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Abstract  Single crystal X-ray studies of p-t-butylcalix[10]arene·2dmso·7H2O (1) and 

[NMe4][p-t-butylcalix[9]arene-H]·2dmso·H2O (2), provide new data on these large 

macrocycles and their conformations, that of 2 being the first where an encapsulated [NMe4]+ 

cation is present, while 1 contains the neutral ligand.  Both were obtained as crystalline 

products of the reactions of the calixarenes with tetramethylammonium hydroxide after long 

standing. The structure of [NEt4][calix[4]arene-H], in which the cation approaches inclusion 

in the shallow cone of the anion, is also defined and compared with various other 

alkylammonium derivatives of calixarenes as well as that of p-t-butylcalix[9]arene. 
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Introduction 

 
While investigations of the chemistry of the larger calixarenes have been relatively limited 

compared to those of calix[4]arene and its derivatives,[1] there is particular interest in the 

larger species because of their capacity to act as di- or poly-topic receptors and thus provide 

frameworks suited to the development of, for example, multimetallic catalysts.[2]  The 

conformational lability of the larger calixarenes[1,3] means, however, that it is difficult to 

predict how they may function as receptors so that structural studies of these calixarenes in 

both their free and complexed forms are fundamental to developing an understanding of their 

behaviour.  It has been long known, for example, that unsolvated p-t-butylcalix[8]arene 

adopts a nearly flat, 'pleated loop' conformation[4] which is not suggestive of any exceptional 

inclusion properties. This conformation is essentially unchanged in inclusion complexes of 

the calixarene with neutral solvents,[5,6] but slightly modified in its inclusion complexes with 

organic bases[7] and in some mononuclear metal complexes.[8] However extensive 

deprotonation and binding to two lanthanide cations[9] results in a completely different 

conformation resembling a fusion of two conical calix[4]arene units twisted into a chiral 

form, a result at variance with the complex formed with a pair of uranyl ions.[10]  The present 

report is the result of work which was begun with the intent of studying the effect of 

deprotonation and inclusion of a small organic cation (tetramethylammonium) on the 

conformations of p-t-butylcalix[9]arene and p-t-butylcalix[10]arene; this particular cation, on 

the basis of the nature of its complexes with calix[4]arene monoanion[11] and p-t-

butylcalix[6]arene dianion[12] may be expected to be compatible with the formation of cone-

like components for inclusion within the macrocycles.  As for all crystallographic studies, this 

work was dependent upon our ability to obtain suitable crystals, which were obtained in a 

desired salt form for p-t-butylcalix[9]arene, leading to a useful comparison of the structure of 

[N(Me)4][p-t-butylcalix[9]arene-H] with that of unsolvated [NEt4][calix[4]arene-H].  With p-
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t-butylcalix[10]arene, despite efforts to react it with [NMe4]OH and thus obtain the analogue 

of the p-t-butylcalix[9]arene derivative, crystals were obtained only as the free ligand in a new 

(dmso/H2O) solvate form.  

 

 

Experimental 

 

Experiments in which dimethylsulfoxide (dmso) solutions of p-t-butylcalix[9]arene and p-t-

butylcalix[10]arene were treated with various molar amounts (in excess of 1:1) of ethanolic 

[NMe4]OH provided, after warming the initial mixtures and then allowing them to cool, 

extremely thin, lath-like crystals in both cases.  These were completely unsuitable for X-ray 

diffraction studies with the then-available instrumentation but after leaving stand the mixtures 

for an extended period (ten years), both proved to contain some useful specimens which, with 

more modern technology, diffracted acceptably.  The structure solutions thereby obtained 

modelled the materials persuasively as p-t-butylcalix[10]arene·2dmso·7H2O (1) and 

[NMe4][p-t-butylcalix[9]arene-H]·2dmso·H2O (2). [NEt4][calix[4]arene-H] (3) was obtained 

by treating a slurry of calix[4]arene in acetonitrile with excess methanolic [NEt4]OH, 

followed by heating and addition of dichloromethane until all solids dissolved. The solution 

was allowed to evaporate, under ambient conditions, providing crystals of 3.  

