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Abstract 

Gas permeability (k) and porosity (φ) are the most important parameters in 

CBM/ECBM and CCS in deep unmineable coal seams. k and φ depend on the coal 

micro structure, and k and φ significantly change with varying effective stress. 

However, how the coal micro structure is related to such permeability and porosity 

changes is only poorly understood. We thus imaged sub-bituminous coal samples at two 

resolutions (medium - 33.7 μm and high - 3.43 μm voxel size) in 3D with an x-ray micro-

computed tomograph as a function of applied effective stress; and investigated how 
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cleat morphology, k and φ are influenced by the changes in effective stress and how 

these parameters are interrelated. In the images, three phases were identified:  micro 

cleats (void), a mineral phase (carbonate) and the coal matrix. When effective stress 

increased, the cleats became narrow and closed or disconnected. This resulted in a 

dramatic permeability drop with increasing effective stress, while porosity decreased 

only linearly. 
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1. Introduction 

Gas permeability is a key factor in coal bed methane (CBM) and enhanced coal bed methane 

recovery (ECBM),  and carbon geo-sequestration in deep unmineable coal seams (Pekot and 

Reeves, 2002; Moore, 2012). It is well established that gas permeability is highly sensitive to 

effective stress (Harpalani and Chen, 1992; Palmer and Mansoori, 1996; Karacan and 

Okandan, 2000; Connell et al., 2010; Cai et al., 2014). This is directly relevant for field 

production processes, e.g. in ECBM another gas (e.g. nitrogen) is frequently injected to 

increase the reservoir pore pressure (and thus reduce effective stress) to release methane; or 

during CBM production reservoir pressure is depleted and effective stress increases. In this 

context it has been shown that permeability increases by matrix shrinkage due to methane 

desorption, or permeability decreases by cleat compaction due to pore pressure loss 

(Harpalani and Chen, 1997; Kumar et al., 2012). It also has been well documented that 
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permeability decreases drastically with depth (because the overburden stress and thus 

effective stress increase), and it has been suggested that this is caused by fracture closure 

(Enever et al., 1999). However, most investigations on coal permeability change focus on the 

coal swelling effect during gas injection (e.g. CO2: e.g. Reeves, 2004; Larsen, 2004; 

Siriwardane et al., 2009) or water encroachment (e.g. Zhang et al., 2016; Stevens et al. 2004); 

while the influence of effective stress on permeability and associated coal micro structural 

changes are still poorly understood.  

Traditionally dual coal porosity and permeability sets are distinguished, one for the coal 

matrix and the second set for the natural fracture (cleats) network. The permeability of the 

coal matrix is much lower than that of the cleats network, thus the cleats network effectively 

controls the overall permeability of the coal seam (Harpalani and Chen, 1992; Karacan and 

Okandan, 2000; Connell et al., 2010). Furthermore cleats can be subdivided into butt cleats, 

which are orthogonal to the coal bedding, and face cleats, which are perpendicular to the coal 

bedding (Laubach et al., 1998). Cleat properties such as size, structure, orientation and 

connectivity all significantly affect permeability (Laubach et al., 1998; Flores, 2013). It has 

been thought that the cleats change when the in-situ stresses change (Chen et al., 2011). 

However, the variation of the microstructural morphology associated with such changes, 

especially in micro cleats (less than 20 µm), which are common in the coal matrix (Gamson 

et al., 1993), is only poorly understood. 

Typically such micro-scale investigations are performed via SEM measurements (e.g. 

Huggins et al., 1980; Kutchko et al., 2013; Ye et al., 2013), and these give a very high 

resolution (up to 1-20 nm voxel size); however no effective stress can be applied during such 

a measurement and only 2D images at vacuum conditions can be obtained. The 3D pore 

morphology, however, is of key importance as it determines the permeability (2D is 

insufficient information, Stauffer 1979). However, recent developments in the area of x-ray 
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micro-computed tomography (microCT) applied in core analysis (e.g. Iglauer et al., 2011; 

Lebedev et al., 2014; Rahman et al., 2016) enable the application of effective stresses to a 

sample while it is imaged in-situ in 3D at high resolution.   

