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 Abstract. 

This study was conducted to determine the rate of P-glycoprotein (P-gp) mediated efflux of 

digoxin analogues and metabolites, and to assess the effects of macrolide antibiotics on this 

efflux. Bidirectional transport studies were conducted using our Caco-2 sub clone with high 

P-gp expression (CLEFF9). HPLC methods were employed to measure drug transport. All 

digoxin metabolites were P-gp substrates, although digoxin had the greatest efflux ratio. 

Erythromycin had no effect on the transport of digoxin, maintaining a Basolateral to apical 

efflux ratio of 14.8, although it did reduce the efflux ratio of dihydrodigoxin and digoxigenin 

by 34% and 43%, respectively. Azithromycin also had little effect on the transport of digoxin 

or any of its metabolites. In contrast, clarithromycin and roxithromycin almost eliminated 

basolateral targeted efflux. Using paclitaxel as a known P-gp substrate, erythromycin 

demonstrated only partial P-gp inhibitory capacity maintaining an efflux ratio over 100. In 

contrast, clarithromycin and roxithromycin were 10 fold greater P-gp inhibitors. 

Clarithromycin and roxithromycin are likely to exhibit drug interactions with digoxin via 

inhibition of efflux mechanisms. Azithromycin appears to have little influence on P-gp 

mediated digoxin absorption or excretion and would be the safest macrolide to use 

concurrently with oral digoxin. 
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Introduction. 

Digoxin is one of the most commonly prescribed drugs for the management of atrial 

fibrillation and chronic congestive cardiac failure. Likewise, macrolide antibiotics 

(azithromycin, clarithromycin, erythromycin and roxithromycin) are commonly prescribed 

antibiotics used by tens of millions of patients every year. The high level of use of these 

agents means the chance of co-prescription is also high, and on the basis of recent case reports 

so is the potential for serious digoxin toxicity. 

 

Digoxin improves the quality of life of patients with cardiac failure, however digoxin toxicity 

remains a common cause of hospital admissions (1-3).
 
Abad-Santos and others reported that 

digitalis toxicity accounted for 3% of the mild adverse drug reactions in their hospital’s 

emergency ward, 5% of moderate ones and 4% of serious ones, making it the second most 

common cause of drug-related hospital admissions (3). Due to digoxin’s narrow therapeutic 

index, toxicity is common and often life-threatening (4). Hyperkalaemia, a hallmark of acute 

intoxication due to paralysis of the sodium-potassium ATPase pump, is often absent in 

chronic intoxication. In such cases hypokalaemia is more likely to occur due to chronic 

blockade of this ATPase in the nephrons, allowing renal excretion of excess extracellular 

potassium, in addition to the frequent concomitant use of potassium wasting diuretics (5). 

 

Following intravenous administration, 50-70% of digoxin is excreted unchanged in the urine, 

thus a decrease in renal function predisposes to digitalis toxicity (6). Therapeutic levels are 

considered to range between 0.8-2.0 g/L, although a lower range of 0.5-0.8 g/L has been 

proposed for patients with heart failure (7), whilst levels greater than 3.0 g/L are considered 

toxic. Several factors are reported to modify the sensitivity of the myocardium to digoxin, 
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which can enhance digitalis toxicity such as electrolyte imbalances, decreased lean body mass 

and co-administration of quinidine, amiodarone, verapamil, erythromycin and diuretics. All 

these factors may interact and their inter-relationships are likely to determine the presence and 

extent of digitalis toxicity (3,5).
 

 

 

The bioavailability of oral digoxin varies between 50% and 90% (8). It is influenced by drug 

formulation and gastrointestinal disorders such as celiac disease and radiation enteritis (9). 

Further, it is known that 10-15% of the population harbour the organism Eubacterium lentum 

within their intestinal tract (10,11). This is capable of degrading digoxin to dihydrodigoxin 

and its corresponding aglycone, dihydrodigoxigenin (12). These two metabolites, which are 

relatively inactive, are referred to as digoxin reduction products (DRPs). This 

biotransformation of digoxin significantly reduces the bioavailability of the drug in those 

individuals colonized with E. lentum. Lindenbaum and colleagues found that erythromycin or 

tetracycline given to three volunteers who produced large amounts of DRPs resulted in the 

disappearance of these from the stool and urine (13). This was accompanied by an increase in 

serum digoxin concentrations. 