  

Structure determinations 

 
Full spheres of area-detector CCD diffractometer data were measured for 1, 2 (ω-scans, 

monochromatic Cu Kα radiation, λ = 1.54178 Å), processed together with an older unique 

single counter instrument set for 3 (2θ/θ scans, Mo Kα radiation, λ = 0.71073 Å), yielding 

Nt(otal) reflections, these merging to N unique (Rint cited) after 'empirical'/multiscan 'absorption 
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correction', No with I > 2σ(I) being considered 'observed' and used in the full matrix least 

squares refinements on F2, reflection weights being (σ2( 2
oF ) + (aP)2 (+ bP))–1 (P = 

)).3/)2( 2c2o FF +   Computation used the SHELXL2014 program.[13]  Results are presented 

below and in the Figures and Tables; full .cif depositions (excluding structure factor 

amplitudes) are deposited with the Cambridge Crystallographic Data Centre, CCDC 973920 

(1), 973919 (2), 973918 (3). 

 

Crystal/refinement details 

 
1.  p-t-butylcalix[10]arene·2dmso·7H2O: C110H140O10·2dmsO·7H2O, Mr = 1904.6.  

Orthorhombic, space group Fmm2 )42No.,( 18
2vC , a = 32.0088(4), b = 32.1639(2), c = 

12.1181(1) Å, V = 12475.9(2) Å3 (T = 100(2) K).  Dc (Z = 4) = 1.014 g cm–3.  µCu = 0.84 mm–

1; specimen: 0.44 x 0.25 x 0.05 mm; 'T'min/max = 0.71.  2θmax = 135°; Nt = 30997, N = 5113 

(Rint = 0.029), No = 5065; R1 = 0.099, wR2 = 0.27;  S = 1.04.  xabs = 0.05(8).  |Δρ|max = 1.4(1) e 

Å–3. 

Variata.  The 'plane' of the macrocycle lies normal to the two-fold axis of the mm2 array, one 

independent t-butyl only being ordered.  The dmso molecules lie on or close to one of the 

mirror planes and disordered about it, both modelled as superimposed with a water molecule 

with appropriate fractional occupancy with other fractionally occupied components further 

afield, one on a mirror plane.  Full details are available in the .cif file. 

 

2.  [NMe4][p-t-butylcalix[9]arene-H]·2dmso·H2O: C103H137NO9·2dmsO·H2O, Mr = 1699.3.  

Monoclinic, space group P21/m )11No.,( 2
2hC , a = 11.7820(2), b = 30.4081(5), c = 15.9367(3) 

Å, β = 107.816(2)°, V = 5435.8(2) Å3 (T = 100(2) K).  Dc (Z = 2) = 1.038 g cm–3.  µCu = 0.86 
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mm–1; specimen: 0.38 x 0.18 x 0.03 mm; 'T'min/max = 0.81.  2θmax = 135°; Nt = 56566, N = 

9867 (Rint = 0.057), No = 7509; R1 = 0.104, wR2 = 0.23; S = 1.00.  |Δρ|max = 1.15(8) e Å–3. 

Variata.  The 'plane' of the macrocycle lies normal to the crystallographic mirror plane, with 

the cation and dmso 1,3, H2O 1,3 components lying in or close to the plane and disordered 

about it, the dmso and H2O components superimposed and fractionally occupied.  dmso 2 was 

modelled with its sulfur atom disordered over two sites, the whole being superimposed also 

with a fractionally occupied water molecule.  Full details are available in the .cif file. 

 

3.  [NEt4][calix[4]arene-H]: C36H43NO4, Mr = 553.7.  Orthorhombic, space group Fdd2 

)43No.,( 19
2vC , a = 22.153(4), b = 22.383(4), c = 23.948(5) Å, V = 11875(4) Å3.  (T ca 150 K).  

Dc (Z = 16) = 1.239 g cm–3.  µMo = 0.080 mm–1; specimen: 0.25 x 0.12 x 0.08 mm; 'T'min/max = 

0.99.  2θmax = 45°; Nt = N = 2005, No = 1437; R1 = 0.16, wR2 = 0.39; S = 1.21.  xabs 

indeterminate.  |Δρ|max = 0.56(9) e Å–3. 

Variata.  Each cation is disordered about the same crystallographic 2-axis, their relative 

dispositions being quasi-orthogonal, the disordered components being refined with isotropic 

displacement parameters.  Within the ligand, phenolic hydrogen atoms were modelled over 

two crystallographically independent sites, one fully occupied and one half-occupied.  Three 

of the four independent ethyl groups in the cation are rotationally disordered about their 

pendent bonds, site occupancies 0.5. 

