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Abstract

A challenge in building pervasive and smart spaces is to learn and recognize human activities of daily living (ADLs).
In this paper, we address this problem and argue that in dealing with ADLs, it is beneficial to exploit both their
typical duration patterns and inherent hierarchical structures. We exploit efficient duration modeling using the
novel Coxian distribution to form the Coxian hidden semi-Markov model (CxHSMM) and apply it to the problem
of learning and recognizing ADLs with complex temporal dependencies. The Coxian duration model has several
advantages over existing duration parameterization using multinomial or exponential family distributions, including
its denseness in the space of non-negative distributions, low number of parameters, computational efficiency and the
existence of closed-form estimation solutions. Further we combine both hierarchical and duration extensions of the
hidden Markov model (HMM) to form the novel switching hidden semi-Markov model (SHSMM), and empirically
compare its performance with existing models. The model can learn what an occupant normally does during the
day from unsegmented training data and then perform online activity classification, segmentation and abnormality
detection. Experimental results show that Coxian modeling outperform a range of baseline models for the task of
activity segmentation. We also achieve a recognition accuracy competitive to the current state-of-the-art multinomial
duration model, whilst gain a significant reduction in computation. Furthermore, cross-validation model selection on
the number of phases K in the Coxian indicates that only a small K is required to achieve the optimal performance.
Finally, our models are further tested in a more challenging setting in which the tracking is often lost and the set
of activities considerably overlap. With a small amount of labels supplied during training in a partially supervised
learning mode, our models are again able to deliver reliable performance, again with a small number of phases,
making our proposed framework an attractive choice for activity modeling.
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1. Introduction

Activity recognition is an important aspect in building pervasive smart environments. Our motivating
application is the construction of a safe and smart house for the aged that facilitates automatic monitoring
and support of its occupants. There are two main problems in building such a system. First, the system needs
to learn, understand, and automatically build a model of the occupant’s activities of daily living (ADLs)
through observing what the occupant usually does during the day. Second, the system needs to be able to
use its learned knowledge to monitor the person’s current activity, and to detect if there is any deviation
from the normal activity patterns to alert the caregiver if necessary.

Most of the existing work on activity recognition has focused on representing and learning sequential and
temporal characteristics in activity sequences. This has led to the widespread use of dynamic models such as
the Hidden Markov Model (HMM) 1 [42,40]. While using HMMs is suitable and efficient for learning simple
sequential data, its performance seriously degrades when the range of activities becomes more complex,
or the activities exhibit long-term temporal dependencies that are difficult to deal with under the strong
Markov assumption.

To overcome these limitations, two popular classes of extensions to the HMM have been proposed. The
first relaxes the strong Markov assumption by modeling state duration, and the second enriches the basic
HMM by introducing hierarchical structure. In the former effort, the semi-Markov model and its hidden
variants, including explicit duration HMMs [34] and segmental HMMs [11], have been explored. In these
models, a state is assumed to remain unchanged for some duration of time 2 before it transits to a new
state. If the state duration distribution is non-geometric, the corresponding semi-Markov model is strictly
non-Markov. Research into semi-Markov models has been an active topic since the late 1980’s, driven mainly
by applications in the field of speech processing and recognition. Recently, it has also gained attention in
other fields, such as modeling web access traffic patterns [43], or high-level behavioral patterns in human
activities [18]. The latter extension introduces rich stochastic models that supplement the basic HMM with a
hierarchical structure, aim to exploit the natural hierarchical organization of human behaviors. Examples of
these models include the Abstract HMM [4], the Hierarchical HMM [10,17,3], and the Layered HMMs [30].
Long-term dependency is captured in these models via the additional layers designed to model higher-level
activities evolving at slower timescales.

Critical to a semi-Markov model is the choice of distributions for state durations. Our first contribution
in this paper is a novel form of semi-Markov model with Coxian duration distribution. We provide its
definition, algorithms for inference and learning in a dynamic Bayesian network setting, and its applications
in learning and recognizing ADLs in smart environments. In most existing work, the state duration is modeled
explicitly via the multinomial distribution [38,34,11,21,18]. The multinomial requires a large number of free
parameters (in order of the maximum duration M , which needs to be predefined), and can be prone to
overfitting if there is insufficient training data. More importantly, the burden in computation complexity
(in order of O(M)) in both training and classification makes the multinomial an unsuitable choice for a
wide range of applications, including activity recognition, where M could be arbitrarily large. More compact
parameterization has been attempted to overcome this problem, including Poisson [38], Gamma [16], or
more generally, the exponential family distribution [20]. Nevertheless, while keeping the number of free
parameters low, these methods still suffer from the same computational problem as the multinomial (i.e.,
time complexity is still O(M)). In addition, when mapping continuous distributions (e.g., Gamma) into the
discrete time domain, additional numerical approximation is required in the M-step during EM estimation
(with complexity of O(M)) resulting in an even longer learning/classification time.

To overcome the shortcomings of existing duration parameterization, we propose the use of the Coxian
distribution [24]. This distribution is a mixture of the sums of independent geometric random variables where
the number of phase, K, corresponds to the number of mixture components. This type of parameterization
yields an elegant solution: it has a closed-form re-estimation solution; the number of free parameters is
adequately low, scaling linearly with the number of phases K, where K is typically much smaller than the

1 A summary of all acronyms are given in Table A.1 in the appendix.
2 or equivalently, to emit a sequence of observations.
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maximum duration M in practice; and it is theoretically flexible enough in approximating any arbitrary
distribution [32] while maintaining computational efficiency as well as avoiding prior specification of the
maximum possible duration M . Using the (discrete) Coxian parameterization, we introduce a novel form of
hidden semi-Markov model, which we term the Coxian hidden semi-Markov model (CxHSMM) 3 .

In application of the CxHSMM to the domain of ADLs, we map primitive behaviors, such as cooking-at-
stove or using-the-fridge, to the hidden states of the model. The typical duration patterns spent at each
location (stove, fridge, etc.) by the occupant are modeled by the discrete Coxian distributions. The entire
dynamic execution of a behavior is modeled as a hidden semi-Markov model. We apply the CxHSMM to
recognize a set of relatively complex behaviors in a smart house environment and compare results with
other methods of duration modeling (Poisson, Inverse Gaussian, multinomial) and a standard HMM. We
demonstrate that duration information is important in activity modeling and can be effectively exploited
by the Coxian parameterization. We empirically show that high accuracy can be achieved with a relatively
small number of phases used in the Coxian, thus greatly reducing the number of free parameters. More
importantly, it removes the computational bottleneck faced by the multinomial and other generic exponential
family distributions, making the Coxian duration model an attractive choice for activity modeling.

Our second main contribution is a novel witching Hidden Semi-Markov Model (SHSMM), that incorporates
both duration and hierarchical modeling, and its application to activity segmentation and abnormality
detection in smart environments. We provide formal definitions and methods for inference and maximum-
likelihood (ML) parameter learning based on its dynamic Bayesian network representation. Additionally, as a
by-product of the proposed model, we present an abnormality detection scheme without the need of defining
or observing abnormal data. We note that previous work [14] has also recognized the need for combining
both the hierarchical and semi-Markov extensions into a unified framework. However, there has been no
attempt to formulate such a model, or to empirically demonstrate the usefulness of such joint modeling over
other existing methods. Our SHSMM is a result from such an effort. It is a special case of the hierarchical
model with two layers 4 . The top layer is a Markov sequence of switching variables, while the bottom layer is
a sequence of concatenated HSMMs. In a special case where the concatenated HSMMs are the CxHSMMs,
the model is referred to as a Coxian Switching Hidden semi-Markov Model (CxSHSMM). Parameters of
these concatenated HSMMs are determined by the switching variable at the top. Thus, the dynamics and
duration parameters of the HSMM at the bottom layer are not time invariant, but are “switched” from time
to time, similar to the way linear Gaussian dynamics are “switched” in a switching Kalman filter [23].

We first apply the CxSHSMM to the problem of recognizing and segmenting high-level activities. The
hidden states of the bottom layer are used in the same way as in the CxHSMM, i.e., to capture atomic
activities such as spending time at the cupboard, stove, fridge, or moving between these designated places.
Several of these atomic activities then form high-level activities in the house such as making-breakfast, eating-
breakfast, making-coffee, or washing-dishes, and each of these high-level activities is represented by a state at
the top layer. Transition from one top-level state to another represents sequences of high-level activities that
are typical in a human’s daily routine. The experiments show that the CxSHSMM significantly outperforms
the HHMM (without duration model) and the MuSHSMM (multinomial duration) 5 . Furthermore, the
Coxian parameterization requires a relatively small number of phases.

We further test the CxSHSMM in a more difficult experiment in which the object is permissible to move
freely, be occluded or out of camera view, resulting in data with missing observation due to the failure of the
visual tracking module. The set of activities is also more complicated in the sense that their trajectories can
overlap considerably. Our results again show that it performs reasonably well in such situations. By supplying
a small amount of activity labels during training, the model can achieve fairly accurate segmentation and
recognition with a small number of phases required.

Finally, abnormality in the duration of activities, if detected, can provide vital clues to an alert system
as it may indicate the onset of illness or sudden strokes. As the CxSHSMM can capture normal duration
patterns of atomic activities spent at each location, we utilize this to construct a novel abnormality detection

3 For quick reference, Table A.1 in the appendix provides a list of abbreviations.
4 We note that our model can also be easily extended to a hierarchy of arbitrary depth.
5 We note that the flat HSMM cannot be used for high-level segmentation.
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Fig. 1. DBN representation for a standard HMM and a standard HSMM. Shaded nodes represent observation.

scheme. We present a comprehensive set of experiments to demonstrate the performance of the model with
abnormal data.

The layout of this paper is organized as follows. Section 2 introduces the readers to the duration and
hierarchical extensions of the HMM. Section 3 provides a detailed discussion of the CxHSMM, including its
formulation, inference and learning in its dynamic Bayesian network (DBN) structure. Section 4 develops the
hierarchical model CxSHSMM including its definition, algorithms for inference and learning in DBN form.
Section 5 presents the experimental results using the CxHSMM and the CxSHSMM for activity recognition
and duration abnormality detection. Finally, our conclusions are presented in section 6.

2. Related Background

2.1. The Hidden semi-Markov Model (HSMM)

In a standard hidden Markov model [34], the (random) duration for a state can be viewed as a geometric
random variable parameterized by the corresponding diagonal entry in the transition matrix. This model
is often too limited in many practical applications. The semi-Markov extension overcomes this limitation
by allowing more flexible duration distributions. Suppose a state i remains unchanged during time t to t′

and emits an observation segment yt:t′ , if the probability of observing this segment can be factorized as
Pr(yt:t′ | i) =

∏t′

τ=t Pr(yτ | i), then the model is known as the explicit HSMM [34,21]. If the factorization
also depends on the mean of the segment, then the model is called a segmental model [11,33]. This paper
considers the former, and unless otherwise stated, the term HSMM should be understood as such. We also
note that the term ‘explicit’ HSMM has a different meaning than in ‘explicit’ duration modeling, wherein
the duration is modeled explicitly by a multinomial distribution.

