SVD steps of
the 2D-SRC algorithm, we propose an incremental version
as follows.

Denoted as Qn and Qn+1 respectively are the Q matrix
with n and n+1 training examples. Given the decomposing
results of Qn, we want to compute the eigenvalue decom-
position of Qn+1, which is equivalent to SVD as Q is an
inner product matrix

Qn+1 =
[

Qn b
bT c

]
= Un+1Σn+1Un+1

T (18)

where b = [〈Ai,An+1〉F ], and c = 〈An+1,An+1〉F are
the incremental inner products formed when a new sample
An+1 arrives.

The following theorem provides us with the relationship
between eigenvalues and eigenvectors of Qn, Qn+1.

Theorem 1: (Rank-One Incrementally Updating EVD)
Given the eigen decomposition

Qn = UnΣnUT
n (19)

where Σn = diag(λ1, . . . , λn), Un = [u1, . . . ,un] are
eigenvalues and eigenvectors respectively, then the eigen
decomposition of Qn+1 is given by

Qn+1 =
[

Qn b
bT c

]
≡

[
UnΣnUT

n b
bT c

]

=
[

Un 0
0 1

]
Rn+1

[
UT

n 0
0 1

]
(20)

where

Rn+1 =
[

Σn UT
nb

bT Un c

]
≡

[
Σn z
zT c

]

Δ= Vn+1Dn+1VT
n+1 (21)

as we denote UT
nb ≡ z = [z1, . . . , zn]T , Dn+1 and Vn+1

are eigen-pairs of Rn+1. Rn+1 is called arrowhead matrix
and its eigenvalues are exactly n + 1 roots of the following
equation

z2
1/(d− λ1) + · · ·+ z2

n/(d− λn) = d− c. (22)

Moreover, if we let λ1 < λ2 < · · · < λn be sorted, and
d1 < d2 · · · < dn < dn+1 be all n + 1 sorted roots of
the equation w.r.t. d, then the following interlacing relation
holds

d1 < λ1 < d2 < · · · < dn < λn < dn+1 (23)

The eigenvector vi corresponding to eigenvalue di can be
obtained by solving the eigen-equation directly, which gives

vi =
1
Ti

[
z1

di − λ1
, · · · , zn

di − λn
, 1

]
(24)

where Ti is a factor to normalize the eigenvector vi.
The properties of arrowhead matrix shown in Theorem

1 are well studied in literature (e.g. [6], [7]). Next, we
design a binary search algorithm to find all n+1 eigenvalues
of Qn+1 from (22), and then compute their corresponding
eigenvectors from (24).

Algorithm 2: (Binary Search for roots of Equation (22))
1. Input: the current n eigenvalues λ1, . . . , λn, the values
z1, . . . , zi, and c, M = norm(Qn)
2. For i = 1, . . . , n, binary search di in interval [λi−1, λi]
(let λ−1 = −M , λn+1 = M ):

let low = λi−1, high = λi

do
di = (λi−1 + λi);
fval = (di − c)−∑n

i=1 z2
i / (di − λi);

if fval > 0 then low = mid, else high = di;
while fabs(high− low) > eps

3. Output: the new n + 1 eigen-values d1, . . . , dn+1

Algorithm 3: (Incremental procedure for 2D-SRC)
1. Given: current training images {A1, . . . ,An} ⊂ �h×w

with their labels set K, a saved copy of SVD decomposi-
tion on current Qn = UnΣnUT

n , a new labeled training
image An+1 ∈ �h×w.
2. Compute b = [〈Ai,An+1〉F ]i=1,...,n, c =
〈An+1,An+1〉F .
3. Compute all eigenvalues Σn+1 = diag (d1, . . . , dn+1)
by Algorithm 3.
4. Compute all eigenvectors Un+1 by (24).
5. Continue 2D-SRC procedure (Algorithm 2) with the
new base image set {A1, . . . ,An,An+1}, but no need to
do SVD on Qn+1 separately.
6. n← n + 1, and turn to step 1.

Combining algorithms (1) ∼ (3), we can assemble
an efficient incremental process which can reuse previous
computed results, which is particularly useful in sequence
processing and/or incremental learning.

The following table summarizes the computational com-
plexity of three algorithms:

SVD flops �1 problem size
1D-SRC - O(LN)
2D-SRC O(N3) O(rN)

2D-SRC+incremental O(N2+δ)* O(rN)
* (here 0 ≤ δ ≤ 1 is a constant related to matrix-matrix

multiplication complexity, which is not well determined in
theory yet.)
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III. EXPERIMENTS

We have performed experiments on two face databases:
the Yale B plus Extended face database [3], [4] and the AR
face database [5]. For the Yale B+Extended face database,
we only use the frontal faces in subset1 and subset2. From
the AR face database we choose 120 individuals and each
with 26 images available. We crop and resize them into a
size of 90 × 90, then align them by fixing two eyes points
in order to enhance the quality of distributed clusters.

Although many �1-optimization solvers are publicly avail-
able, l1-magic [1] is chosen in this paper as the solver for
�1-norm problem, just following [9].

All our results are obtained using MATLAB on a desktop
machine with Intel(R) Core(TM)2 CPU, 2GB of RAM
hardware configuration.

A. 1D-SRC vs. 2D-SRC Accuracy and Speed

In this part we compare the original 1D-SRC algorithm
and our proposed 2D-SRC algorithm under different scaling
dimensionality, and we evaluate them in two aspects: the
recognition accuracy R = num of correctness

num of testing samples , and the
average time expended for recognizing one test sample T =
accumulated time expended

num of testing samples . Among all face images, half of
them are randomly selected as training images and the others
are used for testing. Each image has been resized into several
different scales, and then the recognition accuracy R and the
average time expended T under all scales are collected in
each round. A comparison of results between the 1D-SRC
algorithm and the 2D-SRC algorithm is shown in Figs 1 and
2.