 

Results and discussion 

The development of efficient syntheses, coupled to full characterisation, of the three p-t-

butylcalix[n]arenes with n = 4, 6 and 8 by Gutsche and co-workers more than 40 years ago 

was the foundation of the remarkable subsequent development of the field of calixarene 

chemistry.[1] The larger two do not share the ready introduction of conformational restrictions 
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which has made p-t-butylcalix[4]arene and its derivatives the basis of a prolific family with an 

extraordinary range of applications. The largest, p-t-butylcalix[8]arene, and its dealkylated 

derivative (Scheme 1) have, nonetheless, provided a substantial amount of valuable reference 

data for the present study.  

  

 
 

 
n=8 

 
(a)  (b)  

Scheme 1. (a) General structure of para-substituted calix[n]arene, and (b) structures of calix[8]arene, and p-t-
butylcalix[8]arene. 
 
(a) 

 

 

(b) 

 

 
 
 

(c) 

 

 

(d) 
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(e) 

 

 

(f) 

 

 
 
 

(g) 

 

 

(h) 

 

 
Fig. 1. Orthogonal views of the inner macrocycle conformation in various known solvates of calix[8]arene. 

Shown are p-t-butylcalix[8]arene  in the  "pleated loop" (a) unsolvated,[4] (b) tetrakis(acetonitrile) solvate,[6] (c) 

bis(acetonitrile) solvate,[6] (d) chloroform solvate[5]; and in the "stretched chair" form (e) (octakis) pyridine 

solvate,[7(a)] (f) (tetrakis) pyridine solvate,[7(b)] and (g) morpholine solvate.[7(c)] Calix[8]arene (as the 

hexakis(pyridine) solvate) in the "stretched chair" form is shown in (h).[14] Here, and in subsequent Figures, H-

atoms and (sometimes disordered) t-butyl groups are not shown ; dashed red-and-white lines indicate phenolic 

H-bonding interactions and dashed black-and-white lines phenolic-OH…N interactions. In stick representations 

the colour code, where employed is, C = grey, N = blue, O = red. 
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 For p-t-butylcalix[8]arene, several structure determinations are available.  The first,[4] 

leading to the definition of the essentially fourfold-symmetric “pleated loop” conformation 

for the molecule (Fig. 1(a)), was of the unsolvated form, although a very similar conformation 

is found in two (quasi-) isomorphous acetonitrile solvates,[6] as well as in a non-isomorphous 

chloroform solvate.[5]  As is very well established for calix[4]arenes,[1] cyclic intramolecular 

H-bonding appears to be a major factor determining the solid state conformation, although as 

phenolic-H atoms were not located in any of these p-t-butylcalix[8]arene structures, the 

presence of H-bonds was surmised generally on the basis of O…O separations near 2.7 Å. As 

rather poor H-bond acceptors, chloroform and acetonitrile would not be expected to greatly 

perturb phenolic H-bond links (Fig. 1(b)-(d)) and it is only in the acetonitrile tetrasolvate that 

a weak interaction of one acetonitrile-N with a (presumably) phenolic-H is possibly the cause 

of a slight asymmetry of the conformation (Fig. 1(b)), although a similar asymmetry is also 

seen in the disolvate (Fig. 1(c)), where such an interaction is not apparent, so that crystal 

packing in broader terms must be considered relevant. Solvates with the much better H-bond 

acceptors pyridine[7(a),(b)] and N-methyl-morpholine[7(c)], however, do show that the stronger 

interactions which occur with these bases, may result in a conformation of the calix[8]arene 

quite different from that of the pleated loop. This conformation can be described as a base-

assisted (quasi-centrosymmetric) “stretched chair” form (Fig. 1(e)-(g)) in that in each there 

are two strings of four phenolic oxygen atoms, each with a terminal N-base, directed 

oppositely with respect to the ring mean plane. A similar form is seen in the lattice of the 

hexakis(pyridine) solvate of calix[8]arene,[14] where phenolic H-atoms could be located and 

refined and where the absence of t-butyl substituents appears to facilitate H-bonding to four 

