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Abstract—In this paper, the rank stability radius problem is 
proposed for a real matrix under structured scalar 
perturbations and some interesting results are achieved based 
on polynomial analysis. In addition, a computable formula and a 
two-step procedure are obtained which nicely solves the 
problem in this simple setup. Finally, these results on rank 
stability radius are used to estimate the stability robustness of 
descriptor systems, and for a special class of symmetric 
descriptor systems, the rank stability radius is proved to be 
equal to the system stability radius. 

I. INTRODUCTION 
ANK is one of the most important notions in linear 
algebra. In several other fields, it is also common to find 

some important applications of rank technique (e.g., in signal 
processing see [1], in image processing see [2], etc..) In 
control systems, for example, many important issues such as 
controllability and observability [3], input/output decoupling 
zero [4], impulse-free in descriptor systems [5], 
reduced-order observer design [6], rank minimization [7], 
rank constraint [8], etc. can be in part or fully associated with 
the matrix rank problems. However, it seems that very few 
results for the problem of rank perturbations have been 
achieved though perturbations frequently arise in practical 
systems and the associated problems of stability perturbations 
have attracted many researchers' attention. This may be partly 
due to a fact that the problem is hard to deal with or this 
problem has not brought extensive attention until now. Based 
on such observations, we will investigate this problem with a 
simple setup in this paper. 

In conventional notion, “stability” implies the ability for an 
object to maintain its performance under certain extent of 
perturbations. It is well known that for a continuous linear 
time-invariant (LTI) system, it is stable if and only if all the 
eigenvalues of its system matrix have negative real parts. 
Such matrix is also called Hurwitz matrix. By continuity of 
eigenvalues to matrix elements, a Hurwitz matrix does have 
the stability since its entire eigenvalues can still maintain 
lying in the open left-half complex plane for certain extent of 
perturbations to its entries. 
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Similarly for a matrix, if its rank can maintain 
unchangeable under perturbations, we use the notion of 
stability and call it to be rank-stable. A matrix may or may not 
be rank-stable, for example, (1,1 )diag δ+  is rank-stable with 
respect to perturbation δ  but (1, )diag δ  is not. Rank 
stability robustness problem may appear in many systems. 
For instance, if a Hurwitz matrix has very small rank stability 
robustness, we can confirm that the corresponding LTI 
system has very conservative stability robustness. 
Quantitative measures of rank stability robustness are 
therefore an important research topic and the rank stability 
radius is one of such measures. In this paper, we will focus 
our interests on the rank stability radius under a given 
structure with scalar perturbations. 

Let m nA ×∈\ , the rank stability radius of A under a 
structured matrix m nB ×∈\  with a scalar perturbation δ ∈\  
is defined as 

( , ) : sup{ | , ,
rank( ) rank( )}.

A B
A B A

γ δ δ γ
δ

ℜ = ∈ ∀ ∈ ≤

+ =

\ \
            (1) 

An equivalent form of (1) is 
( , ) inf{ | , rank( ) rank( )}.A B A B Aδ δ δℜ = ∈ + ≠\     (2) 

This radius measures the largest “possibility” of rank 
stability robustness under perturbations in (1), it can also be 
seen as a measure of the smallest “distance”, in certain 
normed linear space, from the point A to a given subset in (2). 
This radius is not only significant for some robustness 
problems in system analysis or design, but also has some 
applications such as in characterization of controllability, 
observability, etc.. 

This paper is organized as follows. 
In section 2,  we will solve the rank stability radius problem. 

A number of results on characterizations of rank inequalities, 
properties of the support sets are obtained, and some 
necessary and/or sufficient conditions for zero radius or 
infinity radius, and a computable formula for nonzero radius 
are presented with a two-step procedure.  

In section 3, we will use the results obtained in section 2 to 
estimate the stability robustness for the descriptor systems 
from a new perspective. The stability radius problem has 
attracted much attention for years (for normal systems, see 
[9]-[12]; for descriptor systems, see [13] and [14]), but the 
known results in descriptor systems are not as explicit as 
those in normal systems because descriptor system is more 
complicated and more difficult to deal with due to the 
impulsive phenomena. In this section, we show that the rank 
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stability radius is actually an upper bound of the stability 
radius for the perturbed descriptor systems, and furthermore 
in a special type of descriptor systems, the rank stability 
radius is equal to the stability radius. 