We thus microCT imaged the coal micro structures and their changes in 3D at high resolution 

as a function of effective stress in-situ and related these changes to independent gas 

permeability and porosity measurements. 

 

2. Methodology 

2.1. Materials  

A coal block was acquired from a famous coal mine in the middle of China: the Pingdingshan 

coal mine, Henan Province. This coal block was identified as sub-bituminous with a fixed 

carbon content of 54% (±2%) and volatile matter content of 36% (±1%) measured by Chinese 

Standard GB/T 212-2008 and DL/T 1030-2006; additional properties of this coal are 

tabulated in Table 1. We specifically selected this coal, because at such low carbon content 

(less than 75%) always a significant cleat system prevails (Clarkson and Bustin, 1999), which 

is advantageous when studying the influence of effective stress on cleat morphology and 

associated changes in permeability. Standard cylindrical (38.1 mm diameter and 76 mm 

length) core plugs were drilled out of the coal block parallel to the coal bed direction; these 

plugs were subjected to microCT scanning (Xradia VersaXRM instrument) and gas (N2) 

permeability tests in an AP 608 instrument. Furthermore, smaller cylindrical coal plug (5 mm 

diameter and 10 mm length) were cut from the same coal block adjacent to a position from 

which the larger plugs were drilled. These smaller plugs were also microCT imaged, but at a 

much higher resolution, see below. 
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Furthermore, SEM-EDS tests were performed on more than 10  samples cut from the same 

coal block, and cleats, coal matrix and a mineral phase were clearly identified, Figure.1. The 

micro cleats can be divided into three groups according to their spatial position; cleats in the 

coal matrix (e.g. Figure 1A), cleats between coal matrix and mineral phase (e.g. Figure 1B), 

and cleats in the mineral phase (e.g. Figure 1D). The mineral phase was identified as calcium 

carbonate via EDS analysis; these carbonates also filled in some cleats (e.g. Figure 1C). 

 

Table 1: Physical properties of the coal studied. 

ρ (g/cm3)  Mad (%) Vdaf (%) Aad  (%) Cf (%) E (GPa) υ 

1.35 

(±0.03) 

6.90  

(±0.50) 

36.00 

(±1.00) 

4.20 

(±0.20) 

54.00 

(±2.00) 

2.60 

(±0.40) 

0.31 

(±0.1) 

Note: ρ is the bulk density; Mad is the moisture content; Vdaf  is the volatile matter; Aad is the ash yield; Cf  is the 

fixed carbon content;  E is Young’s Modulus; and υ is Poission’s ratio. All properties were measured using 

Chinese Standard GB/T 212-2008. 
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Figure 1. SEM images of the coal sample’s surface, where the coal matrix, mineral phase and 

cleats were clearly identified.  (A) cleat inside the coal matrix; (B) cleat between the coal 

matrix and the mineral phase; (C) minerals filled in the cleat (D) cleat inside the mineral 

phase. 
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2.2. Gas permeability measurements 

We selected nitrogen for our gas permeability tests (conducted with an AP-608 automated 

porosimeter-permeameter, accuracy ± 0.1 %) in order to minimize swelling (note that 

nitrogen causes only a minimal swelling effect: volume strain and linear strain ratio is   0.2 

%, George and Barakat, 2001) and guarantee a minimum degree of gas slippage (Wang et al., 

2014). The pore pressure was set constant at 1.38 MPa during the test, while the confining 

pressure was stepwise increased from 3.5 MPa to 24 MPa. Thus effective stresses from 1.12 - 

22.62 MPa were investigated. Four coal plugs (38 mm diameter and 76 mm length,  marked 

as A, B, C, and D) underwent this gas permeability test matrix.  