pyridine units (Fig. 1(h)). It is worthy of note here that in p-t-butylcalix[12]arene as its 

decapyridine solvate,[15] two phenolic groups are involved in H-bonding to pyridine only (and 

two others to pyridine and another phenol), leading to two symmetry-related groups of five 
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phenolic units forming independent H-bonded arrays described as partly conical, partly 

pleated loop, so that the whole molecule take the shape of an extended chair-like, slightly 

twisted ring where the 12 O-atoms are nonetheless not far from coplanar (Fig. 2(a)). This is in 

contrast to p-t-butylcalix[16]arene, the largest calixarene yet characterised structurally,[16] as 

its acetonitrile/dichloromethane solvate, where the phenolic H-bond array is continuous about 

the macrocycle, which adopts a strongly convoluted, twisted tennis-ball-seam conformation 

(Fig. 2(b)). (Note also that for p-t-butylcalix[7]arene, crystallisation with pyridine again leads 

to partial disruption of the phenolic H-bond array (Fig. 2(c)), although indirectly in this case, 

leading to a pair of 4+1 arrays once more.[17]) 

 
(a) 

 
(b) 

 

(c) 

 
 
Fig. 2. Phenolic H-bonding arrays in other large calixarenes. (a) Disruption of the phenolic H-bond sequence by 

pyridine in p-t-butylcalix[12]arene decapyridine solvate.[15] (b) The continuous phenolic H-bond array in p-t-

butylcalix[16]arene dichloromethane/acetonitrile solvate.[16] (c) Disruption of the phenolic H-bond array by 

pyridine in p-t-butylcalix[7]arene tris(pyridine) solvate.[17] 
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Partial deprotonation of p-t-butylcalix[8]arene can be achieved by the use of a strong 

base such as hydroxide ion and the structure of the dianion as its tetrabutylammonium salt[18] 

shows that this deprotonation reinforces some of the intramolecular H-bonds, resulting in a 

conformation which can be considered as a rather flattened chair, or "stretched loop", defining 

a cavity through which one arm of a tetrabutylammonium cation penetrates and is involved in 

CH…O interactions (Fig. 3). Use of CrystalExplorer[19] on the ordered, included cation 

indicates that these interactions occur through phenolic-OH groups and not directly through 

the phenoxide-O atoms. Where there is direct coordination of a metal ion to the dianion 

(formed by the use of triethylamine as base),[8] very little change from the pleated loop 

conformation is seen when the metal ion is Ca(II) and only a relatively minor change when 

the metal is Eu(III), indicating that every separate cation type may give rise to subtly different 

effects. It is also the case that (O2)U(VI) binding to the octa-anion from p-t-

butylcalix[12]arene[15] results in relatively little change of conformation compared to that of 

the neutral calixarene as its pyridine solvate but, as implied in the preceding discussion, this 

solvate conformation could differ significantly from that of the unperturbed molecule. 

   

 
 

 
Fig. 3. Orthogonal views showing the insertion of one tetrabutylammonium cation into the cavity of the dianion 

of p-t-butylcalix[8]arene.[18] 
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 Of the present studies, we consider first that of the neutral calixarene, p-t-

butylcalix[10]arene. The results of the structure determination executed on crystals of this 

compound (Fig. 4(a),(b)), obtained from dmso solution after standing for a number of years 

and perhaps contingent on the absorption of CO2 by the initially alkaline solution in this time, 

are consistent with a model containing an appreciable water molecule content: p-t-

butylcalix[10]arene·2dmso·7H2O, 1.  The orthorhombic Fmm2 cell is very similar to that of 

the same calixarene crystallised as its 1:3 complex with toluene/THF, 4:[20] a 32.211(6), b 

32.289(7), c 12.172(2) Å, V 12667(4) Å3 (T 223(2) K) for the latter, a 32.0088(6), b 