In section 4, some numerical examples are given to 
illustrate the effectiveness of the results in the paper. 

II. MAIN RESULTS 
We first introduce some notations and notions which will 

be used in this paper. 

1 2 1 2: { ( , , , ) |1 }k
m k ki i i i i i mαΛ = = ≤ < < < ≤" "  

where every ti , m and k are integers with 1m k≥ ≥ . 

Let , m nA B ×∈\ , and 

1 2( , , , ) k
k mi i iα = ∈ Λ"  

1 2( , , , ) k
k nj j jβ = ∈ Λ"  

( , )A α β denotes the k k× submatrix of A formed by rows 

1 2, , , ki i i" of A and columns 1 2, , , kj j j" of A ; and ( , )cA α β  
denotes the complementary submatrix of ( , )A α β  in A .  

Let 
2

,

[ ] : (det ( , ))
k k
m n

A k A
α β

α β
∈Λ ∈Λ

= ∑                    (3) 

( ) : ( )[rank( )]x A xB Aϕ− = +                       (4) 
( ) : ( )[rank( ) 1]x A xB Aϕ+ = + +                     (5) 

where x is a scalar. One can see easily that only when 
rank( ) min{ , }A m n< , ( )xϕ+  exists. Further define 

: { | rank( ) rank( )},A B Aδ δ−Ω = ∈ + <\            (6) 

: { | rank( ) rank( )}.A B Aδ δ+Ω = ∈ + >\            (7) 

For , n nA B ×∈\ , the matrix pair ( , )A B  is said to be regular 
if det( )xA B− , as a polynomial with respect to x , is nonzero.  
and 

( , ) : { | det( ) 0}A B s sA Bσ = ∈ − =^  
is the spectrum of pair ( , )A B . Specially, ( ) : ( , )B I Bσ σ= is 
the spectrum of B . 

Obviously, those defined by (3)-(7) have the following 
basic properties: 

1) 1/2[1]A is precisely Frobenius norm of A ; 
2) ( )xϕ− and ( )xϕ+ are polynomials with respect to x and 
( ) 0xϕ− ≠ ; 

3) −Ω and +Ω are support sets for rank changes, 
and − +Ω Ω = ∅∩ , 0 − +∉ Ω Ω∪ . 

With (3), one can prove the following characterizations of 
some rank inequalities. 
Lemma 1 Let m nA ×∈\ , r  be positive integer. Then 

1) rank( ) [ ] 0A r A r< ⇔ = ; 
2) rank( ) [ 1] 0A r A r> ⇔ + > . 

Theorem 1 Let , m nA B ×∈\ . Then 
1) { | ( ) 0}δ ϕ δ−

−Ω = ∈ =\ ; 

2) { | ( ) 0}δ ϕ δ+
+Ω = ∈ >\ . 

Corollary 1 Let , m nA B ×∈\ . Then 
1) −Ω = ∅  or −Ω  is a finite set; 
2) +Ω = ∅  or +Ω  is an open set. 
These results are based on the following facts: 
1) −Ω  consists of all real roots of ( )xϕ− ; 

2) If ( )xϕ+ exists and ( ) 0xϕ+ ≠ , +Ω is an open set by 
continuity. 

With the above description of support sets, we can 
characterize the rank stability radius now. 
Theorem 2 Let , m nA B ×∈\ . Then 

1) ( , ) 0A B +ℜ = ⇔ Ω ≠ ∅ ; 

2) ( , )A B +ℜ = +∞ ⇔ Ω = ∅  and −Ω = ∅ ; 

3) 0 ( , )A B +< ℜ < +∞ ⇔ Ω = ∅  and −Ω ≠ ∅ . 
Proof. 1) By (2), if ( , ) 0A Bℜ = , there exists a sequence of 

real numbers ( ){ }iδ − +⊂ Ω Ω∪  such that 

0iδ → as i → +∞ . 

Since −Ω  is finite, for some sufficient larger i , iδ −∉ Ω , 

hence iδ +∈ Ω .  