 

There have been a number of clinical cases of erythromycin, clarithromycin and 

roxithromycin related digoxin toxicity noted in the literature (5,10,11,14). In all cases 

cessation of digoxin and the macrolide resulted in a resolution of digoxin toxicity and a fall in 

digoxin levels. Reintroduction of digoxin in the absence of the macrolide did not result in 

further toxicity. Whilst most authors support inhibition of gut flora as the mechanism of this 

interaction, Wakasugi and colleagues from Japan suggested that clarithromycin’s ability to 

inhibit the P-glycoprotein (P-gp) mediated tubular excretion of digoxin was the cause (15). 
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It is now known that digoxin renal tubular secretion does not involve the organic anion or 

cation system, nor does it involve its pharmacological receptor, membrane sodium-potassium 

ATPase (16). Rather, digoxin uses the apical membrane P-gp as its transporter (4). Toxic 

interactions between digoxin and quinidine, verapamil, amiodarone, cyclosporin, 

propafenone, spironolactone and itraconazole are all thought to originate from P-gp 

interactions (4). 

 

Increasing use of macrolide antibiotics will result in greater exposure to digoxin-macrolide 

interactions. Given the seriousness of digoxin toxicity and the fact that it may arise even when 

digoxin concentrations are within the therapeutic range (17-20), it is important to quantify the 

clinical significance of these interactions and develop predictors of those patients who are at 

risk. It is also important to fully understand the mechanism of the interaction. This study was 

therefore undertaken to examine the role of P-gp mediated efflux on digoxin metabolites, as 

this has not been explored before, and to determine whether macrolide interactions with 

digoxin also extend to the metabolites generated in the gastrointestinal tract. 
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Materials and Methods. 

Materials. 

Digoxin , digitoxin  and digoxigenin were all supplied from Fluka Biochemicals, while 

dihydrodigoxin and digoxigenin bis-digitoxoside were kindly donated by GlaxoSmithKline 

Australia Pty Ltd (Boronia, Vic, Australia). Cell culture reagents: Phosphate buffered saline 

(PBS), HBSS, HEPES and high glucose Dulbecco’s Modified Eagle Medium (DMEM) were 

from Gibco BRL (Melbourne, Australia). Penicillin G, streptomycin and non essential amino 

acids were from Trace Biosciences (Castle Hill, NSW, Australia), while the foetal calf serum 

(FCS) was obtained from the Australian Commonwealth Serum Laboratories (Parkville, Vic, 

Australia).  

Erythromycin, azithromycin and roxithromycin were purchased from Sigma-Aldrich (Castle 

Hill, NSW, Australia). Clarithromycin was extracted from Klacid® tablets from Abbott 

Australasia (Kurnell, NSW, Australia), containing 250 mg clarithromycin, using acetone and 

nitrogen evaporation. 

 

Cell culture. 

Caco-2 sub clone cells, highly expressing P-gp, were seeded onto Millicell polycarbonate 0.6 

cm
2
 filter inserts in 24 well plates at 65,000 cells/cm

2
, as described previously (21). Cells 

were grown in ‘growth medium’ (high glucose DMEM with 25 mM Hepes (pH 7.4), 2 mM 

glutamine, 1 mM non-essential amino acids, 100 U/ml penicillin-streptomycin and 10% FCS) 

in a 37ºC incubator with 5% CO2. Cells were incubated for 21-25 days to allow full 

maturation of the monolayer of cells. The TEER was measured both before and immediately 

after the study using an EVOM meter and the ENDOHM 12 chamber (World Precision 

Instruments, Sarasota, FL, USA) with readings between 400-800 .cm
2
 for all cells in this 
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study. Resistance readings at the end of each experiment were not significantly different from 

initial values. 

The studies were conducted using ‘assay medium’ consisting of Hanks balanced salt solution 

(HBSS) supplemented with both glucose (Ajax chemicals, NSW, Australia) and HEPES 

(Gibco BRL; Melbourne, Australia) to give final concentrations of 25 and 10 mM 

respectively. The pH was adjusted to 7.4 using 1M NaOH. For pH 6.0 studies, 10 mM Bis-

Tris (USB, Cleveland, Ohio, USA) was used instead of HEPES and the pH adjusted with 1 M 

HCl. 