32.1639(2), c 12.1181(1) Å, V 12475.9(2) (T 100(2) K) for the present, the two 

determinations being of similar precision.  In the lattice of 1, the crystallographic 2-axis at the 

intersection of the two crystallographic mirror planes passes through the centre of the ligand 

plane and normal to it, only one quarter of the molecule (symmetry C2v) being associated with 

the asymmetric unit of the structure (Fig. 4(c)). From the viewpoint of the mirror planes, the 

phenolic sequence may be considered as a set of four steeply pitched neighbours to either side 

of the pair of rings bisected by one of the planes, or the same set to either side of the pairs 

straddling the other plane, i.e. the array may be considered as quadrupolar. While the pleated 

loop[4] of calix[8]arene species can be described in terms of a U-D (up-down) alternation of 

methylene bridges with respect to the mean plane of the oxygen atoms, the conformation of p-

t-butylcalix[10]arene in 1 could be termed U-U-D-U-D-U-U-D-U-D (and its inverse) 

although the phenolic-O atoms do not all lie close to one plane and the macrocyclic ring can 

be seen as having a near-tennis-ball-seam configuration. Remarkably, given the very different 

characters of the solvent molecules found in the two crystals, the conformation of p-t-

butylcalix[10]arene in 1  is almost identical to that in the THF/toluene solvate 4 (Fig. 4(c)). 

This could be attributed to the dominant influence of the cyclic H-bonding array involving the 

phenolic OH groups and this is seemingly the case for 4, where all O…O separations lie 
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below 3 Å and interactions of the macrocycle with the associated solvent molecules appear to 

be due to dispersion forces only. However, the conformation is retained in 1 despite the fact 

that the phenolic H-bonding array is significantly perturbed by interaction with both dmso and 

water molecules, a consequence of this being that four phenolic-O separations (O(1)…O(2)) 

are >3.2 Å, indicative of a very weak interaction if any beyond dispersion, while six are 

slightly shorter than those in 4. That the t-butyl substituents have a significant influence in 

maintaining the conformation in 1 and 4 is indicated by the rather different conformation 

found for the acetone solvate of calix[10]arene,[20] although here the effective division of the 

phenolic-OH substituents into two groups of five is associated with H-bonding of one phenol 

in each with an acetone molecule. Description of the full H-bond array in 1 is complicated by 

partial occupancy of several O-atom sites but the long O(1)…O(2) separation is associated 

with shorter contacts, O(1)…O(4W), 2.95(1); O(2)…O(4W) 2.77(1) Å, to the fully occupied 

water-O(4W) site, so that the primary H-bond cycle can be regarded as passing via O(2), O(3) 

and O(4W), with interactions to O(1) as substituents to this ring (Fig. 4(a)). Relatively short 

(2.76(1) Å) contacts to O(1) involve the partially occupied dmso-O sites, in turn involved in 

contacts to the partially occupied water-O sites.  
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(a) 

 

(b) 

 
 
(c)       (d) 
 

     

                    
Fig. 4. (a) A perspective view of the macrocyclic molecule as found in the lattice of p-t-

butylcalix[10]arene·2dmso·7H2O, 1, showing the fully occupied water molecule sites associated with disruption 

of the cyclic phenolic H-bond array but the creation of a new cyclic array. Here, and in following figures, 

displacement ellipsoids shown are at the 50 % amplitude level. H-atoms are not shown and only one component 

of the disorder in several of the t-butyl groups is shown.  (b) Simplified view of one component of the disordered 

extension of the H-bonding array to dmso and other water molecules. (Only three carbon atoms of each phenyl 

ring are shown.) (c,d) Orthogonal, simplified views of the calix[10]arene units in (c) the lattice of p-t-

butylcalix[10]arene·2dmso·7H2O and (d) in the lattice of p-t-butylcalix[10]arene·5THF·1.5C7H8 . 
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 A single structural study is known for the neutral p-t-butylcalix[9]arene and this 

concerns its adduct with o-carborane, cyclohexane and water.[21] The macrocycle adopts a 

conformation far from planar, tracing out approximately a tennis-ball-seam form with one 

plane of symmetry but with all adjacent O…O separations ranging between 2.66 and 2.72 Å, 

consistent with a cyclic H-bond array following this seam (Fig. 5(a)). The shortest contact 

between phenolic-O and any of the water molecule oxygen atoms is 3.62 Å, indicating at 

most a very weak perturbation of the cyclic phenolic-OH array. Carborane units can be 

considered to lie within partial cone structures of the calixarene but there is no indication that 

this involves interactions with the phenolic groups. All the phenolic groups can be considered 

directed towards the centroid of the molecule. This is not the case for derivatives of neutral p-

t-butylcalix[9]arene with large groups on the phenolic-O atoms,[22] presumably in reflection of 

the steric congestion that these would provoke, and the macrocycle conformations are rather 

unsymmetrical (Fig. 5(b)). In the known complexes of deprotonated p-t-butylcalix[9]arene 

with Eu(III)[23] and (O2)U(VI),[24] the macrocycle conformation is restored to having a vertical 

plane of symmetry (Fig. 5(c),(d)) and indeed, despite degrees of deprotonation of 3 and 6 with 