Conversely, if +Ω ≠ ∅ , there is δ ∈\  such that 
( ) 0ϕ δ+ > , which implies that the polynomial ( ) 0xϕ+ ≠ , 

thus ( )xϕ+  has only a finite number of roots. Let us denote 
the nonzero real root nearest to 0  by 0δ , then for any 

0(0, )δ δ∈ , ( ) 0ϕ δ+ > , hence ( , ) 0A Bℜ = . 
2) By (1),  

( , )
,  rank( ) rank( )
,   and 
 and .

A B
A B Aδ δ

δ δ δ− +

− +

ℜ = +∞
⇔ ∀ ∈ + =

⇔ ∀ ∈ ∉ Ω ∉ Ω

⇔ Ω = ∅ ⇔ Ω = ∅

\
\

 

3) It can be directly derived from 1) and 2). □ 

Remark 1 By theorem 2, the rank stability radius depends on 
the different cases of the support sets. Among these cases, 
whether +Ω ≠ ∅  is an important condition. If such case 
occurs, ( , ) 0A Bℜ = , which indicates that there is no 
robustness for rank perturbations. 

Next we characterize the condition +Ω ≠ ∅ . 
Theorem 3 Let , m nA B ×∈\ . Then rank( )A+Ω ≠ ∅ ⇔ <  

min{ , }m n and there exist rank( ) 1A
mα +∈ Λ , and rank( ) 1A

nβ +∈ Λ , 
such that the matrix pair ( ( , ), ( , ))B Aα β α β  is regular. 

Proof. By theorem 1, ( )xϕ+
+Ω ≠ ∅ ⇔ is nonzero 

rank( ) min{ , }A m n⇔ <  and there exist rank( ) 1A
mα +∈ Λ  and 

rank( ) 1A
nβ +∈ Λ  such that 
det( ( , ) ( , )) det( )( , ) 0A xB A xBα β α β α β+ = + ≠  

which is equivalent to that ( ( , ), ( , ))B Aα β α β  is regular. □ 

    To give another characterization of +Ω ≠ ∅ , we introduce 
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the following lemma. 
Lemma 2 Let , n nA B ×∈\ . Then 

det( ) det detnA xB x B A+ = +
1

( )

1 ,

( 1) det ( , )det ( , )
k
n

n
k u c

k

x B Aα β

α β

α β α β
−

+

= ∈Λ

⎛ ⎞
+ −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  

where : (1,1, ,1)T ku = ∈" \ , T  represents transpose. 

Theorem 4 Let , m nA B ×∈\ . Then rank( )A+Ω ≠ ∅ ⇔ <  

min{ , }m n  and there exist rank( ) 1A
mα +∈ Λ , rank( ) 1A

nβ +∈ Λ , and 
1 rank( ) 1k A≤ ≤ +  such that 

rank ( ) 1

( )

,

( 1) det( ( , ))( , )

det( ( , ))( , ) 0

k
A

u

c

B

A

η ξ

η ξ

α β η ξ

α β η ξ
+

+

∈Λ

−

⋅ ≠

∑
      （8） 

where (1,1, ,1)T ku = ∈" \  and det( ( , ))( , ) 1cA α β η ξ =  
whenever rank( ) 1k A= + . 
Proof. Since ( )xϕ+ exists rank( ) min{ , }A m n⇔ < , and 

( ) 0xϕ+ ≠ ⇔  there exist rank( ) 1A
mα +∈ Λ  and rank( ) 1A

nβ +∈ Λ , 
such that 

det( )( , ) 0A xB α β+ ≠ .                         (9) 
But by lemma 2, 

rank( )
rank( ) 1

1

det( )( , ) det( ( , ) ( , ))

det ( , )
A

A k

k

A xB A xB

x B x

α β α β α β

α β+

=

+ = +

= + ∑
 

rank ( ) 1

( )

,

( 1) det( ( , ))( , ))det( ( , ))( , )
k

A

u cB Aη ξ

η ξ

α β η ξ α β η ξ
+

+

∈Λ

⎛ ⎞
⎜ ⎟⋅ −
⎜ ⎟
⎝ ⎠

∑

    (10) 
Therefore, (9) holds ⇔ the polynomial (10) has at least one 
nonzero coefficient. Thus, the proof is completed. □ 

Note that, if rank( ) rank( )B A> , there must exist a nonzero 
minor of order rank( ) 1A +  of B , namely det ( , ) 0B α β ≠ , 

by theorem 4, +Ω ≠ ∅ . Thus, a sufficient condition for 
( , ) 0A Bℜ =  is obtained as follows. 