 

2.3. Micro-CT in-situ imaging  

An in-situ micro-CT scanning apparatus was set up (Figure 2), where two different X-ray 

transparent core holders can be used and different plug sizes imaged (5 mm diameter plugs, 

“small plugs”, cp. Iglauer et al., 2011; Rahman et al., 2016; or 38 mm diameter plugs, “large 

plugs”, Lebedev et al., 2014). A high precision syringe pump (Teledyne ISCO 500D) 

provided the confining pressure by compressing DI water. Initially a large coal plug (sample 

E) was mounted inside the large diameter core holder (c.p. Figure 2 E), and the plug was 

imaged in-situ at three different effective stresses (0 MPa, 5 MPa and 10 MPa) at (33.7 μm)3 

3D voxel resolution at ambient conditions (atmospheric pressure and 296 K). Subsequently a 

small coal plug was imaged in-situ at the same three effective stresses (0 MPa, 5 MPa and 10 

MPa), but now at a much higher resolution, (3.43 μm)3 voxel size. No fluids were injected, 

i.e. the confining pressures equalled the effective stresses. The x-ray beam diameter was 

approximately 0.3 μm, and a 1000 x 1000 pixel detector was used for radiograph acquisition. 

The X-ray accelerating voltage was chosen as 60 kV, and the total acquisition time for one 
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3D image was approximately 4 hours.  The acquired microCT images were then filtered with 

a 3D non local means filter (Buades et al., 2005) and segmented with a watershed algorithm 

(Schlüter et al., 2014)  for quantitative analysis using Avizo 9 software, cp. Mathews et al., 

2011; Jing et al., 2016; Zhang et al., 2016. 

 

Figure 2. Experimental microCT coreflooding apparatus, (A) confining pressure pump, (B) 

microCT, (C) core holder for small plug sample (plug diameter = 5 mm), (D) microCT inside 

view, D1 is the X-ray source, D2 is the X-ray detector, (E) is the core holder for large plug 

samples (plug diameter = 38 mm), (F) images output and processing. 

 

3. Results and Discussion 

3.1. Gas permeability and porosity 

Gas permeability (k) and porosity (φ) decreased with increasing effective stress () as 

expected, Figures 3 and 4. The permeability data followed a power law relation k = ab , k 

dropped rapidly when effective stress increased (Figure 3), consistent with earlier 
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investigations (e.g. Chen et al., 2011; Li et al., 2014). However, the porosity decreased only 

linearly when effective stress increased, Figure 4. We conclude that any incremental change 

in effective stress in the high effective stress region does not significantly change 

permeability, while porosity is still significantly affected. 

 

Figure 3. Gas permeability versus effective stress for all four coal plugs tested. The fitting 

equations are shown in the legend together with their Regression Coefficients. 
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Figure 4. Porosity versus effective stress for the four coal plugs tested. The fitting equations 

are shown in the legend together with their Regression Coefficients. 

 

3.2.  X-ray micro-computed tomography imaging 

3.2.1 Qualitative analysis 

In the tomograms three phases were identified in the coal plugs (Figure 5): cleats (black), 

mineral phase (white) and the coal matrix (grey), consistent with previous microCT images of 

coal (Yao et al., 2009; Golab et al., 2013; Ramandi et al., 2016; Zhang et al., 2016). A few 

macro cleats were visible in the large plug which was imaged at medium nominal resolution 

(33.7 μm)3, Figure 5 A. The macro cleats/fractures were oriented parallel to the mineral veins 

(Figure 6). The macro cleats at 0 MPa effective stress had a  0.1-0.2 mm width,  ~ 1 cm 
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length, and  ~ 1.5 cm depth, Figure 7, and the macro cleat/fracture volume fraction amounted 

to ~ 0.5 %; these macro cleats/fractures were almost closed at 5 MPa effective stress and 

completely closed at 10 MPa effective stress, Figure 7. This result thus experimentally 

confirms the previous hypothesis (McKee et al., 1987; Palmer and Mansoori, 1996; Chen et 

al., 2011) that cleats close at high effective stress and dramatically reduce coal permeability. 