A standard HSMM can be completely described by a state space Q, an observation alphabet set V , and
a parameter set θ , {π,A, D, B}. While the initial state distribution π and the observation matrix B are
the same as in the standard HMM, the transition matrix A no longer allows self-transitions. In addition,
the duration parameter D is explicitly introduced to specify state duration probabilities. Note that in the
HMM, the self-transition probability Aii for the state i defines its duration distribution: the probability that
it will remain unchanged for a duration d is: Dd

i ∼ Geom(d;Aii) = (Aii)
d−1(1 − Aii) where Geom(·; ·) is

the geometric probability mass function. In the HSMM, this self-transition probability is set to zero at the
expense of introducing a separate distribution to model the state duration Di. Clearly, if Di is a geometric
random variable (or exponential as in continuous time case), the HSMM reduces to an HMM. Traditionally,
Di is usually modeled as the multinomial, or more generally, a member of the exponential family.

Both the HMM and HSMM can also be presented as a form of dynamic Bayesian network (DBN) [7,6]
shown in Figure 1. On the right is the DBN graphical structure for HSMM with generic state duration
distribution and on the left is the DBN structure for a normal HMM for comparison. At each time slice, a
set of variables Vt = {xt,mt, yt} is maintained where xt is the current state, mt is duration variable of the
current state, and yt is the current observation. The duration mt is a counting-down variable, which not
only specifies how long the current state will last, but also acts like a context influencing how the next time
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slice t + 1 will be generated from the current time slice t. When mt > 1, the same state xt carries on to the
next time slice; whereas when mt = 1, the next state xt+1 is drawn from the transition probability Axtxt+1

and the duration variable mt+1 is initialized to some random value d drawn from the distribution Dxt
. The

variable mt+1 then counts down until it reaches 1.
The inference tasks for the HSMM include computing the smoothing distributions Pr(St | y1:T ), and

Pr(St, St+1 | y1:T ), where St is the amalgamated hidden variable: St , {xt,mt}. The inference, including
scaling, is conducted using the familiar (scaled) backward/forward procedures of the HMM described in [34].
Similar to the HMM case, the DBN representation of the HSMM enables it to be viewed as a member of
the exponential family. Hence, in the learning phase, the HSMM parameter set θ can be estimated using
the EM algorithm. Both the inference and learning tasks for the HSMM are again similar to the HMM and
have been discussed in various papers [34,20,21,17,43] for different state duration probabilistic models.

The most common choice for modeling the state duration is the multinomial [34,21,43,18] due to its
simplicity. Previously [34], the multinomial HSMM was extensively used in the area of speech recognition.
However, there have been several recent applications in other fields. In [43], Yu el al. modeled and then
learned the underlying process associated with the Web access traffic patterns as an explicit HSMM. Luhr
et al. [18] applied the explicit HSMM to model and recognize high-level behavioral patterns in human
activities. More thorough review can be found in [9].

The first drawback in using the multinomial distribution is the substantial increase in computational load.
As mentioned before, the original HMM, whose state space is |Q|, has an inference/learning complexity of
O(|Q|2T ), where T is the observation length. The general approach in inference and learning in the HSMM
is to treat all hidden variables as an amalgamated variable S , whose state space is |Q|M , where M is
the maximum duration length. Thus, the theoretical complexity for the HSMM is O(|Q|2M2T ). By taking
advantage of the determinism of mt (i.e. conditionally on a given state, mt+1 = mt − 1), the complexity
can be reduced to O(|Q|2MT ); or even better to O((|Q|M + |Q|2)T ) by explicitly considering if xt is in the
middle of its duration or at the begin or end of its duration [43]. Nevertheless, the computational complexity
for the HSMM is still significantly high, especially for large M which unfortunately could be as large as the
maximum observation length T in practice.

The second drawback of the multinomial durations is the large number (i.e. M−1) of additional parameters
required for each state. This could lead to overfitting when only small amount of data is available for
training. In addition, M must be determined in advance. If M is set to the observation length T , the
problem is then to predetermine the maximum value for T . More compact parametric distributions (e.g.,
the Poisson [38], the gamma [16], or more generally the exponential family [20]) have also been proposed
to model the state occupancy. However, it turns out that while keeping the number of free parameters low,
both discrete and continuous exponential family distributions suffer from the same computational drawback
as the multinomial. This is because inference still has computational complexity that scales linearly with
the maximum duration length M as these models have the same DBN representation as the multinomial
HSMM (Figure 1(b)). In addition, whereas the discrete distribution parameterization (e.g., Poisson) can be
estimated in a closed-form, the continuous distribution (e.g., the Gamma) requires numerical approximation
during learning. Hence, the problem of effective modeling of duration is still left unresolved.

2.2. The Hierarchical HMM (HHMM)

Another extension to the HMM is the incorporation of hierarchical knowledge such as the hierarchical
HMM (HHMM) [10], the abstract HMM (AHMM) [4], and the layered HMMs [30]. Fine el al. [10] were the
first to introduce the HHMM, generalizing the HMM by viewing each state as an autonomous probabilistic
HMM model itself. The authors apply the HHMM to the problem of learning multi-level structure in text and
detect stroke patterns in handwriting. Luhr el al. [17] were the first to employ the HHMM in modeling and
recognizing human activities. Nevertheless, in these models the state hierarchy in the HHMM is restricted
to a tree structure. It does not allow the sharing of lower-level states by states at higher levels. Bui et
al. [3] introduced the concept of structure sharing to allow the overlapping of common substructures in
the HHMM topology, thus providing more flexibility in the model. The authors later applied it to learn
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movement trajectories using simulated data in [3] and real surveillance scenarios in [25].
The AHMM [4] is similarly a multi-scale probabilistic model. The original AHMM consists of multi-layer

abstract policies where a policy is similar to a high-level state in the HHMM. The policy selection process
follows a top-down process. The higher level policy selects the lower level ones, and the execution continues
to the bottom level, where the bottom level policy does not select another policy but is modeled by a Markov
chain. The observations are then generated directly from this Markov chain. At first look, the AHMM seems
to act in the same manner as the HHMM. However, it extends the HHMM by allowing the refinement of
an abstract state into lower-level states to be dependent on the current context, modeled by the current
state at the bottom level. The AHMM was first applied to activity tracking and recognition [26], and used
to model movements in an indoor environments [31].

The layered HMMs in [30] can be viewed as a cascade of HMMs, where each layer is trained independently.
The results of the lower layer are used as inputs to train the higher layer. The layered HMMs can be useful
in reducing training and tuning requirements via re-training the lowest layer, which is the most sensitive to
any changes in the environment, and keeping the higher-level layers unchanged.

The hierarchical HMM variants have been reported to successfully exploit the hierarchical structures in
human activities. Nonetheless, one of their weaknesses is the lack of explicit duration models. The intro-
duction of the SHSMM in this paper overcomes this weakness. It merges the two key extensions (hierarchy
and duration) of the original HMM. The SHSMM satisfies the need of exploiting both the hierarchical
decompositions and the embedded duration characteristics of human daily activities.

2.3. Other Related Work

Human activity recognition is a central task in video-based surveillance systems. At first, object segmen-
tation and tracking are usually performed to extract and label human objects from the background, which
are then tracked over time 6 . At a higher level, activity recognition uses tracking information to recognize
behaviours, which can range from atomic actions such as person-walking or opening-the-door, to higher-level
activities such as washing cloth, or cooking a meal. We distinguish the term ‘action’ and ‘activity’ to repre-
sent different levels of human behaviors; the former to denote atomic human motions (e.g, movements of the
hand, head); while the latter represents higher-level tasks comprising of a sequence of combined actions, such
as those activities considered in this paper. Early work in action recognition can be traced back to [42] which
attempts to recognize different strokes in tennis game using the HMM. The HMM and its variants has then
become popular for action recognition in several works: recognizing American Sign Language [40], action
recognition and interaction [30], gesture recognition [15], body shape and gait tracking for silhouette-based
human recognition [36,12].

Detecting unusual/abnormal activities in video is another important issue in surveillance systems and has
been investigated in some recent work [41,5,45]. Zhong et al. [45] view normal activities as patterns that are
repeated over time and develop a similarity-based framework to detect unusual activities in an unsupervised
manner. The work of [41,5] uses statistical shape theory to model the shape of the object and examine its
mean and dynamic deviation to spot abnormal behaviours from tracked object.

The semantics of our proposed switching HSMM is somewhat similar to the switching linear dynamic
system (SLDS) proposed by [28] for the bee-dance tracking problem. While both having two layers and
their top layers switch in a similar manner, they are at least different in two fundamental ways: our state
spaces are discrete, whilst the SLDS is continuous at the lower level, and thus SLDS cannot model duration
information; inference in ours can be done exactly, whilst that in the SLDS is intractable, and needs to be
approximated. This work has recently been extended to incorporate duration at the top level [29]. However,
duration is modeled explicitly as a multinomial which leads to the same complexity problems as we have
outlined previously.

6 Object segmentation and tracking, in general, is a difficult problem and is not a focus of this paper. The difficulties usually
arise from camera noise, occlusion and environmental conditions and we refer to two survey papers [1,13] for further discussions

on these problems.
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Coxian phase-type distributions have also been used elsewhere such as in social study [19], network traffic
modeling [37] or continuous time BN [27]. In [19], the authors used a Coxian to model the duration of
stay of the elderly in the hospital. Based on the data collected from the patients, the model is fitted with
different number of phases using a series of likelihood ratios testing to find the best fit model. The resulting
best number of phases is small (equals 3) and it is consistent with the conclusion in this paper. The work
in [37] considers the problem of fitting web server traffic data using the Coxian phase-type distributions.
The model training method presented in that paper can be viewed as a special case of the CxSHSMM when
the starting and ending indices at the top level are known. Efforts to achieve more expressive duration
distribution using state-tying have also been reported [2]. Typically in such a scenario a state is ‘duplicated’
into K sub-states whose observation matrices are ‘tied’ together (i.e., share the same emission probability
matrix). In particular, [2] made use of the nonnegative binomial distributions or mixtures of these. The
Coxian duration model can also be viewed as a special state-tying mechanism where a state is split into K
sub-states each controlling a separate Coxian phase. However, the Coxian distribution is very different from
the mixture of nonnegative binomial distributions presented in [2] since the parameters for the individual
geometric components are generally not identical. In addition, [2] did not provide any empirical evaluation,
neither did it address the issue of model selection.

3. The Coxian Hidden Semi-Markov Model

3.1. The Coxian Duration Model

Recall from section 2.1 that a hidden semi-Markov model is parameterized by θ , {π,A, D, B}, where π
is the initial probabilities, A is the state transition probabilities, B is the emission probabilities, and D is
the state duration probabilities. The duration distribution Di of a state i is often chosen as a multinomial
distribution [34,21,43], or less commonly, the exponential family [38,16,20]. However, as discussed, these
modeling choices become problematic when M , the maximum duration length, is large (cf. section 2.1).
Thus, we propose the use of the discrete Coxian distribution [24].