Corollary 2 Let , m nA B ×∈\ . If rank( ) rank( )B A> , then 
( , ) 0A Bℜ = . 
Next we intend to provide a necessary condition for 
( , ) 0A Bℜ = . 

Proposition 1 Let , m nA B ×∈\ . If ( , ) 0A Bℜ = , then 

[ ]( )rank , rank( )A B A> . 

Proof. By theorem 2, since +Ω ≠ ∅ , there exists δ ∈\  such 
that rank( ) rank( )A B Aδ+ > . However,  

[ ],
I

A B A B
I

δ
δ

⎡ ⎤
+ = ⎢ ⎥

⎣ ⎦
 

and 
[ ]( )rank , rank( )A B A Bδ≥ + . 

Hence 

[ ]( )rank , rank( )A B A> . 

□ 

Remark 2 In proposition 1, [ ]( )rank , rank( )A B A>  can not 

serve as a sufficient condition for ( , ) 0A Bℜ = . A counter 
example is constructed below. 

Let 
1 1
0 0

A ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 

1 1
1 1

B ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

Then 
[ ]( )rank , rank( )A B A>  

but +Ω = ∅ , i.e., ( , ) 0A Bℜ > . Similarly, one can easily 
verify that the inverse statement of corollary 2 is not true. 
    We now turn our attention to characterizing set −Ω . From 
theorem 1, one can easily derive the following. 
Theorem 5 Let , m nA B ×∈\ . Then 

     
rank ( ) rank ( ),

( ( , ), ( , ))
A A

m n

B A
α β

σ α β α β−

∈Λ ∈Λ

Ω = ∩\∩ .        (11) 

Corollary 3 Let , m nA B ×∈\ . Then −Ω = ∅ ⇔  

rank ( ) rank ( ),

( ( , ), ( , ))
A A

m n

B A
α β

σ α β α β
∈Λ ∈Λ

= ∅∩\∩ .        (12) 

This corollary can be sometimes very effective in practice. 
For example, if we observe ( , ) 0B α β =  but det ( , ) 0A α β ≠  

for some rank( )A
mα ∈ Λ  and rank( )A

nβ ∈ Λ , then we can conclude 

at once that −Ω = ∅  because ( ( , ), ( , ))B Aσ α β α β = ∅ . In 
the following example with 

10 2 4 5
1 2 1 2

9 4 5 7
A

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 

25 0 1 0
1 1 75 1

27 0 1 0
B

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

rank( ) 2A = , ((1,3), (2, 4)) 0B = , but det ((1,3), (2, 4)) 0A ≠ , 
thus 

( ((1,3), (2,4)), ((1,3), (2,4)))B Aσ = ∅  

 and (12) holds, hence −Ω = ∅ . 
Now we give a general characterization for the nonzero 

and finite rank stability radius. 
Theorem 6 Let , m nA B ×∈\ , +Ω = ∅  and −Ω ≠ ∅ . Then 

( , ) min{ | }                              (13)

min{ | , ( ) 0}.              (14)

A B δ δ

δ δ ϕ δ

−

−

ℜ = ∈Ω

= ∈ =\
 

Proof. There exists 0δ −∈ Ω  such that  

0 min{ | } 0.δ δ δ −= ∈Ω >  

Since +Ω = ∅ , δ∀ ∈\  with 00 δ δ≤ < ,  

rank( ) rank( )A B Aδ+ =  

therefore, 0( , )A B δℜ = , (13) holds and (14) also holds by 
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theorem 1. □ 

If , m nA B ×∈\  with A full rank, i.e., rank( ) min{ , }A m n= , 

then ( )xϕ+  does not exist, +Ω = ∅ , ( , ) 0A Bℜ > . If the 

matrices are further square, then 2( ) (det( ))x A xBϕ− = + , 
1 1( ) 0 ( ) \{0}A Bϕ δ δ σ− −

− = ⇔ ∈ − . This derivation gives the 
following theorem. 
 