The minerals were also mainly oriented perpendicular to the coal bed, but they showed a 

stream-like pattern where some mineral streams were connected by perpendicular smaller 

mineral sub-streams in a ladder-like pattern, “T-junctions”. These mineral structures thus 

somewhat resembled the morphology of “face cleats” and “butt cleats”; this is an indication 

that mineral invaded and filled the macro cleats after the coal seam formed (Karacan and 

Okandan, 2000; Su et al., 2001; Solano-Acosta et al., 2007). The structural pattern of the 

mineral phase, and that it is oriented perpendicular to the coal seam bed, is visualized in 

Figure 6 in 3D. Furthermore, at high resolution, the mineral veins also reveal subtle structural 

patterns which were not evident at the medium resolution (Figure 5). In addition, when we 

zoomed in further, micro cleats were visible (Figure 5 B); these micro cleats/fractures were 

randomly distributed in the coal matrix with width ~ 5-10 µm and lengths up to 2 mm. 

Moreover, light grey tones indicating less x-ray dense mineral are present in the image s 

(Figure 5). This is probably less consolidated calcite (which has nanoporosity which is below 

the resolution of the microCT images). 

 

When comparing the high resolution images for the three different effective stresses (Figure 

8) the change in cleat morphology becomes obvious: the micro cleats in the coal matrix 

became narrower when effective stress increased (e.g. points 1, 2, and 5 in Figure 8), and 

some of these micro cleats disconnected from each other creating dead ends for flow (e.g. 
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point 7 in Figure 8). Moreover, the micro cleats between the matrix and mineral phase 

disappeared at high effective stress (e.g. points 3 and 4 in Figure 8); however, the micro 

cleats inside the mineral phase underwent almost no change (e.g. point 6 in Figure 8) because 

the mineral compressibility is significantly lower than that of the coal matrix.  

 

 

Figure 5. 2D slices through the coal microCT images (0 MPa confining pressure), (A) the 

large coal plug (33.7 μm nominal resolution); (B) the small coal plug (3.43 μm nominal 

resolution). Minerals are white, coal matrix is grey and cleats are black. 
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Figure 6. 3D visualization of the mineral phase (green) in the large coal plug at 0 MPa 

effective stress (38 mm diameter, 33.7 μm voxel resolution). The mineral phase is oriented 

perpendicular to the coal bed direction (z direction). 
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Figure 7. Image slices through the large coal plug (38 mm diameter). Mineral is white, coal 

matrix grey and cleats are black. Different effective stress situations are illustrated:  (A) 0 

MPa effective stress, (B)  5 MPa effective stress, and (C) 10 MPa effective stress. The macro 

cleat observed in (A) (see red boxes and yellow arrows) was almost closed in (B) and 

completely closed in (C). The mineral phase and coal matrix, however, showed no significant 

change with increasing effective stress. Nominalresolution is 33.4 μm. 

 



15 
 

 

Figure 8. Slices through the coal plug at different effective stresses (0 MPa, 5 MPa and 

10MPa), 3.43 μm nominal resolution; A-C, D-F and H-J show three different areas. The 

numbers and red arrows indicate cleats: cleats 1, 2, 4 and 5 became narrower; cleat 7 became 

disconnected; cleat 3 disappeared at high effective stress; while cleat 6 showed almost no 

change. 
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3.3  Quantitative analysis  

The micro cleats porosity (volume of the segmented micro cleats divided by the total volume) 

as a function of effective stress was quantified on the microCT images, and it significantly 

decreased with increasing effective stress, by more than half at 10 MPa effective stress. 

Precisely, cleat porosity decreased from 0.52 %, to 0.33 % and to 0.22 % at 0 MPa, 5 MPa 

and 10 MPa effective stresses, respectively (Figure 9); however, the volume fractions of the 

mineral phase and the coal matrix showed no significant difference.  

In the segmented images each cleat/fracture was separated and labelled. The cleat size (3D 

volume, µm3) distribution was then measured as a function of effective stress (Figure 10). 