Cells were incubated in pre-warmed assay medium with or without an efflux inhibitor for 30 

min at the correct pH, and then rinsed in the same medium. TEER was measured and assay 

medium +/- inhibitors were placed in the receiver chambers. Paclitaxel, digoxin and related 

drugs at either 10 or 20 M were added to the donor chamber of each well.was used as a 

known P-gp substrate. The apical (Ap) and basolateral (Bas) chambers received 0.3 and 0.6 

mL of medium respectively. Sample was removed from the receiver chamber at various times 

over a 3 hour period. Constant volumes were maintained by adding pre-warmed medium to 

the receiver chambers in order to maintain an equilibrium pressure differential between the 

volumes in the donor and receiver chambers.  

 

P-glycoprotein and other transport inhibition  

In studies where inhibition of active efflux proteins were performed in conjunction with 

known P-gp substrates or inhibitors, cells were pre-incubated in HBSS containing the 

inhibitors on both sides of the cells for 30 min before initiation of the study. The inhibitors 

included the following P-gp inhibitors, 4 M PSC-833 or 4 M GF120918, as used 

previously (21). The general MRP inhibitor, probenecid (at 500 M) was also used. 
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Protein determinations 

Protein concentrations were determined using a micro-Lowry method adapted for use with 

multiwell plates on a TECAN Sunrise 96 well plate spectrophotometer with a 750 nm filter, 

using Magellan 3 software for Windows 2000 professional. 

 

HPLC analysis 

HPLC methods were used to determine the concentrations of digoxin, digitoxin, digoxigenin 

and digoxigenin bis-digitoxoside: The mobile phase consisted of acetonitrile [EM Science, 

Gibbstown, NJ, USA] and water (31:69 v/v – for digoxin, 47:53 v/v for digitoxin, 25:75 v/v 

for digoxigenin and 27:73 v/v for digoxigenin bis-digitoxoside). The HPLC system consisted 

of an Agilent 1100 series system run though the Agilent PC package ‘ChemStation’ for 

Windows 2000. The quaternary pump ran at 1.2 mL/min and a Perkin Elmer Series 200 

autosampler injected 60 L of sample through a Zorbax Stable bonded (SB) C18 column, 5m 

pores, 15 cm x 4.6 mm I.D. with mated guard column [Agilent, NSW, Australia].  The 

effluent was detected on an Agilent 1100 variable wavelength UV detector. Digoxin, 

digitoxin, digoxigenin and digoxigenin bis-digitoxoside were all measured at 215 nm, with 

typical retention times of 4.0, 4.4, 3.7 and 5.4 minutes. Limits of detection, using 60 L 

injections into the column were 50 nM , 100 nM, 50 nM and 70 nM for digoxin, digitoxin, 

digoxigenin and digoxigenin bis-digitoxoside respectively.  

 

Alphascreen dihydrodigoxin detection 

Dihydrodogoxin, with a reduced lactone ring, exhibited negligible chromatographic qualities. 

Instead, it was detected via the patented Alphascreen technology system by Perkin-Elmer 

(Melbourne, Vic, Australia). A digoxin detection kit was purchased, which we showed to 

have adequate cross reactivity to Dihydrodigoxin, and to be quantitative for our requirements 
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(Figure 1). We used anti-digoxin acceptor beads with biotinylated–digoxin binding to these 

acceptor beads, and strepavidin donor beads, that would bind to the biotin residues protruding 

from the conjugated digoxin, now bound to the acceptor beads. All of this, including the 

buffer solutions was included in the digoxin detection kits. 

 

The nature of bead-binding meant that instead of directly detecting the dihydrodigoxin, this 

was a competitive inhibition study that resulted in reduced fluorescence the greater the 

interference from dihydrodigoxin in the solution, that prevented biotinylated digoxin binding 

to the acceptor beads. Biotinylated digoxin was diluted in AlphaScreen buffer from its stock 

concentration to a working concentration of 0.45 nM. Acceptor and donor beads were both 

diluted to 100 g/mL each. 15 L volumes of all test samples in duplicate were added to 384 

well white walled Clear flat bottomed plates (Greiner Bio-one, Interpath services, Perth). 5 

uL of acceptor beads were then added and incubated at room temperature for 30 min in the 

dark. 5 uL of donor beads were subsequently added and the reaction allowed to proceed for a 

further 60 min before reading the individual wells in an En-Vision MultiPlate reader (Perkin 

Elmer Life Sciences, Melbourne, Vic).  This approach to detect dihydrodigoxin is novel, and 

has not been used previously in the literature. 

