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The role of the generalised continuous algebraic Riccati agtion
in impulse-free continuous-time singular LQ optimal control

Augusto Ferrante and Lorenzo Ntogramatzidis

Abstract— In this paper the role that the continuous-time Riccati equation plays in singular LQ optimal control. Such
generalised Riccati equation plays within the context of sigular  role does not trivially follow from the analogy with the
linear-quadratic optimal control is analysed. To date, the yisorete case. Indeed, in the continuous time, whenever the

importance of the continuous-time generalised Riccati ecation . . S .
in the context of optimal control has not been understood. Tis optimal control involves distributions, none of the saiuts

note addresses this point. We show in particular that when ta ~ Of the generalised Riccati equation is optimising. The goal
continuous-time (constrained) generalised Riccati equain ad-  of this paper is to explain the connection of the generalised
mits a symmetric solution, the corresponding linear-quadatic  continuous-time algebraic Riccati equation and of the gene
(LQ) problem admits an impulse-free optimal control. alised Riccati differential equation — which is also defiigd
| INTRODUCTION substituti_on of the inverse @&t with th_e pseudo-inverse — anq
the solution of the standard LQ optimal control problem with
It is well known that the solution of the classic finitejnfinite and finite horizons, respectively. We will show that
and infinite-horizon LQ optimal control problem strongly\hen the generalised Riccati equation possesses a syrametri
depends on the matrix weighting the input in the coséo|ution, both the finite and the infinite-horizon LQ probkem
function, traditionally denoted bR When R is positive admit an impulse-free solution. Moreover, such control can
definite, the problem is said to begular (see e.g. [1]. always be expressed as a state-feedback, where the gain can
[11]), whereas wheRis positive semidefinite, the problem is pe gbtained from the solution of the generalised continuous
calledsingular. The singular cases have been treated withifime algebraic/differential Riccati equation.
the framework of geometric control theory, see for exampl¢his is the conference version of a longer journal paper
[, [18], [15], [13] and the references cited therein. Insypmitted by the same authorsAatomatica
particular, in [9] and [18] it was proved that an optimal
solution of the singular LQ problem exists for all initial ||. GENERALISED RICCATI EQUATIONS AND SINGULAR
conditions if the class of allowable controls is extended to LQ PROBLEMS
include distributions. ider th dard | L . diff
The so-calledcontinuous-time generalised Riccati equa_tiafgnj;tieornt e standard finear time-invariant state difiere
tion was defined in the continuous time by following the q .
analogy with the discrete case, in such a way that the X(t) = Ax(t) +Bu(t), )
?nverse of R appearing in _the standard Riccat.i.equatioQNith the constraint on the initial statg(0) = xp € R".
is replac.ed by |t§ pseud_o-lnverse.. _Spme coqd|t|ons ur,‘deronsider the matrice® € R™", S¢ R™M andR ¢ RMM,
WhIC.h this gquatlon admits a stabilising spIqun were Ny, o qenote byl the Popov matrix
vestigated in terms of the so-called deflating subspaces of
the extended Hamiltonian pencil. Some preliminary work na [ Q S}
on the continuous-time algebraic Riccati equation withie t | ST R’
context of spectral factorisation has been carried out Jn [2

and [17]. Nevertheless, to date the role of this equation iWhICh we assume to be symmetric and positive semidefinite.

relation to the solution of optimal control problems in the/V& do not assume th&tis invertible. o
¢ The standard finite-horizon LQ problem consists in the

continuous time has not been fully explained. The goal of '™ > ¢
this paper is to fill this gap, by providing a counterpart ofhinimisation of the performance index

the results in [6] for the continuous case. In particular, we L ; Q S X(t)
describe the role that the generalised continuous algebralrH(Xo,U) = / [ xT(t) u'(t) ] [ ST R ] [ u(t) ] dt,
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which will be referred to as the generalised Riccati difit is a matter of direct substitution to verify that= {ég

ferential equation GRDEY). This equation generalises theis a solution of GCAREY). However, one immediately
standard Riccati differential equation to the case in whiclgrifies that keR is spanned by the vector:| whereas
R is possibly singular. In this paper, we also consider the ] 0 ) 0 o

so-called infinite-horizon LQ problem, which consists ir th Ker(S+XB) is spanned b)'{l}v so that (7) is not satisfied.

minimisation of the performance index

. S| x(t
o= 1w w8 ][0 o @ |
0 Lemma 2.1:Let X be a solution of CGCAREK{). Then,
To this end, we will provide a characterisation of theX B, =0.