A discrete K-phase Coxian distribution 7 Cox(µ, λ) is defined as a mixture over sums of independent
geometric random variables:

Cox(µ, λ) =
K∑

m=1

µmSm where µm is the mixing coefficients, (1)

Sm =
m∑

i=1

Xi and Xi∈[1,K] ∼ Geom(λi) (2)

The parameter µm specifies the prior probability of entering phase m and satisfies the constraint 0 ≤ µm ≤
1,

∑
µK

m=1 = 1. The parameter λm defines the probability that the phase m terminates its execution and
thus 0 < λm ≤ 1,∀1 ≤ m ≤ K. The Coxian is a mixture distribution over the sums of geometric variables
Sm = X1 + . . . + Xm where Xi are independent and distributed according to a geometric distribution
parameterized by λi, i.e., Xi ∼ Geom(λi).

1

µK−1 µ1µK

. . . absorbing
state

1

1− λK
1− λK−1 1− λ1

K K−

Fig. 2. The phase diagram of a discrete K-phase Coxian distribution.

7 When considering the continuous Coxian, the geometric distribution is replaced by its continuous counterpart, the exponential

distribution.
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The discrete Coxian distribution is a member of the phase-type distribution family [24] and has the
following appealing interpretation. Figure 2 shows a left-to-right Markov chain with K + 1 states numbered
from K down to 1, with the self transition parameter Aii = 1 − λi and an absorbing state. The first K
states represent the K phases, while the last state is absorbing and acts like an end state. The duration of
the state (phase) m is geometric: Pr(Xm = d) ∼ Geom(d;λm) = λm(1− λm)d−1. If we start from state m,
Sm = Xm+. . .+X1 is the duration of the Markov chain before the end state is reached. Thus, Cox(µ, λ) is in
fact the distribution of the duration of this constructed Markov chain when µ is the initial state distribution.

Alternatively, the probability cumulative and probability mass functions for the Coxian can be constructed
explicitly as:

FCox(d) = 1− µTAdI (3)

fCox(d) = µTAd−1e (4)

where A is the transition matrix of the Markov chain (Figure 2) and e is the terminating probabilities of its
phases:

A =



1− λM λM 0 0 0

0 1− λM−1 λM−1 0 0

0 0 . . . . . . 0

0 0 0 1− λ2 λ2

0 0 0 0 1− λ1


, e =



0

0
...

0

λ1


The discrete Coxian is much more flexible than the geometric distribution as its probability mass func-
tion is no longer monotonically decreasing. It is also more expressive than the nonnegative binomial dis-
tribution since it can weakly model multi-modal data. In addition the Coxian does not require a state
to execute in a sequence of phases but allows entry into any arbitrary phase via the prior phase proba-
bility µm. Thus, it can be effective at modeling arbitrary durations. A very long duration would ideally
require more phases while a short one can have as small as one phase (which, in this case, reduces to
a single geometric). Figure 3 plots an example of a unimodal and a bimodal 5-phase Coxian where in
the first case µ = (0.16 0.11 0.04 0.32 0.36), λ = (0.07 0.62 0.43 0.64 0.18) and in the second case µ =
(0.11 0.25 0.01 0.31 0.32), λ = (0.58 0.64 0.46 0.25 0.41). The mean and variance of a Coxian distribution
can also be derived in closed-form expressions [24,9]:

µCox =
K∑

m=1

µm

m∑
k=1

1
λk

σ2
Cox =

K∑
m=1

µ2
m

m∑
k=1

1− λk

λ2
k

(5)

Using the discrete Coxian distribution, we define the duration distribution for state i ∈ Q as Di =
Cox(µi, λi). The parameters µi and λi are K-dimensional vectors. Finally, we term this hidden semi-Markov
model as a Coxian duration HSMM (CxHSMM). We note that when K = 1 the model is equivalent to a
HMM. The K-multinomial distribution is also a special case if all λi is set to 1 (in that case Pr(Xi = 1) = 1,
thus µ serves as the multinomial parameter).

3.2. Dynamic Bayesian Network representation

Figure 4(a) shows a DBN representation of the CxHSMM, in which shaded nodes are the observed vari-
ables, while clear nodes are the hidden ones. At each time slice t, a set of variables Vt = {xt,mt, et, yt}
is maintained, where xt is the current state variable, mt is an K-valued variable representing the current
phase of xt, et is a boolean-valued variable representing the ending status of xt (i.e., et = 1 when xt finishes
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its cycle or equivalently mt leaves the last phase (i.e. phase 1); otherwise et = 0), and finally yt is the
observation returned by the system at time t. 8
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Fig. 4. A 2-slice DBN representation for the CxHSMM and CxSHSMM.

The ending variable et specifies how the next time slice t + 1 can be derived from the current time slice t
given the model θ. When et = 0, the same state xt carries on to the next time slice, whereas when et = 1, the
next state xt+1 is drawn from the transition matrix A. In addition, the transition of the phase variables mt

follows the parameters of the Coxian duration model as follows. When et = 0, we have mt+1 ∈ {mt,mt − 1}
and the probability of staying in the same phase is:

Pr(m1
t+1 |m1

t , x
i
t, e

0
t ) = 1 for m = 1 (6)

Pr(mm
t+1 |mm

t , xi
t+1, e

0
t ) = 1− λi

m for m > 1 (7)

When et = 1, the starting phase of a new state is initialized:

Pr(mm
t+1 |xi

t+1, e
1
t ) = µi

m

Finally, et = 1 only when the mt is in the last phase (phase 1), i.e., Pr(e1
t |mm

t , xi
t) = 0 if m > 1, and = λi

1

if m = 1. The full set of the CxHSMM ’s parameters interpreted as probabilities in the DBN is is given in
Table A.2 in the appendix.

8 In general, {xt, mt, et} are hidden and yt is observed. In the setting of missing observation, i.e. the system fails to return its

tracked data, yt will be treated as hidden, and the framework here can be easily extended to handle this case.
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3.3. Inference and learning

When applying the CxHSMM to modeling ADLs, we would like to learn the parameters of the CxHSMM
from training data and then use the learned model for classifying unseen activities. Since the CxHSMM can
be represented as a DBN, existing learning and inference methods for DBNs can be readily applied to our
problem.

In the inference task, at time t, let St , {xt, et,mt} be the amalgamated hidden state, and its realization
will be written shortly as s , {i, k,m}. We then employ the familiar forward and backward procedures
to compute the forward variable αt(s) = Pr(Ss

t , y1:t), and the backward variable βt(s) = Pr(yt+1:T | Ss
t ),

respectively. From α and β we compute one- and two-slice smoothing distributions, i.e. Pr(St | y1:T ) and
Pr(St, St+1 | y1:T ), which are required during EM training to compute the expected sufficient statistics for
θ.

In practice, we usually have to deal with long observation sequences and thus the calculation of αt will
encounter the numerical underflow problem since it will be a joint probability of a large number of variables
when t becomes very large. To avoid this problem we use a scaling scheme similar to the technique discussed
in [35] for the HMM, for example, instead of calculating αt(s), we calculate a scaled version: α̃t (s) =
αt(s)/ Pr(y1:t) , Pr(Ss

t | y1:t). The recursive calculation of α̃t (s) is performed efficiently via dynamic
programming, and in an identical fashion to that of the HMM. That results in an inference complexity of
O(|Q|2K2T ), or O(|Q|2K2) for each filtering step. However, since within a given state the phase variables
are constrained so that mt+1 ∈ {mt,mt − 1}, the full joint probability of mt and mt+1 can be represented
in just O(K) space instead of O(K2). This reduces the overall complexity to O(|Q|2KT ) (or O(|Q|2K) per
filtering step). We note that if the duration is modeled as a multinomial distribution or an exponential family
distribution, the complexity is O(|Q|2MT ) with M being the maximum duration length. For K � M we
can achieve significant speedup and at the same time avoided the problem of determining M in advance.

For the task of parameter learning, we use the Expectation-Maximization (EM) algorithm to learn the
maximum-likelihood estimation for θ from the training data as in the HMM case. The EM estimation
for a parameter τ reduces to first calculating its expected sufficient statistics (ESS), denoted as 〈τ〉, by
marginalizing out the unnecessary variables from the one- and two-slice smoothing distributions Pr(St|Y )
and Pr(St, St+1|Y ), and then setting the re-estimated parameter τ̂ to the normalized value of 〈τ〉. We
discuss here only the estimation for the Coxian duration model and leave the full set of ML-estimated
formulas in Table A.4 in the appendix. Let us first look at the initial phase parameter µi

m in detail. The
sufficient statistics (SS) of µi

m, denoted as
(
µi

m

)
, is collected every time the system enters phase m right

after a transition to state i, and thus:
(
µi

m

)
=

∑T−1
t=0 Im

m
t+1

Ii
x

t+1
I1et

, where the identity function Ib
a = 1 for

a = b, and = 0 for a 6= b. Taking the expectation of the SS over Pr(x, m, e | y1:T ) results in the ESS

〈
µi

m

〉
= E

[(
µi

m

)]
Pr(x,m,e | y1:T )

=
T−1∑
t=0

Pr(xt+1 = i, mt+1 = m, et = 1 | y1:T )

which is easily obtained by marginalizing the smoothing distribution Pr(St, St+1 | y1:T ). The re-estimated

formula then follows as µ̂i
m = 〈µi

m〉∑K

m=1
〈µi

m〉
.

The individual phase’s terminating probability λi
m needs to be treated with more care. For m > 1, the

sufficient statistics
(
λi

m

)
is counted every time the phase m is terminated within the given state i:

(
λi

m

)
=

T−1∑
t=1

Im−1
m

t+1
Im
mt

Ii
x

t+1
I0et

Its expected sufficient statistics (ESS) follows as:

〈
λi

m

〉
= E

[(
λi

m

)]
Pr(x,m,e | y1:T )

=
T−1∑
t=1

Pr(mm−1
t+1 ,mm

t , xi
t+1, e

0
t | y1:T )

The normalization factor is obtained by marginalizing all possible values of the following phase:
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normalization =
∑

m′∈{m,m−1}

T−1∑
t=1

Pr(mm′

t+1,m
m
t , xi

t+1, e
0
t | y1:T ) =

T−1∑
t=1

Pr(mm
t , xi

t+1, e
0
t | y1:T ) (8)

therefore λ̂i
m =

〈
λi

m

〉∑T−1
t=1 Pr(mm

t , xi
t+1, e

0
t | y1:T )

(9)

For m = 1, λi
1 becomes the probability that the state i has finished its duration and of course the Coxian

is at its last phase. Therefore, by using the same counting and expectation procedures, we obtain:
〈
λi

1

〉
=∑T

t=1 Pr(e1
t ,m

1
t , x

i
t | y1:T ). The normalized factor now is equivalent to the probability that the Coxian is at

its last phase (regardless whether state i has or has not finished its duration):

normalization =
〈
λi

1

〉
+

T∑
t=1

Pr(e0
t ,m

1
t , x

i
t | y1:T ) =

T∑
t=1

Pr(m1
t , x

i
t | y1:T )

The re-estimated equation thus becomes:

λ̂i
1 =

〈
λi

1

〉∑T
t=1 Pr(m1

t , x
i
t | y1:T )

Finally, note that the number of free parameters for the Coxian duration model is |Q|(2K − 1) which is
usually much smaller than |Q|(M − 1) for the explicit duration model, where M can be potentially as large
as T .