We can observe that: (1) the 2D-SRC algorithm can
achieve recognition rates similar to the original 1D-SRC
algorithm, while they are both effective for face recognition
task; (2) but the computational cost of the 2D-SRC algorithm
is basically 2 ∼ 3 times faster than that of the original 1D-
SRC algorithm. We also notice that as the problem size
becomes larger and larger, the average time expended of
both algorithms is increasing.

B. Incremental Performance and Efficiency

In this part we conduct schemed performance evaluations
(in terms of accuracy and speed) of three algorithms (i.e.
1D-SRC, 2D-SRC, 2D-SRC-incremental) in the context of
incremental training process. Among all the images, 60%
are used for training, 40% are used for testing; at first
we randomly select 50% training samples as a starting
training set, then add other training samples one by one,
and run recognition tests on a fixed testing set. The average
recognition rates and time expended per sample under all
training set sizes are recorded and shown in Figs 3 and 4.

We can draw a conclusion that applying incremental
procedure on 2D-SRC is helpful to reduce the computational
cost further, but that is not as much as the reduction cost
from 1D-SRC to 2D-SRC.

1D-SRC 2D-SRC
image sizes avg.rate (%) avg.time (sec.) avg.rate (%) avg.time (sec.)

siz = 20 × 20 100.00 2.5057 100.00 2.9615
siz = 30 × 30 100.00 23.7490 100.00 3.7482
siz = 40 × 40 100.00 66.3346 100.00 3.9022
siz = 50 × 50 100.00 115.7170 100.00 4.2105
siz = 60 × 60 100.00 173.1045 100.00 4.7190
siz = 70 × 70 100.00 236.7434 100.00 4.8268
siz = 80 × 80 100.00 278.6187 100.00 4.0566

(a) comparison of recognition rates

  20x20     30x30     40x40     50x50     60x60     70x70     80x80   
0

50

100

150

200

250

size of image

av
er

ag
e 

re
co

gn
iti

on
 s

pe
ed

 fo
r 

on
e 

im
ag

e 
(in

 s
ec

on
ds

)

 

 
1D−SRC
2D−SRC

(b) speed vs. dimensionality

Figure 1. Performance on Yale B+Extended Face Database

1D-SRC 2D-SRC
image sizes avg.rate (%) avg.time (sec.) avg.rate (%) avg.time (sec.)

siz = 20 × 20 75.26 42.6049 74.17 17.5065
siz = 30 × 30 75.17 153.9607 74.73 48.3192
siz = 40 × 40 75.65 307.7532 75.03 150.4301
siz = 50 × 50 76.10 411.4108 75.13 159.2576
siz = 60 × 60 76.20 669.4789 75.70 149.4178
siz = 70 × 70 76.45 862.3786 75.90 144.2889
siz = 80 × 80 76.51 1082.0746 76.10 166.2655

(a) comparison of recognition rates
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(b) speed vs. dimensionality

Figure 2. Performance on AR Face Database
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1D-SRC 2D-SRC 2D-SRC-incremental
training sizes avg.rate (%) avg.rate (%) avg.rate (%)
trn = 190 100.00 100.00 100.00
trn = 228 100.00 100.00 100.00
trn = 266 100.00 100.00 100.00
trn = 304 100.00 100.00 100.00
trn = 342 100.00 100.00 100.00
trn = 380 100.00 100.00 100.00
trn = 418 100.00 100.00 100.00
trn = 456 100.00 100.00 100.00
trn = 494 100.00 100.00 100.00

(a) comparison of recognition rates
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Figure 3. Incremental Results on Yale B+Extended Face Database

1D-SRC 2D-SRC 2D-SRC-incremental
training sizes avg.rate (%) avg.rate (%) avg.rate (%)
trn = 1200 75.36 75.10 75.10
trn = 1320 75.65 75.38 75.38
trn = 1440 76.17 75.87 75.87
trn = 1560 76.24 75.96 75.96
trn = 1680 78.36 78.03 78.03
trn = 1800 79.50 78.76 78.76
trn = 1920 80.35 79.95 79.95
trn = 2040 82.42 81.86 81.86
trn = 2160 84.10 83.90 83.90

(a) comparison of recognition rates

1200 1320 1440 1560 1680 1800 1920 2040 2160
0

36.1509
64.7876

200

400402.4337

600

800

1000

1200

1400

number of training images

av
er

ag
e 

re
co

gn
iti

on
 s

pe
ed

 fo
r 

on
e 

im
ag

e 
(in

 s
ec

on
ds

)

 

 
1D−SRC
2D−SRC
2D−SRC−incremental

(b) speed vs. train size

Figure 4. Incremental Results on AR Face Database

IV. CONCLUSIONS

In this paper we have proposed a faster extension of
Wright et al.’s sparse representation based classification
algorithm for robust face recognition. The proposed method
mainly makes use of inner product computation and trans-
formation for acceleration, and it can also work in an
incremental way. Experimental results show that the new
algorithms still maintain approximate performance at a much
faster speed when image size is large.

We agree that even though the proposed techniques are
faster than the original method, the overall computing speed
of the current SRC algorithms is still relatively slow. This
is significant when both the dimensionality of images and
the size of base images are large. As a result, further
faster solving algorithms and hardware developments are
still required, which is our future research direction.
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