solutions of the algebraic equation
Proof: From (7) and keR=imG, it is found that(S+
XA+ATX — (S+XB)R'(S'+B™X)+Q=0, () X B)G = 0. Moreover, sincdl is positive semidefinit(e, we
which is referred to as thgeneralised continuous algebraic have keS2 kerR. This means that there exists€ R™™M
Riccati equationGCAREE). In this equation, the symbol Such thatS=KR. ThereforeSRR=KRR =KR=S§, and
t denotes the Moore-Penrose matrix pseudo-inversion. THkG=S— SR R=0. Hence X B, = 0. u
equation represents a generalisation of the classic e
algebraic Riccati equation arising in infinite-horizon LQ
problems since her® is allowed to be singular. Eq. (6), Lemma 2.2:Let A= A—BR'S™ and Q = Q — SRS".
along with the condition Then, @ > 0 and GCAREE) defined in (6) has the same
set of symmetric solutions of the following equation:

The following simple result holds.

kerR C ker(S+ X B), (7)

AL AT BT A _
where the symbol kév denotes the null-space of a matrix XA+A'X=XBRB'X+Q=0. (13)

M, is referred to asconstrained generalised continuous ) . )
algebraic Riccati equatiorand is denoted by CGCAREY. Proof: SinceQ is the generalised Schur complementRof

Observe that from (2) we have KRIC kerS, which implies 1N I, Q is positive semidefinite because such is dlkdThe
that (7) is equivalent to k& C ker(X B). rest of the proof is a matter of verifying that (6) is obtained

by substitutions ofA and Q into (13). [

Let G2 I,,— R'R. Hence, keR=imG, where the symbol
imG stands for the image (or range) & Moreover, we

consider a non-singular matrik = [T; | T,] where inil; = Remark 2.2:The result established for GCARE( in
imRand imT, =imG, and we defin®; 2 BT, andB, £BT,. Lemma 2.2 extends without difficulties to the generalised

Finally, to anyX = XT € R™" we associate the matrices Riccati differential equation GRDE]. Indeed, we easily
see that (4) has the same set of symmetric solutions of the

Qx = Q+ATX+XA (8) equation:

S £ S+XB, 9) _ o i

Kx 2 RT(ST+B™X) =R'S}, 10)  PO+POA+ATP(t)-P(t)BR'B'P(t) +Q=0. (14)

Ax £ A—BKx, (11)

My £ [ Q¥ SR( } ) (12) Lemma 2.3:Let X = XT be a solution of CGCAREY).
S Let Z(A,By) be the reachable subspace of the gaiB;).

When X is a solution of CGCAREY), then Kx is the The following three facts hold true:
corresponding gain matrixAx the associated closed-loop .

matrix, andly is the so-called dissipation matrix. (i) kerX C kerQ;

_ . . (i) X2(A,By) = {0};

_Remark 2.1:We begin by c_>bservmg that an _|mportar_1t (iil) @%’(A, B,) = {0}.
difference between the continuous and the discrete-time
generalised Riccati equations is the fact that in the caotis _ ~
case, differently from the discrete case [6], it is not tru&Toof:_ (). Let & € kerX. From (13) we getf 1 Q¢ = 0.
that all symmetric and positive semidefinite solutions opiNc®@Q=> 0, we get\& = 0. Hence, keX C kerQ. _
GCARE() are also solutions of CGCAREY. Consider for (il)- Let & € kerX. From (13) we findXA¢ = 0., which

example the following example, where implies that keK is A—invariant_. In_voking Lemma 2.2, we
see that the subspace kecontains inB,. Hence, it contains
A — { -8 0 } B— { 6 0 } % (A, Byp) that is the smallesd-invariant subspace containing

0 -4 0 3)’ im B,. This impliesZ (A, By) C kerX.

(iii). This follows directly from the chain of inclusions

16 0 00
Q:{o o}’ S:{o o}’ R Z(A,Byp) C kerX C kerQ. |

I
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I11. THE FINITE-HORIZON LQ PROBLEM IV. THE INFINITE-HORIZON LQ PROBLEM

In this section, our attention is focussed on the finite- We are now interested in studyii®y(0) when the terminal
horizon LQ problem as defined in Section II. condition vanishes, i.e., whed = 0, and the time interval
_ . ~ increases. To this end, we consider a generalised Riccati
Lemma 3.1:Let H =H" > 0 be such thaH %(A,B2) = gifferential equation where the time is reversed, and where
{0}. If CGCARER) (6-7) admits solutions, the generalisedie terminal condition becomes an initial condition, which

Riccati differential equation is now equal to zero. More specifically, we consider the