Theorem 7 Let , n nA B ×∈\  with A  nonsingular. Then 

1

1( , )
max{ | ( ) }

A B
A Bδ δ σ −ℜ =

∈ ∩\
          (15) 

where ( , )A Bℜ = +∞ whenever 1( ) {0}A Bσ − =∩\ or ∅ .  
Based on previous investigations, we can now present the 

following two-step procedure for computing the rank stability 
radius: 

Step 1. Compute and test if +Ω ≠ ∅ . If so, ( , ) 0A Bℜ = ; 
otherwise, go to step 2. 

Step 2. Compute and test if −Ω = ∅ . If so, ( , )A Bℜ = +∞ ; 

otherwise, ( , ) min{ | , ( ) 0}A B δ δ ϕ δ−ℜ = ∈ =\  (or using 
(15), or (13) with (11)). 

III. APPLICATION IN DESCRIPTOR SYSTEMS 
A typical homogeneous LTI descriptor system is modeled 

as 
( ) ( )Ex t Ax t=�                                 (16) 

where , n nE A ×∈\ , ( ) nx t ∈\  is state. If rank( )E n= , the 
system becomes a normal LTI system. A descriptor system is, 
in general, required to be regular, i.e., ( , )E A  is regular. The 

system (16) is said to be stable if ( , )E Aσ −⊂ ^ , where 

: { | Re( ) 0}s s− = ∈ <^ ^ . 
Consider the following perturbed system with scalar 

perturbation occurred within the system 
( ) ( ) ( )Ex t A B x tδ= +�                          (17) 

where δ ∈\  is an unknown perturbation, n nB ×∈\  is a 
known matrix representing the perturbation structure. 
Assume the nominal system (16) is stable, then the stability 
radius of the perturbed system (17) with respect to 
perturbation δ  is defined as 

( , , ) : inf{ | , ( , ) }E A B E A Bδ δ σ δ −ℑ = ∈ + ⊄\ ^ .    (18) 
For normal systems, the system stability radius problem 

has been studied for over two decades, the formulas for 
computing radii have been achieved ([9]-[11]). However, in 
descriptor systems, such problems are far from being resolved 
([13], [14]) because the descriptor systems are more 
complicated. 

With the method of rank stability radius, we can give an 
upper bound on the stability radius. 
Theorem 8 Let system (16) be stable, ( , , )E A Bℑ  be the 
stability radius of the system (17). Then 

( , , ) ( , )E A B A Bℑ ≤ ℜ .                         (19) 
Proof. Since system (16) is stable, A  is nonsingular, from 
theorem 3, +Ω = ∅ , i.e., ( , ) 0A Bℜ > .  

If ( , )A Bℜ = +∞ , the inequality (19) holds naturally; 

otherwise, −Ω ≠ ∅ , by theorem 6, there exists 0δ −∈Ω  such 

that 0 ( , )A Bδ = ℜ , and 

0rank( ) rank( )A B Aδ+ <  
thus 0det( ) 0A Bδ+ = , therefore, 00 ( , )E A Bσ δ∈ + and 

0( , )E A Bσ δ −+ ⊄ ^ , hence,  

0( , , ) ( , )E A B A Bδℑ ≤ = ℜ . 

□ 
The rank stability radius (1) is an upper bound of the 

stability radius (18) (this upper bound is also that of the 
stability radius for a normal system, E I=  in (17). The 
inequality (19) can be used to estimate the stability robustness 
of a system. Moreover, for a special class of descriptor 
systems, the rank stability radius can be equal to the stability 
radius. 

The system (16) is said to be symmetric if TE E=  and 
TA A= . Symmetric descriptor systems have many practical 

applications (e.g., see [15]). 
Theorem 9 Let system (16) be symmetric. 
    1) If 0A >  then, the system is stable 0E⇔ ≤ ; 
    2) If 0A <  then, the system is stable 0E⇔ ≥ . 
where 0( 0, 0, 0)A > ≥ < ≤  implies that A  is positive definite 
(positive semi-definite, negative, negative semi-definite), 
respectively. 
Proof. The proof is given only for the case of 0A > . There 
exists a nonsingular matrix P  such that TP AP I= , then 

1( , ) ( ) \ {0}Ts E A s P EPσ σ−∈ ⇔ ∈  
 Hence 

( , ) ( ) \{0}
0.