4. The Coxian Switching Hidden Semi-Markov Model

We now move to merge both durational and hierarchical extensions to form a novel stochastic model,
termed the Coxian Switching Hidden semi-Markov Model (CxSHSMM). We start with a two-layer hierar-
chical HMM, and then describe how the Coxian duration distribution can be integrated into this model. By
viewing the model as a dynamic Bayesian network, methods for inference and parameter estimation can be
easily extended from the CxHSMM.

4.1. Model definitions and parameters

Let us consider a two-layer hierarchical HMM [10,3] defined as follows. The state space is divided into
the set of states at the top level Q∗ = {1, . . . , |Q∗|} and states at the bottom level Q = {1, . . . , |Q|}. Our
convention is to use the letters p, q to refer to elements of Q∗ and i, j to refer to elements of Q. The parameters
π∗p ∈ [0, 1] and A∗

pq ∈ [0, 1] are the initial and transition probabilities of a Markov chain defined over the
states in Q∗. For each top-level state p, ch(p) ⊂ Q is the set of children of p. It is possible that different
parent states may share common children [3]. A transition to p at the top-level Markov chain will initiate a
Markov chain at the bottom level over the states in ch(p). The parameters of this p-initiated chain are given
by {πp

i ,Ap
ij ,A

p
i,end}, where πp

i ∈ [0, 1], Ap
ij ∈ [0, 1] are the initial and transition probabilities as usual, and

Ap
i,end ∈ [0, 1] is the probability that this chain will terminate after a transition to i. Note that the stochastic

constraint requires
∑

j∈Q Ap
ij + Ap

i,end = 1. At each time, an alphabet v from (discrete) observation space V
is generated with a probability of Bv|i ∈ [0, 1], where i is the current state at the bottom level.

In this two-layer HHMM, the duration of a bottom-level state i ∈ ch(p), denoted as Dp,i, follows a
geometric distribution. This however is too restrictive to model realistic data. We thus adapt the semi-
Markov extension to allow the state duration Dp,i to model any general distributions. More precisely, the
p-initiated chain at the bottom level is now a semi-Markov sequence with πp

i ,Ap
ij , Dp,i being the initial,

transition and duration probabilities, respectively (Ap
ii must be zero). The termination and observation

probabilities, Ap
i,end and Bv|i, remain the same as in the two-layer HHMM. We term this two-layer structure
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the Switching Hidden Semi-Markov Model (SHSMM) 9 since it can be viewed as the concatenation of many
HSMMs, each initiated by a different “switching” state p.

Given the disadvantages of existing duration models (multinomial and exponential family distributions),
as described in section 3, we propose the use of the Coxian distribution to model state durations at the
bottom level in the SHSMM, and term the new model as the Coxian Switching Hidden semi-Markov Model
(CxSHSMM). For each p-initiated semi-Markov sequence, the duration distribution of a child state i is
Dp,i = Cox(µp,i,λp,i). Again, the parameters µp,i and λp,i are K-dimensional vectors where K is a fixed
constant representing the number of geometric phases in the discrete Coxian. Finally, note that for K = 1,
the CxSHSMM is equivalent to a HHMM.

4.2. Dynamic Bayesian Network representation

Figure 4(b) shows the graphical DBN representation of the CxSHSMM over two time-slices. A set of
variables Vt = {zt, εt, xt, et,mt, yt} is maintained at any given time slice t. At the top level, zt is the current
top-level state acting as a switching variable; εt is a boolean-valued variable set to 1 when the zt-initiated
semi-Markov sequence ends at the current time-slice. At the bottom level, xt is the current child state in
the zt-initiated semi-Markov sequence; et is a boolean-valued variable set to 1 when xt reaches the end of
its duration 10 . The K-valued variable mt then represents the current phase of xt. Lastly, yt is the observed
alphabet.

The parameters of this DBN are constructed from the parameters of the CxSHSMM similar to the
HHMM [3,22]. Intuitively, the “ending” variables εt and et act like context in term of defining how the
next time-slice t + 1 can be derived from the current time-slice t. When et = 1, there are two possibilities:
if εt = 0, the same top-level state carries on to the next time-slice, but the semi-Markov sequence at the
bottom level transits to a new child state; if εt = 1, the top-level state “switches” to the next state, and a
new semi-Markov sequence is initiated at the bottom level. When et = 0, since the top state cannot switch
if its current child has not ended yet, εt must be set to 0, and the same states at the top and bottom levels
carry on to the next time-slice.

The state duration is modeled by a discrete Coxian, thus the transition of the phase variable mt follows
the parameters of a Coxian model as in the CxHSMM case (section 3). When et = 0 (εt must be zero), we
have mt+1 ∈ {mt,mt − 1}, and the probability of staying in the same phase is :

Pr(mm
t+1 |mm

t , xi
t+1, z

p
t+1, e

0
t ) = 1− λp,i

m for m > 1

Pr(m1
t+1 |m1

t , x
i
t+1, z

p
t+1, e

0
t ) = 1

When et = 1, the starting phase of a new state within the same p-initialized semi-Markov sequence (if
εt = 0) or of a newly p-initialized semi-Markov sequence (if εt = 1) is:

Pr(mm
t+1 |xi

t+1, z
p
t+1, e

1
t ) = µp,i

m

Note that a state xt can only finish its duration (et = 1) to transit to a new state when mt is in its last
phase:

Pr(et = 1 |mm
t , xi

t, z
p
t ) =

{
0, m > 1
λp,i

1 , m = 1

Finally, the full set of the CxSHSMM’s parameters when mapped into DBN is presented in Table A.3 in the
appendix.

9 We preliminarily introduce this model in our previous work in [8].
10 In an HSMM, t is the end of duration of the state xt iff xt 6= xt+1. However, in an CxSHSMM, it is possible that xt+1 is

actually part of a newly initiated HSMM. Thus xt+1 6= xt if et = 1 and εt = 0, but we can have xt+1 = xt if et = εt = 1.
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4.3. Inference and parameter estimation

When applying the CxSHSMM to activity modeling, we learn the parameters of the CxSHSMM from
training data and then use the learned model for classifying and segmenting activities, and detecting ab-
normality. In the inference task, let St , {zt, εt, xt, et,mt} be the amalgamated hidden state, and we are
interested in computing the filtering distribution Pr(St | y1:t) and the smoothing distributions Pr(St | y1:T )
and Pr(St, St+1 | y1:T ). A range of queries regarding the current high-level activity (zt), the current atomic
activity (xt) and the remaining duration of the current activity can be answered from the marginals of these
distributions. The inference including scaling is done in a similar fashion to that of the CxHSMM; however,
the amalgamated hidden state St is now extended to include two more variables: the parent state zt and the
switching state εt. The state space of St is now O(|Q∗||Q|K), therefore, the recursive complexities of the
smoothing distribution is O(|Q∗|2|Q|2KT ). 11 Again, if the duration is modeled by the multinomial or ex-
ponential family distributions, the complexity will be O(|Q∗|2|Q|2MT ), where M is the maximum duration
length and typically M >> K. Thus, when the model becomes more complex (i.e. hierarchical), a greater
computational factor is saved by using the Coxian duration model.

Similar to the HMM case, given a sequence of training data of the form y1:T , the maximum likelihood
parameter θ∗ = argmaxθ Pr(y1:T | θ) can be estimated iteratively using the EM algorithm. Within each p-
initiated semi-Markov chain, the re-estimation process is equivalent to that of a CxHSMM except that the
explicit information about the current parent state is carried along. For example, the solution for Coxian

initial phase parameter is: µ̂p,i
m = 〈µp,i

m 〉∑
m
〈µp,i

m 〉 , where
〈
µp,i

m

〉
=

∑T−1
t=1 Pr(mm

t+1, x
i
t+1, z

p
t+1, e

1
t | y1:T , θ). The full

set of re-estimated formulas is presented in the appendix.

5. Experiments

The smart environment used in our experiments is a laboratory kitchen set up as shown in figure 5. The
scene is captured by two cameras mounted at two opposite ceiling corners, and a multiple-camera tracking
module is used to detect movements, returning the list of positions of the single occupant in x-y coordinates.
For modeling convenience, the kitchen is quantized into 28 square cells of 1m2 (shown by the crosses on
the floor) and the returned x-y readings are converted into cell numbers. The low-level vision tracking
module employed in this work is the same as that of [26]. This tracking module, however, sometimes returns
a neighboring position instead of the actual position occupied by the person, so an observation model is
estimated offline with manually labeled ground truth [26]. This corresponds to estimating the observation
model B separately.

The remainder of this section is organized as follows. First, in section 5.1 we apply the CxHSMM to
automatic learning and recognition of ADLs and compare its performance with other existing HSMMs
and the standard HMM. The next experiment (section 5.2) aims to explore both the inherent temporal
complexity and hierarchical decomposition. We employ the CxSHSMM for this task and compare it with
the MuSHSMM, a 2-layer HHMM (without duration model) and a HSMM (without hierarchical model).
In section 5.3 we use the learned models in section 5.2 to construct a new scheme to detect any deviation
in the durations of unseen ADLs. The final set of experiment in section 5.4 reports the performance of the
CxSHSMM under a more difficult scenario with missing observations and partially labeled data.

5.1. Recognition of Activities of the Same Category

We observe that there are several common categories of ADLs in the house (e.g., cooking-meal, washing-
dishes, ironing-clothes, leisure-reading), in which activities of the same category generally follow the same
standard procedures. For example, the cooking-meal category would include: taking-food-from-fridge → washing-

vegies/cutting-meat → seasoning-food → cooking; or the ironing-clothes category would consists of: bringing-clothes-

11Note that the full joint probability of mt and mt+1 is just O(M) instead of O(M2) (cf. section 3.3).
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to-laundry→ taking-out-the-iron→ setting-up-the-iron-board→ ironing→ tidying-up-the-hot-iron-&-the-iron-board→ putting-

the-ironed-clothes-away. However, the sub-activities within a given category may possess different duration
characteristics. For example, time spent at the stove for cooking-lunch would be less than that for cooking-
dinner, or time spent at the laundry for ironing-a-shirt on weekday morning would be much less than for
ironing-the-whole-set-of-clothes at weekends. A challenging problem is to learn and distinguish ADLs of the
same category mainly based on the differences in the durations of their sub-activities.