 

Drug transport through cell monolayers was calculated both as a simple amount passing 

the monolayer per min, which would vary depending on the concentration used in the donor 

compartment, and as an apparent permeability co-efficient as calculated in our laboratory 

previously (22). Briefly, this calculation allows for a modification to the original Artursson 

equation (23), where the concentration in the donor compartment (Co) is re-calculated after 

every 30 min time point to compensate for that already present in the receiver chamber to 

ensure a greater accuracy in calculating the rate of movement into the opposing chamber (24). 
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Results in this study are presented as the mean ± SEM of between 3 to 5 individual 

studies, standardised on individual protein concentrations. Significant differences between 

values were examined using Student’s two-tailed unpaired t-test or one way ANOVA with 

Dunnett’s post hoc analysis. Results were considered significant if P< 0.05. 

 

RESULTS 

Basolateral to apical transport was 15 fold greater than transport in the apical to basolateral 

directions for digoxin using 20 M drug concentrations (Figure 2a; Table 1). As both PSC-

833 and GF120918 were able to neutralise the basolateral to apical flow of drug, this 

indicated P-gp as the likely cause of the efflux. Although Both PSC-833 and GF120918 can 

inhibit other ion channels and transporters in addition to P-gp, they are less potent inhibitors 

of other transporters (especially PSC-833) (25,26) and the only commonality between both 

PSC-833 and GF120918 is P-gp inhibition. Thus, when similar inhibition occurs through the 

use of two separate P-gp inhibitors, the probability of P-gp being involved is very high.  

The metabolites of digoxin also had significant P-gp mediated efflux. Digoxin had the 

greatest efflux potential of the glycosides tested, however, removal of one monosaccharide 

unit to create digoxigenin bis-digitoxiside did not have a dramatic effect on the P-gp affinity, 

with the efflux ratio dropping only 10%, from 15.2 to 13.7. However, the apparent 

permeability rates (Papp) dropped from 3.1 to 0.9 x 10
-6

 cm/sec, which equated to a probable 

drop in absorption from 50% to 13%, based on comparison with drugs of known human 

absorption profiles (27) (Figure 3). Removal of all sugar moieties to generate digoxigenin, 

increases diffusion close to the levels of parent digoxin, yet affinity for P-gp was reduced, 

with only a 3.5 fold efflux ratio, which implies inherently better absorption of digoxigenin in 
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vivo. These metabolites occur through hydrolysis in the stomach, and are common (28). 

Dihydrodigoxin, created through bacterial metabolism in the gastro-intestinal tract (28), has 

the highest Papp of the metabolites tested, although active efflux was a significant factor in 

reducing this high Papp from allowing dihydrodigoxin to cross the cells (Table 2). 

 

Digitoxin was also shown to be a P-gp substrate in this system, although basolateral to apical 

transport was only 4 fold higher than apical to basolateral transport using 20 M digitoxin 

(Figure 2b: Table 2). The apparent permeability results for digitoxin were much higher than 

digoxin (24x10
-6

 cm/sec compared to 3 x 10
-6

 cm/sec) (Tables 1 and 2). From previous studies 

in our laboratory on passive permeability (22), we can estimate that this represents no more 

than 50% absorption for digoxin, while the higher value for digitoxin shows 100% absorption 

is likely for this glycoside (Figure 3). 

Dihydrodixogen had the greatest basolateral to apical efflux at almost 61 x 10
-6

 cm/sec (Table 

2) with digoxigenin bis-digitoxiside a distant second with 15 x 10
-6

 cm/sec (Table 1). When 

examined as the net amount of drug transported in the basolateral to apical direction, after 

removal of the amount of drug transported in the apical to basolateral direction, as shown in 

figure 4, this reinforced the notion that digoxigenin has more physical drug effluxed in this in 

vitro setting compared with the other metabolites or parent digoxin drug with a net transport 

of over 35 ng/cm
2
/min (Figure 4). When compared to digoxigenin, with only 1.4 ng/cm

2
/min 

net efflux, then irrespective of its 3.5 fold higher efflux compared to its apical to basolateral 

transport direction, there is only a small amount of drug that can be affected by blocking P-gp. 