TE A P EP
E

σ σ− −⊂ ⇔ ⊂
⇔ ≤

^ ^  

□ 
A symmetric system (16) with 0A >  or 0A <  is said to be 

definite. A definite system has good nature, e.g., there is no 
impulsive behaviour for such system, and further 

( , )E Aσ ⊂ \  if system (16) is definite. 

Lemma 3 Let , n nA B ×∈\  with 0 ( 0)A A> <  and 

0TB B= ≠ . Then there exists 0δ ∈\  such that oA Bδ+ is 
not positive definite (negative definite).  
Theorem 10 Let system (16) be definite and stable. Then for 
any n nB ×∈\  with TB B= , 

( , , ) ( , )E A B A Bℑ = ℜ < +∞ . 
Proof. The proof is given only for the case of 0A > .  

From stability of system (16) and theorem 9, 0E ≤ . If 
0B = , it is trivial. If 0B ≠ , let 

( ) :M A Bδ δ= + . 
Since (0) 0M > , by the continuity of eigenvalues and 
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lemma 3, there exists a real finite number 0γ >  such that as 

long as δ γ< , ( ) 0M δ >  holds, but for some 0δ ∈\  with 

0δ γ= , 0( )M δ  has at least one zero eigenvalue. Hence, for 

δ γ< , system (17) is stable by theorem 9, for 0δ δ= , if (17) 
is regular, it must be unstable, so ( , , )E A B γℑ = .  

Since δ γ< , ( ) 0M δ > , i.e., rank( ) rank( )A B Aδ+ = ; 

0δ δ= , 0det ( ) 0M δ =  implies 0rank( ) rank( )A B Aδ+ < , 
therefore, ( , )A B γℜ =  by (2). □ 
Remark 3 Theorem 10 will fail if the system loses the 
definiteness. A counterexample is given as follows. Let 

1 1 1
(1, 1,0),  1 1 1

1 1 1
E diag A

− −⎡ ⎤
⎢ ⎥= − = − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

then the system (16) is symmetric. Since 
( , ) { 1 3 , 1 3 }E A i iσ = − − − +  

and 
( ) { 2, 1,2}Aσ = − −  

the system (16) is stable but not definite. Consider the 
corresponding perturbed system (17) with (0,1, 1)B diag= − . 
One can derive the following easily 

2 2

( , ) : det( ( ))
( 1) ( 1)( 2) ( 2 4)

f E A Bδ λ λ δ

δ λ δ δ λ δ δ

= − +

= − + − + + − + +
 

where δ ∈\ . The two roots of ( , )f δ λ  with respect to λ  
are 

( )3 2
1,2

1 ( 1)( 2) ( 1)( 12)
2( 1)

λ δ δ δ δ δ
δ
−

= + + ± + + −
+

. 

With 1δ = − , ( 1, ) 3f λ− = − , ( , )E A Bσ − = ∅ , the 
corresponding system (17) is regular but unstable.  

With 1δ < , 1,2Re( ) ( 2) / 2 0λ δ= − + < , the system is 
stable.  

Thus, ( , , ) 1E A Bℑ =  by (18). However, since A  is 
nonsingular and  

1( ) {0,0.2500 0.4330 ,0.2500 0.4330 }A B i iσ − = − +  
by theorem 7, ( , )A Bℜ = +∞ . 

IV. ILLUSTRATIVE NUMERICAL EXAMPLES  
In this section, we provide several examples to illustrate 

some main results. 
Example 1 1) Let 

(1,0)A diag= , 2B I=  

then (1 , )A B diagδ δ δ+ = + , +Ω ≠ ∅ , ( , ) 0A Bℜ =  by 
theorem 2. Using corollary 2, one can directly lead to 

( , ) 0A Bℜ = . 
2) Let 

(1,0)A diag= , 
0 1
0 0

B ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

then 
1
0 0

A B
δ

δ
⎡ ⎤

+ = ⎢ ⎥
⎣ ⎦

 

and + −Ω = Ω = ∅ , ( , )A Bℜ = +∞  by theorem 2. Also, here 
+Ω = ∅  can be derived from [ ]( )rank , rank( )A B A≤  by 

proposition 1, and 2( ) 1x xϕ− = +  implies that −Ω = ∅  by 
theorem 1. 