We experiment with the HSMM variants in learning and recognizing three routines of the meal preparation
and consumption, and compare them with the standard HMM. In these HSMM variants, different kinds of
distribution are used for modeling state durations, including the proposed Coxian, the Multinomial, the
Poisson, and the Inverse Gaussian. The Multinomial was selected as it was the most popular distribution
used in the HSMM, e.g., [34,21,43]. The (discrete) Poisson was chosen because of its simplicity and its good
results in modeling state durations for the HSMM in speech recognition, e.g., [38]. The Inverse Gaussian
was selected as an example of continuous distributions for duration modeling because it is restricted to the
positive domain and has been used to model patients’ staying time in hospital with successful results [39].

5.1.1. Data descriptions
We collect a total of 48 sequences for three activities: (a.1) a-tea-cake-newspaper-breakfast, (a.2) a-

scrambled-egg-on-toast-lunch, and (a.3) a-lasagna-salad-lunch. We consider the case in which the three activ-
ities have exactly the same sequential order of sub-activities, but differ in the durations of these tasks. This
is also the hardest scenario since the differences in duration patterns, and not in trajectories makes our task
of activity classification more challenging. All the three activities follow the following twelve fixed sequential
steps: 1. take-food-from-fridge → 2. bring-food-to-stove → 3. wash-vegetable/fill-water-at-sink → 4. come-back-to-stove-for-

cooking → 5. take-plates/cup-from-cupboard → 6. return-to-stove-for-food → 7. bring-food-to-table → 8. take-drink-from-fridge

→ 9. have-meal-at-table → 10. clean-stove → 11. wash-dishes-at-sink → 12. leave-the-kitchen. To give an idea about the
activity lengths, Table 1 shows the statistics of typical durations spent at special landmarks (fridge, stove,
sink, cupboard, and table) for the three activities. For example, 15 − 17(s) is the duration spent at stove
for cooking scrambled eggs on toast, which is generally longer than for reheating the lasagna (8− 10(s)), or
making a cup of tea (7− 9(s)); having breakfast while reading the morning newspaper, 28− 32(s), usually
requires more time at the table than simply having lunch alone, 14−16(s) or 19−21(s). In addition, Table 1
shows that each landmark may have multiple durations (the first column shows the duration of the first visit,
the second column is the duration of the second visit, etc. 12 ). In this experiment, we consider the possibility

12For example, for activity (a.1), the occupant first stops at the fridge for 1-2(s) to check out milk and cake, then later returns
to the fridge for 4-6(s) (after steeping tea) to take out milk and cake; whereas in activity (a.2), the occupant stops at the fridge

the first time for 6-8(s) to take out food and then re-visits the fridge afterwards for 1-2(s) to get a drink.
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Table 1
Typical durations spent (in seconds) at the landmarks obtained from empirical data.

Fridge Stove Sink Cupb Table

(a.1) 1–2 4–6 1–2 1–2 7–9 1–2 2–4 8–10 8–10 1–2 28–32

(a.2) 6–8 1–2 8–10 15–17 4–6 8–10 6–8 18–20 1–2 3–4 14–16

(a.3) 10–12 1–2 4–6 8–10 2–4 3–5 12–14 12–14 1–2 3–4 19–21

that an occupant may visit some landmarks several times within an activity, and different activities may
occasionally share the same typical durations at the same places.

5.1.2. Training
To ensure an objective result, we employ a leave-one-out cross validation strategy for training and testing.

We sequentially pick out one sequence Y from the dataset D for testing, and use the remainder {D \Y } for
training. For model specification, we let the number of states |Q| = 28, equal to the number of quantized
cells in the kitchen environment (figure 5), and the observation model B is obtained offline [26]. For the
MuHSMM, the PsHSMM, and the IgHSMM, we equate the maximum duration M to the maximum activity
length (∼ 100− 120(s)), otherwise all other parameters are randomly initialized.

Model selection on the CxHSMM variants: When modeling the state duration by a Coxian distribution,
we have to face the problem of choosing the best number of phases. The key is to balance the complexity
of the model and its degree of fitness to the data. For the CxHSMM, we train six different variants by
varying K from 2 to 7 (note that for K = 1, the CxHSMM reduces to a HMM). We measure the model’s
cross-validated performance in terms of classification accuracy and early detection rate (defined in the next
section) on unseen data to select the most suitable K.

5.1.3. Experimental Results
We compare the performance of all models (CxHSMMs, MuHSMM, PsHSMM, IgHSMM, and HMM) in

Table 2 and Figure 8 based on three criteria: classification accuracy, early detection rates (EDR), and running
time. For each sequence y1:T left out in the leave-one-out training selection, the likelihood Pr(y1:t | θi), for i =
1, 2, 3, where θi is the model trained with the set of activity (a.i), is computed at each time t and used to
label the most likely activity. Classification accuracy is the ratio of activities correctly labeled at t = T to
the total activities tested, while early detection rate is the ratio t0/activityLength with t0 is the earliest
time from which the activity label remains accurate.

The result shows that the HMM performs worst with only 68% in average classification accuracy; the
performance of the PsHSMM is almost equally poor (69%). The IgHSMM performs comparably to a 2-phase
CxHSMM with 76% and 78% accuracy respectively. Further analysis, discussed later on, shows evidences of
underfitting in these cases. Starting from K = 3, Coxian-based models begin to increase their performances
and outperform these baseline models quickly. With an additional step of parameter smoothing to avoid
overfitting in the multinomial duration distribution, the MuHSMM achieves the best recognition rate of
95.56% in this experiment. The Coxian comes second at 91.39% when K = 5, however, it was achieved with
a significant speedup (about 10 times faster than the MuHSMM in this case).

Among the Coxian models, performance varies as the number of phases increases. We observe a good
performance when K = 5 in terms of both recognition and early detection rates as shown in Table 2. It
is further observed that most models generally detect activity (a.1) accurately and early, while sometimes
confusing the other two activities. This is consistent with the fact that activities (a.2) and (a.3) share more
common durations as shown in Table 1. To give an idea of how the recognition was performed, Figure 9
plots a specific example of online recognition performed by the 5-phase CxHSMM for a randomly chosen
sequence of activity (a.2).

It is also interesting to note that, on comparison between the HMM and the CxHSMM, by simply adding
one more geometric phase, i.e., extending from HMM to 2-phase CxHSMM, the model can be improved its
recognition significantly (68.02% to 78.61%). By adding a few more geometric phases (e.g., increase K to 5),
we can achieve much better performance (91.39%). The model performance slightly decreases when K = 6
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Table 2
Classification accuracy and early detection rate (EDR) results for the CxHSMM with different number of phases versus other

baseline models. EDR is measured as the percentage of the earliest detected time to the whole sequence length.

Classification Accuracy (%) Early Detection Rate (EDR)

(a.1) (a.2) (a.3) Avg. (a.1) (a.2) (a.3) Avg.

HMM 88.24 62.50 53.33 68.02 9.12 37.28 42.57 29.66

PsHSMM 58.82 75.00 73.33 69.05 31.54 13.89 43.96 29.80

IgHSMM 100 56.25 73.33 76.53 7.99 47.72 31.96 29.22

MuHSMM 100 100 86.67 95.56 8.97 11.77 26.03 15.59

CxHSMM

K = 2 100 62.50 73.34 78.61 7.12 31.28 41.76 26.72

K = 3 100 93.75 73.33 89.03 6.47 11.41 39.93 19.27

K = 4 94.12 75.00 80.00 85.00 8.35 31.39 56.23 31.99

K = 5 100 87.50 86.67 91.39 7.26 20.31 27.56 18.38

K = 6 100 75.00 93.00 89.44 7.70 25.99 34.47 22.72

K = 7 100 87.50 80.00 89.17 7.84 17.72 52.29 25.95

(a) (b)
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Fig. 7. Duration distributions for state “at-table” in activity
(a.3) learned by different types of distribution (bottom: nor-

malized histogram from empirical data).
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and 7, a sign of starting to overfit the training data. Thus, K = 5 is the optimal number of phases selected
for this experiment. Further results on the recognition performance among the activities are provided in
Table A.5 in the appendix.

Regarding time complexity, the CxHSMM, as mentioned earlier, scales linearly with the standard HMM
multiplied by its number of phases K, whereas the MuHSMM and the exponential family duration dis-
tribution HSMM (including PsHSMM and IgHSMM) scale by the maximum duration length M . In this
experiment, K is optimal at 5, whereas M varies from 100 to 120 depending on each activity. Thus, the
Coxian is faster than other baseline models by a theoretical factor of 20 to 24 times. Figure 8 shows our
MATLAB computation time for one EM iteration run on ten sequences randomly chosen from activities
(a.1) to (a.3). The empirical speedup factor goes from 7 times for the first four sequences, which are from
activity (a.1) whose lengths are shortest among the three activity types, to 10 times for the next three
sequences taken from activity (a.2), whose lengths are generally the longest 13 . It is important to note that

13 In our Matlab implementation, the MuHSMM is coded using standard forward-backward inference algorithm where the code
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Fig. 9. Example of online recognition for an unseen sequence of activity (a.2) obtained from the 5-phase CxHSMMs trained on
sets of activities (a.1) (model θ1), activities (a.2) (model θ2), and activities (a.3) (model θ3). As can be seen, at at about 15s,

this activity was correctly recognized by model θ2 onward.

while the CxHSMM computation time does not increase noticeably with the activity length ((a.1) vs. (a.2)),
the MuHSMM runs much slower as it moves from activities (a.1) to (a.2), taking more than 35 minutes per
EM iteration. Therefore, in comparison with the PsHSMM and the IgHSMM, the CxHSMM is better not
only in performance but also in running time; whereas in comparison with the MuHSMM, the CxHSMM
retains a slightly worse performance but at a small fraction of the computational time. We believe that the
computational speedup achieved is a very important factor for semi-Markov models to have their real-world
applications as activity lengths can be arbitrarily long.

To provide some further insights on the performance of the various models, we investigate how these
models have learned the state duration distributions in comparison with the empirical distribution found in
the training data. Figure 7 shows the duration spent at the table in activity (a.3) learned by the PsHSMM the
IgHSMM, the MuHSMM, and the 5-phase CxHSMM. Intuitively from this figure, Poisson and InvGaussian
duration models have slightly underfitted the data. Being weakly multi-modal, the Coxian has learned the
first dominant mode in the data well and smoothed out the less dominant one. The Multinomial was able to
learn both dominant modes in the data and fitted best in this example. However, since we are comparing the
fitted model with the empirical duration distribution in the training data, a good fit here does not translate
to good generalization.

To illustrate this matter further, Figure 10 plots another example where the Multinomial has learned a
rather ‘spiky’ distribution, showing a potential cause of concern for overfitting, whereas the Coxian seems
to have the right fit, being able to pick up the most dominant mode and provide a smoother distribution.
We also note that, in this case, multinomial parameterization would requires over 100 parameters whilst it
is less than 10 for the Coxian. The result for the InvGaussian is also included as an example of underfitting.