However, if dihydrodigoxin is created in the gastrointestinal tract, then co-administration with 

a P-gp inhibitor would allow significantly greater dihydrodigoxin to enter the body than other 

metabolites, or parent digoxin (Figure 4). 
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Using 100-200 M macrolides on both sides of our Caco-2 cell monolayers, we showed 

erythromycin to have no effect on the transport of digoxin, maintaining an efflux ratio of 15 

(Table 1). However, erythromycin was able to reduce the net basolateral direction transport of 

dihydrodigoxin and digoxigenin by 34% and 43%, respectively, and reduced digitoxin efflux 

by over 40% (Figure 5). Azithromycin was also able to reduce efflux for digitoxin, but unlike 

erythromycin, had a very limited ability to decrease the net basolateral to apical directed 

transport of digoxin or any of its metabolites, making it the weakest of the inhibitors studied 

here (Table 1, 2: Figure 5). y In contrast, both clarithromycin and roxithromycin were potent 

P-gp inhibitors able to increase apical to basolateral transport of digoxin from 0.9 ± 0.1 x 10
-6

 

cm/sec to 3.3 ± 0.3 x 10
-6

 cm/sec (Table 1), while also reducing basolateral to apical transport 

from 13.6 ± 0.8 x 10
-6

 cm/sec to 7.5 ± 0.4 x 10
-6

 cm/sec in the case of clarithromycin, and 4.4 

± 0.2 x10
-6

 cm/sec in the case of roxithromycin. This resulted in clarithromycin and 

roxithromycin reducing the efflux ratio for digoxin to 2.3 and 1.3 respectively. Using 

paclitaxel as our positive P-gp substrate, erythromycin demonstrated limited P-gp inhibitory 

capacity, reducing its efflux ratio from 390 ± 12 to a still very large 111 ± 8. In contrast, 

clarithromycin reduced efflux to 11 ± 1 and roxithromycin to 3.8 ± 0.3 confirming them as 

potent P-gp inhibitors (Table 1), and indicating that clarithromycin and roxithromycin are 

likely to promote drug interactions with digoxin via inhibition of efflux mechanisms. 

Azithromycin appeared to increase the efflux of digoxigenin bis-digitoxiside (Table 1), as did 

probenecid, and although both of these results were moderately significant, this was largely as 

a result of very low apical to basolateral transport. However, due to these results being close 

to detection limits of our HPLC system, changes in results from 0.1 to 0.2 can have a 2 fold 

impact on efflux ratios. Under these circumstances care needs to be taken with interpretation 

of efflux ratios, and we consider any affect of azithromycin or probenecid to be relatively 
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minor. Future research would need to be conducted to explore any significance of this 

interaction. 

 

 

DISCUSSION 

Digoxin has a narrow therapeutic window making it a drug of concern when given 

chronically, whenever other pharmaceuticals are introduced for treatment of acute ailments. In 

addition, although digoxin is not widely metabolized in the human body, there are some 

active metabolites created, and these may have differing rates of P-gp mediated efflux 

compared to the parent digoxin, which could influence clinical outcomes when P-gp 

inhibitors alter gastro-intestinal absorption of digoxin and any metabolites created. Up to 10% 

of people are significant metabolisers of digoxin to dihydro-digoxin, which is subsequently 

excreted in the urine (28). Our study has shown that dihydro-digoxin is also a P-gp substrate, 

with an efflux ratio of 8.4 versus 15.2 for the parent digoxin. In addition one study showed 

that dihydrodigoxin and digoxigenin bis-digitoxoside are present at higher concentrations in 

the urine when administered orally rather than intravenously (29). This suggests that 

microflora degradation may be adding to the generation of metabolites with subsequent 

greater systemic absorption. Our study shows that once the metabolites are generated, either 

endogenously or via microflora, then a greater proportion of the drug would be absorbed, due 

to the metabolites having less of an affinity to P-gp and having greater inherent passive 

permeability across cell membranes (22,27).  

Another digitalis analogue, digitoxin, is known to have complete human absorption, greater 

retention in the body, and greater control of supraventricular tachyarrhythmias than digoxin 

(30). It was shown here that digitoxin had higher passive permeability than digoxin, and its 
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affinity for P-gp was 4 fold less than digoxin, resulting in less competitive inhibition with 

other substrates, reinforcing clinical results (30).  

 

About 10% of the population are high excretors of digoxin reduction products (DRPs), and 

these are thought to arise due to the anaerobic bacterium Eubacterium lentum, a common 

constituent of the intestinal microflora (13). However, it has subsequently been found that the 

presence of  E. lentum could also be isolated in high concentrations from the stools of 

individuals who did not excrete DRPs when given digoxin orally (31). Further eroding the 

credibility of E. lentum’s role in macrolide-digoxin interactions are recent studies that have 

shown that E. lentum is killed by a variety of current antimicrobials that have little influence 

on whole body digoxin pharmacokinetics (32). These reports put more emphasis on 

macrolides having an influence on the pharmacokinetics of digoxin rather than the bacteria 

they affect. 