The frequency of the large micro cleats (> 10000 µm3) decreased dramatically when effective 

stress increased from 0 MPa to 10 MPa; consistent with the 3D visualizations (Figure 9 A-C) 

and permeability measurements. However, the frequency of the small micro cleats (< 10000 

µm3) did not change significantly; the number of micro cleats smaller than 100 µm3 even 

slightly increased. This could be due to large micro cleats becoming disconnected with 

increasing effective stress, which are then counted as several small micro cleats, e.g. see 

Figure 8 J or Figure 9 , where a large micro cleat disconnected at 10 MPa effective stress. 

Note that cleats propagating outside the imaged volume (i.e. the field of view, FOV) are 

cropped to the FOV and thus this measurement is biased towards smaller cleats/fractures.  
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Figure 9. 3D visualizations of the different phases in the  small coal plug at the three different 

effective stresses, 0 MPa, 5MPa and 10MPa (A-C, micro cleats - golden; D-F, coal matrix - 

red; G-I, mineral phase - green). Volumes shown are 12.2 mm3 (400 x 400 x 884 voxels) and 

nominal resolution is 3.43 μm. While the coal matrix and mineral phase show no significant 

difference, the cleats close upon increasing effective stress. 
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Figure 10. The micro cleat size distribution in the coal as a function of effective stress; (A) 

full spectrum; (B) zoomed-into the largest cleats area. Large cleat (> 10000 μm3) frequency 

dramatically decreased at 10 MPa effective stress. 

 

3.4. Relation between cleat morphology, permeability and porosity 

The volume fraction of the cleats measured at the two microCT resolution scales (33.7 μm 

and 3.43 μm voxel size) was approximately  1.02 % (0.5%  macro cleats/fractures + 0.52% 

micro cleats), which is significantly smaller than the gas porosity (11.5 % ± 0.5 %) measured 
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on the large plug. We conclude that most void space lies in the coal matrix and is of 

nanometer scale (i.e. always less than 3 μm, smaller than the highest microCT nominal 

resolution 3.43 μm), consistent with literature data (Laubach et al., 1998). This is also 

consistent with the linear porosity decrease with increasing effective stress (Figure 5), i.e. the 

change in cleat morphology had only a marginal influence on porosity; thus the porosity 

change is mainly a function of coal compressibility.  

Moreover, the underlying mechanism for the rapid permeability drop also becomes clear: as 

effective stress increases, the cleats close and become disconnected; however,  as the cleats 

are the major fluid conduits (Laubach et al., 1998), permeability drops dramatically, Figure 4, 

consistent with measurements on larger plugs (Liu and Rutqvist, 2010; Jasinge et al., 2011; Li 

et al., 2014). The residual permeability at high effective stress (> 10 MPa) is then caused by 

the remaining cleats in the mineral phase – these cleats are still open as coal matrix 

compressibility is much higher than the compressibility of the minerals.  

 

4. Conclusions 

Porosity and permeability are key properties in CBM/ECBM and CO2 geo-sequestration 

applications. However, coal porosity and permeability are functions of the effective stress 

(Somerton et al., 1975; George and Barakat, 2001; Chen et al., 2011; Jasinge et al., 2011), 

and the relation between coal micro structure, permeability/porosity and effective stress is 

only poorly understood. We thus imaged coal plugs at high resolution (33.7 um and 3.43 µm 

voxel size) with an x-ray micro-computed tomograph in 3D as a function of effective stress 

(0 MPa, 5 MPa, 10 MPa) to measure the coal micro - structure. 
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Three phases were identified: cleats (void), coal matrix and mineral phase. Micro cleats 

closed upon increased effective stress, and the related cleat void space shrank from 0.52 % to 

0.22 % when effective stress increased from 0 to 10 MPa. These morphological results are 

consistent with the gas porosity-permeability tests:  gas permeability dropped dramatically 

(with increasing effective stress), while porosity dropped only linearly.  

 

We conclude that effective stress causes closure of micro cleats in the coal, which leads to a 

drastic drop in permeability, but only a moderate drop in porosity as most void space is 

located in the coal matrix as nanopores. 
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