Pr(t) + Pr(t) A+ ATPr(t) new matrix functionX(t) = R(0) = Pr(T —t). We re-write
—(S+Pr(t)B)RM(ST+BTPr(t)) +Q=0, (15) GRDE() as a differential equation to be solved forward:
with the terminal condition X(t) = X(t) A+ATX(t)
Pr(T)=H (16) —(S+X(t)B)R"(ST+B"X(t)) + Q, (20)
admits a unique solution for all < T, and this solution X(0)=0. (21)

sat|sf|.esPr(t)B_G: Oforallt<T. . . . In the following theorem, the second main result of this
Proof: Consider a set of coordinates in the input space

such that the first coordinates spanRmand the second set ﬁ,ﬁ:ﬁ] ?tre-lr'lsorlir;t(;(r)ldLuée(i.ot;ll-gi ;Qren?tf;nn idrr?tirlrsn:ffzevsvglz?iothe
of coordinates spans &= kerR. In this basisR can be P P

) R O] . o ) and the set of optimal controls minimising the infinite-
written asR= | * ~| with Ry being invertible. In the same ; . ; ; :
0 1 9 : horizon costl. (X, u) defined in (5) subject to the constraint
basis, matriX8 can be partitioned accordingly 8s=[By Bz]  (1).

as shown abov_e. Consider the change of basis malteix Theorem 4.1:Suppose CGCARE]) admits at least a
[U1 Uz] where iml; = Z(A,By), so that symmetric solution, and that for evemy there exists an
1z A1 A N B B B input u(t) € RM, with t > 0, such thatle(xo,u) in (5) is

180 _ | A1 A2 1 _ | Bu 1 _ | B
U AU = { o) Azz]’ U Bi= [Blz]’ UB= [ 0 ]’ finite. Then:

3 oo (1) A solution X = XT > 0 of CGCAREE) is obtained as
and U™QU = [o sz} where we have used the fact thatthe limit of the time varying matrix generated by integratin

Q% (A,B,) = {0}. Since we are assuming.Z (A, B,) = {0},  (20) with the zero initial condition (21).
we can writdJ THU = {O © } Consider the matrix function (2) The value of the optimal cost igXxo.

o o O Hez o (3) X is the minimum positive semidefinite solution of
Pr(t) = {o Pzz(t)}’ wherePy;(t) satisfies CGCAREG).
. A AT _ X (4) The set ofall optimal controls minimisingl. in (5) can
Poa(t) +P22(t) Aga+AgoPaa(t) — Paa(t)V Poa(t) +Q22=0 (17) be parameterised as
Poo(T) = Hap, (18) )
_ T
in which V is the sub-block 22 of the matri8 R'B". Since u(t) = —RISex(t) + Gv(t), (22)

M=N">0andH=HT >0, from [8, Corollary 2.4] we _ . -
conclude that both (15) and (17) admit a unique solutio\r,1vIth arbitrary v(t).

. . . (0]
defined in(—o, T]. It is easy to see Fh"RT(t) =lo sz(t)}’ The proof of this result can be carried out along the same
wherePy;(t), t € (—o,T], is the solution of (17-18), solves |ines of the proof of Theorem 2.1 in [6], and is omitted.
(15) and (16). We can therefore conclude tRatt) is the
unique solution of (15-16). Moreover, this solution saéisfi A. Infinite-horizon LQ problem and stabilisability

F[’B(t)gz ngf}”f"ot < T since in the chosen basis(t) B, In this section we introduce some concepts that will shed

ORyt)| | O u light into the infinite-horizon LQ problem with closed-loop
. . ) . , stability. Most of these concepts are adaptation of several
The following theorem is the first main result of Fh|s PapPerasyits that were presented in [6] to the continuous time.
It shows that when CGCAREBJ admit a solution, the First, since as aforementioned the Popov mdiris assumed

finite-horizon LQ problem always admits an impulse'fre(JSymmetric and positive semidefinite, we can consider a
solution. The proof is omitted. factorisation of the form

Theorem 3.1:Let CGCAREE) admit a solution. The n— Q s|_|CT [Cc D] (23)
finite-horizon LQ problem (3-1) admits impulse-free optima S" R DT ’

solutions. All such solutions are given by where Q = C'C, S= C'D and R D'D. The following

u(t) = —R"(ST+BTPr (1)) x(t) + G (1), (19)  results hold:
wherev(t) is an arbitrary regular function, arfé(t) is the » Let X be a solution of GCAREY). Then, keX is an
solution of (15) with the terminal condition (16). The op&im output-nulling subspace of the quadruglg, B,C,D)

cost isxj Pr(0) Xo. and —Kx is a friend of keX.