Eu(III) and 5 with (O2)U(VI), with some similarities to that of the neutral molecule. Plausible 

putative locations of the residual phenolic protons in all these complexes are consistent with 

both the metal ions and these protons determining the observed conformations, although only 

in the case of [Eu7(p-t-butylcalix[9]arene-6H)2(OH)9(OH2)2(dmso)6] can this bonding array be 

considered cyclic. In [Eu2(p-t-butylcalix[9]arene-3H)(dmso)4], two phenolic groups form an 

isolated H-bonded pair, with one also being involved in an H-bond to lattice acetone, while in 

[HNEt3]3[(UO2)2(CO3)(p-t-butylcalix[9]arene-5H)], two phenolic-O atoms appear to be too 

far apart (3.87 Å) for a significant H-bond bridge to be present, possibly because one is 

involved in a CH…O interaction with lattice acetonitrile.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

 
Fig. 5. Macrocycle conformations and phenolic H-bonding links in p-t-butylcalix[9]arene derivatives in (a) p-t-

butylcalix[9]arene.7(o-carborane).2C6H12.5H2O.[21] (b) (left) nona(butoxycarbonylmethyl) and (right) 

nona(ethoxycarbonylmethyl) ethers of p-t-butylcalix[9]arene.[22] (c) (left) [Eu2(p-t-butylcalix[9]arene-

3H)(dmso)4] and (right) [Eu7(p-t-butylcalix[9]arene-6H)2(OH)9(OH2)2(dmso)6].
[23] (d) [HNEt3]3[(UO2)2(CO3)(p-

t-butylcalix[9]arene-5H)].[24]  

 

Clearly, a particular conformation is determined by multiple factors and in the present 

structure determination of [NMe4][p-t-butylcalix[9]arene-H]·2dmso·H2O, 2, the effect of 

inclusion within a cavity formed by the calixarene is demonstrated (Fig. 6(a),(b)). This cavity 

involves three phenol units and the remaining six form an array with a conformation very 

close to that formed by six of the units in the neutral molecule. The triphenolic cavity is very 

similar to that seen in [NMe4]2[p-t-butylcalix[6]arene - 2H][12] (Fig. 6(c)) as the surroundings 

of one tetramethylammonium cation but this form of inclusion does not necessarily signify 

the operation of forces greater than those of dispersion (in particular, here, CH3-π 

interactions) between the cavity and the cation. Unfortunately, disorder of three of the four 

methyl groups of the cation in the present case renders the present CrystalExplorer[19] 
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inapplicable as a means of defining the interactions. Note, however, that the one fully 

occupied methyl group, which corresponds to that inserted furthest into the cavity, does not 

have coordinates which place it closer to the aromatic ring faces than those of disordered 

methyl groups and in the present case there is evidence that H-bonding may determine the 

positioning of the cation. Thus, considering O…O separations < 3 Å to be indicative of proton 

bridging (H-bonding), it would appear in 2 that the two outer phenolic groups of the three 

forming the cavity are H-bonded to the central one and are also bridged by a water molecule 

as well as being bonded separately to dmso molecules. The water molecule is H-bonded to a 

third dmso molecule, while the water-O is 3.30 Å from the C of the fully occupied cation 

methyl group, consistent with a CH…O interaction (Fig. 6(b)). If the total structure truly is an 

H-bonded array, it must be dynamic, since three phenolic groups and a water molecule do not 

provide enough protons for each link to be fully occupied. The formal negative charge on the 

calixarene would appear, on the basis of the short (2.43 Å) O(5)…O(5’) separation, to be 

localised on these O atoms and thus relatively remote from the cation, although the disordered 

methyl groups of the cation lie close enough to the phenolic-O atoms O(4) and O(4’) for 