3) Consider 
2A I= , (1, 2)B diag= . 

Then 
(1 ,1 2 )A B diagδ δ δ+ = + +  

+Ω = ∅ , { 1, 1/ 2}−Ω = − − , so ( , ) 1/ 2A Bℜ = . Alternatively, 

since A  is nonsingular, 1( ) ( ) {1, 2}A B Bσ σ− = = , by (15), 
( , ) 1/ 2A Bℜ = . 

Example 2 1) Let 
13 7 15 2 5
9 11 3 4 0
5 29 21 10 5

A
− −⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

, 

0 1 1 0 2
3 1 0 1 2
3 1 2 1 6

B
−⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎣ ⎦

. 

Then rank( ) 2A = , after taking (1, 2,3)α = , (2,4,5)β = , 
2k = , the left side of (8) is equal to 195 , by theorem 4, 

( , ) 0A Bℜ = . 
2) Let 

9 1 32 1
4 0 2 1

13 1 30 2
A

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

, 

2 1 3 0
11 2 15 1
9 3 12 1

B
− −⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Then [ ]( )rank , rank( ) 2A B A= = , by proposition 1, one has 
+Ω = ∅ . Also ( ((1,2), (2,4)), ((1,2), (2,4))) { , }B A i iσ = − , 

therefore (12) holds, i.e., −Ω = ∅ . Hence ( , )A Bℜ = +∞  by 
theorem 2. 

3) Consider 
0.0153 0.9318 0.8462
0.7468 0.4660 0.5252

0.4451 0.4186 0.2026
A

− −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

,  

0.6721 0.6813 0.5028
0.8381 0.3795 0.7095
0.0196 0.8318 0.4289

B
− −⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎣ ⎦

. 

Then rank( ) 3A =  and 
1( ) { 0.1323,0.2524 0.9157 ,0.2524 0.9157 }A B i iσ − = − + − . 
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By theorem 7, ( , ) 1/ 0.1323 7.5586A Bℜ = = . 
Example 3 1) Let 

16 11 31
2 5 6

6 6 11
E

⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

, 

18 47 134
28 13 84
25 45 136

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

21 2 31
8 13 6

11 3 11
B

⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

Since ( , ) { 1, 2}E Aσ −= − − ⊂ ^ , the system (16) is stable. As a 
polynomial with respect to λ , det( ( ))E A Bλ δ− +  has two 
roots: 1 1λ δ= − , 2 2λ δ= − − , so the perturbed system (17) is 
stable if and only if 2 1δ− < < . When 1δ = , the system (17) 
is regular but not stable, hence ( , , ) 1E A Bℑ =  by (18).  

Since A  is nonsingular and 
1( ) { 1,0,1/ 2}A Bσ − = −  

from the formula (15) we have ( , ) 1A Bℜ = , thus, 
( , , ) ( , )E A B A Bℑ = ℜ , the estimation of stability radius of the 

system (17) in theorem 8 is exact. 
  2) Let 

1 3 2
3 9 6

2 6 4
E

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

, 

5 1 2
1 2 1
2 1 3

A
− −⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎣ ⎦

, 

1 2 3
2 2 0
3 0 3

B
−⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

Since 0E ≥  (with rank( ) 1E = ) and 0A < , from theorem 9, 
the system (16) is stable. B  is indefinite and singular, by 
theorem 10 and (15), the stability radius of perturbed system 
(17) is  

( , , ) ( , )
0.3425.

E A B A Bℑ = ℜ
=

 

V. CONCLUSIONS 
Firstly, we have discussed the rank stability radius problem 

and obtained a number of results which include:  
1) the rank inequality characterizations;  
2) properties of support sets;  
3) some necessary and/or sufficient conditions for zero and 

infinity radius, respectively;  
4) a formula for nonzero radius;  

5) a two-step procedure for computing the rank stability 
radius. 

Secondly, we have used the rank stability radius to estimate 
the stability robustness of the descriptor systems, and showed 
that the rank stability radius is an upper bound of the stability 
radius for descriptor systems. In some class of symmetric 
descriptor systems, we have showed that the rank stability 
radius is exactly the stability radius. 
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