« Let X = XT be a solution of CGCARB), Cx £ C— for an arbitrary matrix<, where

T QT
DR'S" and [ Rox B T Ay R
~| o D Cx X

Fox =im[ B, AxBy ... Ay B ].  (24) [
Then, () Zox C kerCx; (i) XZox = {0}; (ii) Zox and || is a basis matrix of k rRO‘XE . Since Zox is

coincides with the largest reachability subspace on the reachability output-nulling subspgce, it turns out that t
output nulling subspace kXt i.e., pair (Z,H,) is reachable. This implies that a matkxin (26)
Fox = (Ax, kerX NB kerD). can always be fqund so that the_ eigenvalues (af_re freely _
’ assignable (provided they come in complex conjugate pairs)
o %ox is independent of the solutio’X = XT of Hence, we use sucK in (26) and then we compute =
CGCAREE). Moreover,Ax restricted to this subspace —Q R&X. This choice guarantees that only the eigenvalues of
does not depend on the particular solutin= XT of  Ax restricted to%o x get affected by the use af From these
CGCARER), i.e., considerations, it emerges that, given a symmetric salutio
X of CGCAREE), the infinite-horizon problem admits a
Hox =Koy and Ax Hoy stabilising solution if and only if the eigenvalues indudsd

where X and Y are two symmetric solutions of the closed-loop matriAx on the quotient spac®”/Zo.x
CGCAREE) while Ax and Ay are the corresponding are all asymptotically stable.

closed-loop matrices. V. CONCLUDING REMARKS

The proofs of these results follow by adapting Theorem 4.1, |, this paper we established a new theory that showed that,
Lemma 4.1, Theorem 4.2 and Theorem 4.3 in [6] 0 thGhen the CGCAREY) admits solutions, the corresponding
continuous time generalised Riccati equation. singular LQ problem admits an impulse-free solution, ared th

From these considerations, it turns out that the eigensalugptimal control can be expressed in terms of a state feedback
of the closed-loop matrixAx restricted to the subspace p yery interesting question, which is currently being inves
Zox are independent of the particular solutidn= X" of jgated by the authors, is the converse implication of this
CGCAREg) considered. This means that these eigenvaluggstement: when the singular LQ problem admits a regular
are present in the closed-loop regardless of the solutiQyution for all initial states € R", does the CGCAREY)
X = X7 of CGCAREE) that we consider. On the other yqmit at least one symmetric positive semidefinite sol@ion
hand, we have also observed thagx coincides with the  at this stage we can only conjecture that this is the case, on
smallestAx-invariant subspace containing BenBkerD. It the pasis of some preliminary work, but the issue is indeed
follows that it is always possible to find a matrix that 5, open and interesting one.
assigns all the eigenvalues of the @y +BoL) restricted |y the last part of the paper, we showed that a subspace
to the reachable subspace o, by adding a further term can pe identified that is independent of the particular &miut
By Lx(t) to the feedback contr(_)l law, because this does NQf CGCARE considered, and that the closed-loop matrix
change the value of the cost with respect to the one obtainggkiricted to this subspace does not depend on the particula
by u(t) = —Kx x(t). Indeed, the additional term only affectsso|ytion of CGCARE. If such subspace is not zero, in the
the part of the trajectory om#ox which is output-nulling.  optimal control a further term can be added to the state-
However, in doing so it may stabilise the closed-loop ifeedback generated from the solution of the Riccati eqnatio
kerX is externally stabilised by-Kx. Indeed, sinc€%ox  that does not modify the value of the cost. This term can in
is output-nulling with respect to the quadrufl®,B,C,D),  tyrn be expressed in state-feedback form, and acts as adegre
itis also output-nulling for the quadrup{éx,B,Cx,D), and  f freedom that can be employed to stabilise the closed-loop
two matrices= andQ exist such that even in cases in which no stabilising solutions exists of the

{ Ax ] Rox — [ R%x ]E+ [ B }Q’ (25) Riccati equation.

o 11p

Zox = Ay

Cx D Future investigations will also focus on examining how the
use of generalised Riccati equations in the continuous time
N ’ _ can be used to parameterise the trajectories that solve the
stapll|se the system, we solve the formerSnandQ, so as Hamiltonian differential equation, to the end of addregsin
to find L such that LQ problems with constraints at the end-points and biased
[ Ax+BL } Ro— [ Ro ] - performance indexes along the lines of [3], [12], [4], [5].
0

whereRy x is a basis matrix a2y x. In order to find a matrix

Cx+DL -’
where the e'genvalues &f ar_e the elgenvalues of the map[l] B.D.O. Anderson and J.B. Mooréptimal Control: Linear Quadratic
Ax +BL restricted ta%g x. Using the standard procedure of = Methods Prentice Hall International, London, 1989.

geometric control theory [16], we first compute the set of2] T. Chen and B.A. Francis. Spectral and inner-outer fasations of

. L M tional matrices.SIAM J | of Matrix Analysis and Applicati
solutions of (25) in= andQ, which is given by rl?)'(i?i_rff T;e;g_ ournat of Mafrx Analysis and Applications
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