CH…O interactions to be significant, thus making them an addition to the phenolic H-

bonding array involving O(3), O(4) and O(5) and their equivalents. Note that this situation is 

again similar to that of [NMe4]2[p-t-butylcalix[6]arene-2H],[12] where two of the methyl 

groups of the included cation which are oriented out of the cavity are also close enough to the 

phenolic-O atoms not involved in the cavity to be involved in CH…O interactions. In both the 

p-t-butylcalix[9]arene and p-t-butylcalix[6]arene derivatives, the inverted orientation of the 

phenolic groups not involved in the cavity can be seen as favouring this form of interaction. 
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(a) 

   
(b) 

 

(c) 

 
Fig. 6.  (a) Orthogonal views of the calixarene anion and its included tetramethylammonium counter cation 

found in the lattice of [NMe4][p-t-butylcalix[9]arene-H]·2dmso·H2O, 2. Only one component of the disorder in 

the tetramethyl ammonium ion and the t-butyl groups is shown. (b) A simplified view (stick representation) of 

the cation:anion pair with a projection of the macrocycle similar to that shown for p-t-butylcalix[9]arene in Fig. 

5. Phenolic OH interactions with water and dmso molecules on partially occupied sites are shown along with 

possible CH…O interactions of the cation. (c) A view of the included cation:anion pair found within the lattice 

of [NMe4]2[p-t-butylcalix[6]arene-2H], again showing only one component of the cation disorder, and with a 

possible CH…O interaction  indicated. 

 

 The structure of [NEt4][calix[4]arene-H] (Fig. 7) provides an interesting addition to 

those of tetra-alkylammonium derivatives of calixarenes in general. The compound is 

unsolvated, so that the only possibility for CH…O interactions of the cation would involve 

the phenolic-O atoms but any contacts here are very remote and deemed insignificant. Viewed 
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down c, it is possible to discern columns in the lattice in which the cation and anion alternate 

and in which the cations could be considered to be included in the shallow cone of the anion, 

(Fig. 7(a)) a situation analogous to that of the tetramethylammonium cation in its 

stoichiometrically more complicated compound with calix[4]arene mono-anion.[11] Although 

disorder within the cation precludes analysis of its interactions using CrystalExplorer, in no 

case is the C(aliphatic)…C(aromatic) separation in the inclusion structure < 3.5 Å, whereas 

there are such contacts (~3.4 Å) between the cation and the four proximal calix[4]arene 

mono-anions which surround it in the lattice (Fig. 7(b)). The simplest interpretation of the 

nature of the interactions determining the form of the lattice of [NEt4][calix[4]arene-H] is that 

they are solely dispersion forces, thus making the compound unique within the currently 

known family of related species. In the two structurally characterised polymorphs of 

[HNEt3][calix[4]arene-H],[25] the presence of a proton on the cation clearly renders NH…O 

H-bonding an important force in the lattice. 
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(a) 

 

 

 

 

 

(b) 

 

 
(c) 

 

(d)  

 

 

 
Fig. 7. Cation:anion contacts within the lattice of [NEt4][calix[4]arene-H], 3. (a,b) Views of the cation:anion 

chain running parallel to the c axis in [NEt4][calix[4]arene-H]. Only one component of the cation disorder is 

shown. (c,d) Orthogonal views of the cation and its four nearest-neighbour calix[4]arene units not in the column 

shown in (a). 

 

Conclusions 

While the forces operative within the crystal lattices of calixarenes and their derivatives have 

been analysed on numerous occasions,[26] this has usually been with the objective of 

understanding the inclusion behaviour of the calixarenes and of calix[4]arenes in 

c 
c 

down c down a 
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particular.[27,28] Thus, classical H-bonding of phenolic units has been recognised as an 

important factor determining the formation of cavities for inclusion[1] but phenolic-O 

interactions with weak H-bond donors such as alkyl groups as discussed in the present article 

have, perhaps unjustifiably, been paid less attention. At least in some cases, these interactions 

may be more important determinants of inclusion than interactions of the included molecule 

with the aromatic walls of the cavity. Further, these phenolic interactions may be modified but 

not necessarily completely disrupted in the presence of strongly H-bonding species such as 

pyridine, dmso and water, leading in some cases to quite extended structures other than the 

cavity itself being involved in inclusion. For large calixarenes in particular, this defines new 

prospects for optimisation of selectivity in inclusion. 
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