To further illustrate the behavior of the Coxian when the number of phases changes, Figure 11 plots the
learned Coxian with K ranges from 2 to 7 with the same setting as in Figure 10. For comparison, a normalized
histogram is also plotted at the bottom of the figure. It can seen that as the number of phases increases, the
mode of the learned Coxian gradually shifts to the right, showing sign of going from underfitting to good
fitting and overfitting. Starting from K = 5, it matches reasonably well with the dominant mode from the
empirical distribution (bottom chart, marked with ∗). As the result has shown earlier, among these Coxians,
the recognition performance is also achieved best at K = 5.

has been optimized, taking advantage of Matlab vectorization for speedup and deterministic counting down of duration variable

between two consecutive time-slices for minimizing memory allocation (cf. section 2.1)
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Fig. 11. (continue from Fig. 10) Learned Coxian with increasing

number of phases from 2 to 7 for “at-sink” in activity (a.3).

5.2. Recognition and Segmentation of Activities in Sequence

In the previous section, we have experimented with flat-structured data and models. In this section, we
move to tackle more complex and hierarchical data aiming to recognize and segment complex ADLs at
multiple levels. Given a morning routine, consisting of sequential, but unlabeled and unsegmented ADLs
(e.g., reading-morning-newspaper, preparing-breakfast, having-breakfast) our objective is to be able to query
what the occupant is doing and when s/he changes activity. We present the results of applying the CxSHSMM
and a cross-validated model selection experiment to pick the best number of phases for the CxSHSMM. The
CxSHSMM’s performance will be compared with a MuSHSMM and a two-layer HHMM as baseline methods.

5.2.1. Data descriptions
We consider a typical morning routine consisting of six high-level activities: (a.1) entering-the-room and

making-breakfast, (a.2) eating-breakfast, (a.3) washing-dishes, (a.4) making-coffee, (a.5) reading-morning-
newspaper and having-coffee, and (a.6) leaving-the-room. The routine generally follows the sequence (a.1)-
(a.2)-(a.3)-(a.4)-(a.5)-(a.6) or (a.1)-(a.2)-(a.4)-(a.5)-(a.3)-(a.6), depending on whether the person washes
the dishes before or after having coffee. The six activities and their typical trajectories are shown 14 in Fig-
ure 12.The shaded regular polygons in the walking path imply that the person does not simply walk past
the cell, but actually spends some time in the region (the darker the polygons, the longer the time). For
example, in the first activity (entering-the-room & making-breakfast), the occupant first walks into the room,
then spends some time taking food from the fridge, as indicated by a dark polygon in cell number 13, and
later spends more time cooking breakfast at the stove, as illustrated by a darker polygon in cell number 5.

The above typical morning routine of approximately 130− 140(s) was recorded several times. The length,
however, is not the same for all activities. Activity (a.5) reading-morning-newspaper & having-coffee was the
longest (about 35(s)), while activity (a.6) leaving-the-room was the shortest (approximately 7(s)). Activities
(a.1) to (a.4) were roughly 28, 26, 16 and 20(s), respectively. In each activity, most of the time was usually
spent at special landmarks such as the fridge, stove, sink, etc. For instance, in activity (a.1), the occupant
spends around 5− 7(s) at the fridge, 10− 15(s) at the stove, and the remaining time, around 10(s), was for
moving between these designated places. A total of 62 unlabeled, unsegmented sequences of cells are returned
from the tracking module [26]. Each consists of six activities with total length of around 135 sample points.
To ensure an objective evaluation, we construct three different data sets (A, B, and C), each consisting of
40 training and 22 testing sequences randomly partitioned from the 62 sequences.

14Note that the environment in Figure 12 is a quantized version of that in Figure 5.
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5.2.2. Training
We train three different kinds of models: various CxSHSMMs (for K = 2, 3, . . . , 7), a MuSHSMM, and a

two-layer HHMM. We set the number of states at the top level equal to the number of activities: |Q|∗ = 6,
and at the bottom level to the number of quantized cells in the kitchen: |Q| = 28. We use the estimated
spatial extent of each activity p to define the set of its children ch(p), as well as the sets of children it is
allowed to start with chS(p), or end with chE(p). This is done manually using the prior knowledge on the
activity and environment. For example, activity (a.1) entering-the-room and making-breakfast (illustrated
in Figure 12) presumably start in the door region consisting of cell 26 and any of its immediate neighbors,
therefore its starting children set is chS(1) = {21, 22, . . . , 27}; activity (a.2) eating-breakfast is supposedly
carried in the stove and dinning table areas, thus its set of children states is ch(2) = {1, 2, . . . , 15, 16};
and activity (a.3) washing-dishes is assumed to end when the occupant leaves the sink area, accordingly its
ending children set is chE(3) = {1, 2, 5, 6}. The atomic activity carried within a cell, e.g., cooking-at-the-stove
in cell 5, is represented by a bottom-level state i ∈ Q. For the MuSHSMM, the maximum duration M is set
to 35, which is the maximum time span of any individual activity (assumed to be known in advance). The
same observation model as in section 5.1 is used. Except for the constraints outlined, all other parameters
of these models are initialized randomly or otherwise stated, uniformly, during training.

Smoothing the multinomial duration: A simple moving-average can roughly smooth out the learned multi-
nomial intendedly to avoid overfitting and improve the classification accuracy on unseen data for baseline
methods. In addition to the learned (unsmoothed) MuSHSMM, we also report the performance of a smoothed
duration version for comparison.

5.2.3. Experimental Results
We compare performances of the trained models (CxSHSMMs with increasing number of phases, a

MuSHSMM, and a two-layer HHMM) in terms of segmentation accuracy, early detection and running time
on unseen and unsegmented sequences from three data sets A , B, and C. We use the learned models for
segmenting and classifying segments of the test sequences into the six high-level activities. The filtering
distributions Pr(zt | y1:t) and the most likely label zt are computed for each time t. The labels zt at the end
of each true segment are used to measure segmentation accuracy.

Table 3 presents the average segmentation and early detection results obtained from the three data sets A,
B, and C. Our first observation is that, for small number of phases (K = 2, 3, 4) the CxSHSMM was having
trouble in distinguishing between first two activities, showing sign of underfitting, but still delivering good
segmentation performance on the remaining set of activities (Table 3(a)). With K = 2, the segmentation
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result was less than 70% accuracy; activity (a.1) could not be recognized when K = 4 and so was activity
(a.2) when K = 3.

To illustrate this situation further, Figure 14 plots a sequence of online recognition results for different
models. It shows that when K = 2 the CxSHSMM has occasionally segmented activity (a.1) earlier than its
true ending time while the 4-phase always does so, leading to the poor performance on this activity for K = 2
and 4. This can be attributed by the fact that the last two states of activity (a.1) (corresponding to cells 9
and 5) are also ‘shared’ in the starting children set chS(2) of activity (a.2). Consequently, confusion arises
between these two activities. For K = 3, our close examination shows that the CxSHSMM has mistakenly
classified the majority of activity (a.2) as activity (a.3). One possible explanation is that, these two activities
share many common children states, in addition to the fact that their starting children sets are identical.

However, starting from K = 5 onwards, the CxSHSMM has successfully resolved this problem and pro-
duced consistent segmentation accuracy across all activities, achieving more than 96% accuracy on average.
The optimal performance is again marked at K = 5 in terms of segmentation accuracy (97.73%) and early
detection rate (7.56%) (Table 3).

The best performance among the baseline methods is the MuSHSMM with smoothing. The segmentation
accuracy is comparable to the Coxian model for the first five activities. However, it performs much poorly
on the last activity, making its average performance approximately 3% lower the optimal performance of
the Coxian. Finally, as expected, the two-layer HHMM, without duration knowledge, has learned a poor
transition model at the high level, resulting a low performance (i.e., it occasionally detecting some activities
such as (a.2) or (a.3) correctly, while generally failing to detect the others).

With respect to the running time, the filtering computations per time slice for K = 5 is 0.73s, improved
by four times per time slice compared with the multinomial (about 3s). The theoretical time saving factor 15

15 In this experiment the Coxian should have been M
K

= 35
5

= 7 times faster, however more coding optimization have been

used to improve the speed of the MuSHSMM.
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Table 3
Activity segmentation accuracy on unseen data with the K-phase CxSHSMMs, unsmoothed MuSHSMM (UnS-mul), smoothed

MuSHSMM (S-mul), and a 2-layer HHMM.

Segmentation accuracy of each activity (%)

(a.1) (a.2) (a.3) (a.4) (a.5) (a.6) Avg.

K = 2 56.06 66.67 80.30 100 93.94 95.45 82.07

K = 3 100 0 100 100 98.48 96.97 82.58

K = 4 0 98.48 100 100 93.94 90.91 80.56

K= 5 100 98.48 100 100 96.97 90.91 97.73

K = 6 100 98.48 100 92.42 100 89.39 96.72

K = 7 100 98.48 100 100 100 87.88 97.73

UnS-mul 98.48 98.48 100 100 95.45 65.15 92.93

S-mul 98.48 98.48 100 100 100 65.15 93.69

HHMM 19.69 100 100 19.69 77.27 68.18 64.14

Early Detection Rate for each activity (%)

(a.1) (a.2) (a.3) (a.4) (a.5) (a.6) Avg.

K = 2 0 0.84 13.44 10.68 14.89 21.39 10.21

K = 3 0 NA 6.97 14.36 4.18 25.93 10.29

K = 4 NA 0 13.95 9.98 1.09 28.66 10.74

K=5 0 0.41 12.29 10.19 1.23 21.22 7.56

K = 6 0 0.46 12.94 8.88 2.68 29.76 9.12

K = 7 0 0.46 10.84 10.41 2.78 31.77 9.38

UnS-mul 0 0.91 11.88 9.86 2.99 36.04 10.28

S-mul 0 0.60 9.77 9.54 2.86 37.77 10.09

(a) (b)

is given as the ratio of the maximum duration length M to the number of phases K.
We provide further insights on the performance of the different models by examining the learned parame-

ters of the models and compare with the corresponding statistics in the training data. We found that while
both the Coxian and the multinomial SHSMMs can capture the patterns in the training data adequately,
the two-layer HHMM has failed to do so (Table 4). In particular, there is no significant difference between
the Coxian and the multinomial. They both have learned reasonable transitions: from activities (a.2) to (a.3)
or (a.4), from activities (a.3) to (a.4) or (a.6) and from activities (a.5) to (a.3) or (a.6). On the contrary,
the HHMM has failed to capture these transitions. As a specific example, Figure 13 plots duration spent at

Table 4

The learned transition matrices.

5-phase CxSHSMM MuSHSMM HHMM

Act. (a.1) (a.2) (a.3) (a.4) (a.5) (a.6) (a.1) (a.2) (a.3) (a.4) (a.5) (a.6) (a.1) (a.2) (a.3) (a.4) (a.5) (a.6)

(a.1) 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

(a.2) 0 0 0.8 0.2 0 0 0 0 0.8 0.2 0 0 0 0.88 0.01 0.01 0.1 0

(a.3) 0 0 0 0.8 0 0.2 0 0 0 0.8 0 0.2 0 0 0.91 0.07 0 0.02

(a.4) 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

(a.5) 0 0 0.228 0 0.006 0.766 0 0 0.27 0 0 0.73 0 0.32 0.19 0.01 0.29 0.19

(a.6) 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

stove in activity (a.1) (whose “true” duration is usually centered at 14(s)) learned by a 5-phase CxSHSMM
and a MuSHSMM. Both models capture the duration reasonably well. The Coxian model tends to lean to
the left as compared to the multinomial model; however, it seems to offer a better fit, being smoother than
the multinomial model. For comparison, we have also smoothed the multinomial duration distribution using
a simple moving-window averaging method.

5.3. Duration Abnormality Detection

Abnormality in the duration of activities, if detected, can provide important clues in alert system. For
example, in the elder care domain, a person staying at a location for a longer duration than usual might
indicate the onset of illness. Therefore, given a daily routine consisting of several activities in sequence, our
aim is to be able to query if the occupant is successfully conducting his/her daily jobs or if can capture the
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normal patterns of durations spent at each location, it can also be used to detect abnormality in new activity
sequences. For evaluation of abnormality detection, we capture 18 abnormal morning routine (section 5.2.1)
sequences, which are also unlabeled and unsegmented. In the abnormal data, the activity trajectories are
kept unchanged with respect to the normal data, but the duration spent at each cell has been altered so that
a person spends too little or too much time at some locations. We attempt to use the SHSMMs, including
the CxSHSMMs and the MuSHSMMs, trained in section 5.2.2 to serve as models for normal data in our
abnormality detection scheme.

5.3.1. The duration abnormality detection scheme
We implement an online abnormality detection scheme as follows. Suppose that at time t, the online

classification algorithm has recognized that p is the winning activity in the period starting from some tp ≤ t.

The decision to classify p as normal or abnormal is based on examining the likelihood ratio Rp(t) =
Pr(ytp:t|θp)

Pr(ytp:t|θ̄p)

where θp is the parameter of the p-initiated semi-Markov sequence (the learned normal model for p), and θ̄p

is the abnormal model for p. The abnormal model θ̄p is the same as θp except for the duration parameter.
For the MuSHSMM, we intend to set the duration parameter D̄p,i of θ̄p to be either uniform or “in-

verted”, where the “inverted” distribution of Mult(µn) is Mult(µ̄n) with µ̄n = max(µ)−µn

M∗max(µ)−1 . For the K

-phase CxSHSMM, the duration parameter D̄p,i is a randomly generated 2-phase Coxian which satisfies
mean(D̄p,i) = mean(Dp,i)− 0.5M , if mean(Dp,i) > 0.5M ; otherwise mean(D̄p,i) = mean(Dp,i) + 0.5M . In
other words, we try to “shift” the Coxian towards the less likely part in the duration domain. The 2-phase
Coxian is chosen to represent the abnormal data, not only because it involves least computation, but it is
known to have a high variance [32] suiting the variable characteristics of abnormality. For comparison, we
also perform abnormality detection with D̄p,i, being a randomly generated K-phase Coxian (K is the num-
ber of phase of Dp,i) whose mean is equal to that of the 2-phase Coxian D̄p,i. These two detection schemes
are then compared against the background scheme, where D̄p,i is a uniform multinomial distribution.

We argue that the abnormal model θ̄p, constructed by only changing the duration model, suffices to
capture abnormalities since our aim is to focus on detecting a more subtle form of abnormality, which is
the abnormality only in the state durations and not in the sequential order. In addition, by automatically
constructing a general abnormal model for each normal activity class, our scheme offers three advantages.
Firstly, it does not require addition of of new abnormal models in response to unseen data. Secondly, it
removes the laborious and practically difficult task of manually constructing abnormal models using prior
knowledge about the data and speculations on possible abnormal scenarios. Thirdly, there is no need to train
abnormal models, which is practically difficult as abnormal data are both diverse and rare. Furthermore, by
deriving an abnormal model θ̄p and taking the likelihood ratios Rp(t), we can avoid the unsettling problem
of having to normalize the likelihood after setting a threshold because of the uneven length in observation
sequences [18]. We can examine the abnormality for every p-initiated semi-Markov sequence independently
instead of considering the whole morning routine of six activities. This is to avoid the residual effects of
previous activities in the likelihood, which is especially important in the case where only some activities in
the routine are abnormal. The ability to point out when the behavior has become abnormal, or returned to
normal, is equally important in issuing timely alerts to caregivers. To illustrate the capability of our model
in solving this nontrivial problem, some of the 18 abnormal test sequences have only one or two activities
containing abnormal durations.

5.3.2. Online Segmentation of Abnormal Activities
We aim to construct different abnormal models for different p-initiated semi-Markov chains. This requires

that our detection scheme must first be able to segment the abnormal sequences into different activities. Thus,
our model is expected to be robust to temporal disturbances so as to perform adequate online segmentation
at the top level, and yet be sensitive enough to detect duration abnormality at the bottom level. In particular,
given any morning routine, our objective is to determine if any or all of its comprised activities are abnormal.
Our approach involves two steps. First, we use the trained models (CxSHSMMs and MuSHSMM) to perform
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Table 5
Activity segmentation on abnormal data with the K-phase CxSHSMM, experimented with unsmoothed (UnS-mul), and

smoothed (S-mul) MuSHSMMs.

Segmentation accuracy of each activity (%)

(a.1) (a.2) (a.3) (a.4) (a.5) (a.6) Avg.

K = 2 75.93 62.96 77.78 100 100 87.04 83.95

K = 3 100 0 94.44 100 100 92.59 81.17

K = 4 29.63 94.44 87.04 100 100 87.04 83.02

K = 5 100 98.15 83.33 100 100 87.04 94.75

K = 6 100 100 83.33 100 100 85.19 94.75

K = 7 100 100 83.33 100 100 87.04 95.06

UnS-mul 100 96.30 77.78 100 100 66.67 90.12

S-mul 100 96.30 79.63 100 100 66.67 90.43

(a)

Early Detection Rate for each activity (%)

(a.1) (a.2) (a.3) (a.4) (a.5) (a.6) Avg.

K = 2 0 30.84 28.84 3.97 14.64 29.64 17.99

K = 3 0 NA 23.04 10.55 6.29 34.15 14.81

K = 4 0 15.98 23.54 6.67 3.46 32.35 13.67

K = 5 0 17.96 19.83 6.74 3.42 31.45 13.23

K = 6 0 14.69 20.31 5.17 2.68 34.49 12.89

K = 7 0 14.18 17.22 7.22 2.99 37.67 13.21

UnS-mul 0 13.18 27.44 8.10 5.91 46.41 16.84

S-mul 0 12.50 22.18 7.10 4.31 45.68 15.30

(b)

online classification at the top level. As soon as an activity p is identified, we move to the second step, which
is to apply our detection scheme that involves only the trained model for the p-initiated semi-Markov chain
θp and its inverted counterpart θ̄p, to determine if p is abnormal.

Table 5 shows the average segmentation results obtained when testing against the set of 18 abnormal
sequences on the models (CxSHSMMs and MuSHSMM) which were trained with three normal data sets
A, B, and C. Similar to the case of normal data (cf. Table 3), the CxSHSMMs with a small number of
phases (K ≤ 4) has failed to segment the activities adequately. The MuSHSMM has segmented reasonably
well for set of activities {(a.1), (a.2), (a.4), (a.5)}, but failed on activity (a.6) one third of the time, and
occasionally failed on activity (a.3), resulting in a performance of 90.4%. With K ≥ 5 the CxSHSMMs
performs well across all six activities with more than 94% in accuracy, demonstrating its feasibility for
abnormality detection. Finally, we note that even though the CxSHSMMs perform comparably for K = 5, 6
and 7, when K = 5, it seems to offer a good trade-off between accuracy and EDR (upper bound = 31% in
activity (a.6) - Table 5(b)).

5.3.3. Duration abnormality detection with CxSHSMM
Our objective is to find the most effective abnormality detection scheme for the CxSHSMMs empirically.

The detection effectiveness is measured based on the true positive and the false positive rates. The true
positive rate (TP) is the ratio of the abnormal activities, which are correctly identified as abnormal, to the
total abnormal activities tested; while the false positive rate (FP) is the percentage of normal activities,
which are incorrectly recognized as abnormal, to the total normal activities tested.

Figure 15 presents the Receiver Operating Characteristic (ROC) curves for the 5-phase CxSHSMM (K > 5
gives similar results). The ROC is obtained by varying the threshold for the likelihood ratio Rp(t) with t
being set to the true ending time of each activity. The background uniform multinomial D̄p,i seems to be
the least affective, while the 2-phase Coxian D̄p,i produces the considerably best ROC curve. In the region
of false alarm not greater than 10% (i.e. FP ≤ 10%), the 2−phase Coxian D̄p,i scores best with TP= 84% in
comparison to 82%, and 78% from the 5−phase Coxian D̄p,i and the uniform multinomial D̄p,i, respectively.
Given that abnormal data is not present in the training sets, the abnormality detection rate of 84.09% is a
promising result.

5.3.4. SHSMM vs. HSMM
We also compare the use of hierarchical SHSMMs versus a flat HSMM for abnormality detection task.

Since the HSMM cannot segment the sequence into the six high-level activities, it learns only a normal
duration model at each cell location for the entire morning routine. This makes the HSMM less flexible and
unable to isolate the abnormal segments in a sequence. Figure 16 shows an example of a sequence comprising
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flat HSMM and its “inverted” duration counter model.

activities in order (a.1) to (a.6), in which the first two activities (a.1) and (a.2) are abnormal, while the rest
are normal. While the 5-phase CxSHSMM has successfully dealt with this scenario by correctly detecting
only the first two activities are abnormal, the HSMM continues to label the sequence as abnormal until the
sequence reaches its end. We note that the ability of the SHSMM to recognize early that activities have
returned to normal is greatly important in the context of monitoring ADLs in a smart home (e.g., for the
aged).

5.4. Improvement in Activity Recognition and Segmentation with Partially Labelled Data

In our previous experiments, we have been mindful during data capturing process so that missing tra-
jectories are minimized. In this section, we wish to evaluate our models on a more unconstrained setting,
aiming to progress towards to a more realistic setting. In this experiment, the occupant is allowed to freely
move or sit wherever she or he prefers, including sitting occluded behind the table, staying still at a fixed
location for longer period on the sofa, and occasionally moving fast (e.g., running) between two landmarks,
or even moving out of the camera view. This setting has created a significant portion of the tracks being
lost (more than 35%), and affecting every sequence recorded in the dataset. In addition to this capturing
flexibility, our high-level activities share considerable overlappings in their trajectories (totally overlap in
some cases), and more complicated than those considered previously in section 5.2

Our goals are, again, remaining the same as in section 5.2: classifying and segmenting ADLs in the activity
sequence. In addition, under a partially supervised learning setting, a fraction of data (randomly selected)
is labelled during parameter estimation phase to improve the performance. Our idea is to understand the
effect of this additional labelling step in helping our models to overcome the missing trajectories. On the
technical note, it can be shown that when these labels are supplied, the parameter estimation procedure
presented earlier is essentially kept the same, except that the consistency over the observation is ensured by
multiplying a set of identity functions. For example, if we observe the stop state zt = k in the training data,
then an identity function, Ik

zt
(i.e., return 1 if zt = k and 0 otherwise) is multiplied whenever the term zt is

involved during the calculation.

5.4.1. Data descriptions
We capture an evening routine consisting of seven high-level activities: (a.1): walking-into-kitchen-&-

taking-food-out-for-cooking , (a.2): cooking-dinner, (a.3): eating-dinner, (a.4): relaxing-on-sofa-&-watching-
tv, (a.5): cleaning-stove, (a.6): sweeping-floor, and (a.7): emptying-bin. The occupant does not strictly follow
the sequential order from activity (a.1) to (a.7), but occasionally makes a deviation such as choosing to
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Fig. 17. Illustrations for path, starting, and ending regions for activity ‘cleaning-stove’ (a.5) and ‘sweeping-floor’ (a.6).

clean the stove (a.5) before/after watching television (a.4). The segmentation tasks at high-level activities
is challenging, partially because the time slots are not distributed fairly among activities. For instance,
emptying the bin takes noticeably less time than sweeping the floor or watching television, and thus is
possibly overlooked by the model. The total evening routine is approximately 3 minutes, and the data is
sampled every half of second. A total of 63 sequences are captured, in which 39 of them (accounting for
about 60%) are used for training, and the remaining 24 sequences for testing. Every sequence including the
unseen testing sequences has a portion of missing observations.

5.4.2. Training
We employ the CxSHSMM to learn data with either totally unlabelled or partially labelled (from 1% to

16% of the data), and then perform activity classification and segmentation on unseen and unlabelled data.
Again we run the tests on different K−phase CxSHSMMs (for K ∈ {2, 3, . . . , 10}) for model selection on
the number of phases. Similar to section 5.2, we set the number of parent states at the top level to the
number of high-level activities Q∗ = 7, and the number of children states at bottom level to the number
of quantized cells in the kitchen floor Q = 28. The children set ch(p), the starting children set chS(p),
and the ending children set chE(p), for p ∈ Q∗, are then defined by our prior knowledge of the activities.
There are significant overlaps between these sets for different p. For instance, Figure 17 shows the estimated
spatial extents of activities (a.5): cleaning-stove and (a.6): sweeping-floor. We observe that ch(5) ⊂ ch(6)
as cleaning-stove concentrates only around the stove area while sweeping-floor is done on the whole floor.
There are also major overlappings between chS(5) and chS(6), and between chE(5)and chE(6) as sweeping
starts and ends around the stove area.

5.4.3. Experimental Results
Similar to section 5.2, we compare the performance of different K-phase CxSHSMMs and the standard

HHMM on segmentation accuracy, and early detection. Training the MuSHSMM for this experiment would
take too much time: on a workstation configured with 3.2GHz CPU, 2GB memory the 5-phase Coxian took
approximately 20mins per one EM iteration on one single training sequence, while the MuSHSMM took
approximately 19hours (57 times slower); therefore its results are not reported. We train the CxSHSMMs
and HHMM on unlabelled data, and partially labelled (with 1%, 4%, 8%, and 16%) and test them on unseen,
unsegmented, and unlabelled data containing approximately 36% missing trajectories.

The results show that, even though the 3−phase CxSHSMM significantly perform better than the HHMM
for unlabelled data, its performance was still very low and unsatisfactory (49.4%). However, when supplied
with a small fraction of training labels (e.g., with just 1%), the 3−phase CxSHSMM dramatically increases
its performance to 73% as compared with a modest rise of only 2% (from 29% to 31%) for the case of
the HHMM (further results are shown in Table A.6 in the appendix). Figure 18(a) further shows that the
HHMM performance remains around 60% even when supplied with up to 16% of labelled data. In contrast,
with 4% labels and above, as we add in more geometric phases into the state durations (K = 2, 3, . . .) the
CxSHSMMs continue to improve their performance, stabilizing around 90% for K ≥ 4.
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In fact, with as little as 1% labels, our resuls show that the CxSHSMMs (e.g, with K = 4, 5, 6, 9, 10)
perform reasonably well, achieving around 80% accuracy on average. Nevertheless, they have occasionally
failed on some activities as illustrated by their worst performance in Figure 18(b). For example, for K = 4,
despite of gaining 80% overall, the CxSHSMM has failed miserably on the activity (a.5) more than 50% of
the time.

We also observe from Figure 18(a) that, with K > 4, there is no noticeable performance difference for
the CxSHSMM when the data is labelled with 4%, 8% or 16% with an exception in segmentation accuracy
when trained with 16% labelled data (Figure 18(b)). Similar conclusions are observed for comparison on
early detection rate (EDR) as shown in Figure 18(c). On average, for K ≥ 4, the CxSHSMMs can correctly
identify activities around 15% to 20% of their executable time.

Finally, we again observe a consistent remark through out all of our experiments thusfar: the Coxian
duration model generally requires a small number of phases to achieve its optimal performances. For this
particular experiment setting, it requires a small increase in computation cost as compared with the two-layer
HHMM (multiplied by factor equal to the optimal K = 4), but has dramatically increased the performance
over all. The incorporation of both duration and hierarchical properties in our CxSHSMM model leads to
reasonable results even on complicated and overlapping ADLs.

6. Conclusion

We have addressed the problem of learning and recognizing ADLs in smart homes with (hierarchical)
hidden semi-Markov models. Our first main contribution is the innovative use of the Coxian distribution
to efficiently model the duration information, resulting in a novel form of stochastic model, the CxHSMM,
which has three significant advantages over existing models: its computational efficiency, low dimensionality
of parameter space, and the existence of closed-form parameter estimation. We have then extensively applied
the CxHSMM in a real-world scenario to learn and recognize a set of activities of the same category and
compare its performance with various rival models. The results have shown that the CxHSMM is consistently
superior to the HMM, the PsHSMM and the IgHSMM. In addition, it achieves a competitive performance
close to that of the MuHSMM, whilst gaining a substantial improvement in computation time.

Our second main contribution is to combine hierarchical and duration information via a novel stochas-
tic model, the CxSHSMM, which again uses the Coxian as the distribution for duration modeling. When
applying this model to the ADLs domain, the model can learn what an occupant normally does from un-
segmented training data, and then performs online activity classification and segmentation. The model is
further evaluated in a difficult, noisy and unreliable tracking setting. In addition, we have also formulated
abnormality detection schemes based on the trained models. We have then applied the CxSHSMM to a
set of complex activities and compare its performance to various counterparts including the MuSHSMM,
the two-layer HHMM (without duration knowledge), and the HSMM (without hierarchical knowledge). The
improvements in both recognition rate and abnormality detection in our experiments confirm our belief that
both duration and hierarchy information are crucial in the accurate modeling of ADLs; they further show
that the Coxian parameterization is more robust as compared to the multinomial by having a significantly
fewer number of free parameters, thus delivering more stable performances across activities. Finally, using
the Coxian requires the specification of the number of phases K. To thoroughly complete our investigation,
we have also experimented on a model selection setting using cross-validation. In sets of experiments with
both the CxHSMM and the CxSHSMM, our results have empirically shown that high and comparable accu-
racy can be achieved with a relatively low number of phases (K = 5), thus making the Coxian an attractive
model for the domain of ADLs as well as a potential model for other applications.
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Fig. 18. Average Segmentation and Early Detection Performance obtained from the HHMM (K = 1), and the CxSHSMMs for
K = 2, . . . , 10 trained with 1%, 4%, 8%, and 16% labelled data.

Appendix A. Summary of parameter mappings and ML estimation solutions

The inference and learning in both the CxHSMM and the CxSHSMM are formulated by viewing the
models as DBN networks. Tables A.2 and A.3 list the formal definitions of the models’ parameters in DBN
framework; Table A.4 presents the set of their ML (maximum likelihood) estimation solutions; Table A.1
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presents a list of acronyms used in the paper; finally Table A.5 and A.6 provide further results on the
recognition confusion among the activities in section 5.1.3 and 5.4.

Table A.1

Summary of acronyms used in this paper.

ADLs Activities of daily living.

HMM Hidden Markov Model.

HSMM Hidden semi-Markov Model.

CxHSMM Coxian duration Hidden semi-Markov Model.

PsHSMM Poisson duration Hidden semi-Markov Model.

SHSMM Switching Hidden semi-Markov Model.

CxSHSMM Coxian duration Switching Hidden semi-Markov Model.

MuSHSMM Multinomial duration Switching Hidden semi-Markov Model.

MuHSMM Multinomial duration Hidden semi-Markov Model.

IgHSMM Inverse Gaussian duration Hidden semi-Markov Model.

Table A.2
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Table A.5

Further classification confusion among the activities for different models presented in Section 5.1.3.

K = 2 (avg.78.61%) K = 3 (avg.89.03%) K = 4 (avg.85.00%)

(a.1) (a.2) (a.3) (a.1) (a.2) (a.3) (a.1) (a.2) (a.3)

(a.1) 100 0 0 100 0 0 94.12 5.88 0

(a.2) 0 62.50 37.50 0 93.75 6.25 0 75.00 25.00

(a.3) 13.33 13.33 73.34 0 26.67 73.33 0 20.00 80.00

K = 5 (avg.91.39%) K = 6 (avg.89.44%) K = 7 (avg.89.17%)

(a.1) (a.2) (a.3) (a.1) (a.2) (a.3) (a.1) (a.2) (a.3)
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(a) Classification results for different K-phase CxHSMMs.
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Table A.6
Confusion matrices showing segmentation accuracy across the 7 activities for the HHMM and 3-phase CxSHSMM presented in

section 5.4.

HHMM (Avg. 29.17%) 3−phase CxSHSMM(Avg. 49.40%)

25.0 0 0 0 75.0 0 0

0 12.5 0 87.5 0 0 0

0 0 4.2 95.8 0 0 0

0 0 0 100 0 0 0

0 12.5 0 87.5 0 0 0

0 0 0 100 0 0 0

0 0 0 37.5 0 0 62.5
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0 0 0 100 0 0 0
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0 0 0 41.2 0 0 58.3


Trained with 1% labelled data

HHMM (Avg. 31.55%) 3−phase CxSHSMM(Avg. 73.81%)

25.0 0 0 0 75.0 0 0

0 37.5 0 62.5 0 0 0

0 0 29.2 70.8 0 0 0

0 0 0 100 0 0 0

0 16.7 4.2 79.2 0 0 0

0 0 0 100 0 0 0

4.2 0 0 29.2 0 37.5 29.2





95.8 4.1667 0 0 0 0 0

0 100 0 0 0 0 0

0 0 45.8 54.2 0 0 0

0 0 0 95.8 0 4.2 0

0 8.3 58.3 20.8 12.5 0 0

0 0 0 29.2 0 70.8 0

0 0 0 0 0 4.2 95.8
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