To that end, we were able to show that not only did clarithromycin and roxithromycin have 

strong P-gp inhibitory action against digoxin and its metabolites, but also paclitaxel, an 

antineoplastic drug with strong affinity to P-gp, had efflux inhibited by all of the macrolides. 

Azithromycin and erythromycin were very weak inhibitors though, when compared to 

clarithromycin and roxithromycin. These results comply with those of a previous study by 

Eberl and colleagues who also examined P-gp inhibition by macrolides in Caco-2 cells (33). 

Interestingly, in our study, roxithromycin was more potent than clarithromycin, especially 

with regards to the parent digoxin, while Eberl’s study had clarithromycin at approximately 

double the potency of roxithromycin. Surprisingly, in our study erythromycin had only a 

minor role as a P-gp inhibitor, which suggested that changes to metabolism through 

erythromycin’s other effects such as forming nitrosoalkenes and subsequent complexation 

with CYP3A4 and other cytochromes (34) may be the causative factors by which 
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erythromycin increases plasma levels of digoxin, even though digoxin is not directly 

metabolised using these processes. Thus, with regards to erythromycin, it is still unclear the 

exact mechanism by which it increases digoxin concentrations. Eberl’s 2007 publication does 

show erythromycin having an inhibitory function on digoxin transport with an inhibitory 

potency of 23 M. As our study used over four times this concentration, we should have 

observed P-gp mediated efflux inhibition, which we did not, although a closer inspection of 

their data shows 500 M erythromycin still having some digoxin efflux, such that their 

inhibition curves have some line fitting variability (33). Some reduction in efflux 

characteristics of some digoxin metabolites was noted, but not of digoxin itself. A greater 

disparity between these two related studies was regarding azithromycin. Apart from digitoxin, 

none of the digoxin related molecules were affected by azithromycin in our study, yet there 

was a weak, but observable inhibitory effect on digoxin transport from Eberl’s 2007 study. 

The only clear difference between the two studies, was the measurement of tritiated hydrogen 

appearance on the opposite chamber in the previous work, while in our study we measured the 

digoxin directly with HPLC separation technology (33).  

 

Wakasugi’s laboratory demonstrated that high M concentrations of clarithromycin reduced 

digoxin transcellular transport and increased cellular accumulation using kidney epithelial cell 

line monolayers (15). Further they were able to demonstrate reduced renal clearance of 

digoxin in a patient who was taking clarithromycin (200mg orally twice daily). In our study 

clarithromycin was almost as effective as PSC-833 at inhibiting P-gp mediated efflux of 

digoxin and all of the metabolites tested. The suggestion that the major contributor is 

increased bioavailability is supported by the work of Tsutsumi and colleages. (35). In their 

study intravenous digoxin was used, and no effect was seen on serum digoxin concentration-

time curves. In fact these authors reported that renal excretion of digoxin was enhanced by the 
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co-administration of both clarithromycin and erythromycin. This is contrary to what  

Wakasugi and colleagues from Japan suggested regarding clarithromycin’s ability to inhibit 

the P-gp -mediated tubular excretion of digoxin (15). In an additional report of six patients 

with end-stage renal disease who suffered digoxin toxicity following the administration of 

clarithromycin, it was suggested that inhibition of P-gp in the gut and/or bile capillary ducts 

was likely, as renal clearance in these patients was already grossly compromised (36). The 

fact that efflux of digoxin metabolites was also inhibited, suggests that their bioavailability 

would also be increased, and the presence of drug in their stools reduced.  

Azithromycin had very weak P-gp inhibitory action in our study, with either digoxin or 

paclitaxel. This finding is consistent with the lack of case reports of digoxin-azithromycin 

drug interactions. However, as our study only looked at inhibitory action and not whether the 

macrolide was a substrate, there is still the possibility of some interaction with P-gp for 

azithromycin, as a pure substrate only. Some studies have suggested that azithromycin is a P-

gp substrate (37,38), while Pachot’s work in 2003 goes further to suggest that all of the 

macrolide antibiotics at very low micromolar concentrations do exhibit P-gp mediated efflux 

(37). In addition, a recent report found 5 M concentrations of clarithromycin and 

erythromycin had efflux ratios of 22 and 8 each respectively in MDR1 transfected cells
 
(39), 

but as we used high concentrations between 100-200 M it may be expected that some 

competitive inhibition occurred even if the macrolides were substrates rather than pure 

inhibitors. High micromoloar concentrations were used in our study to reflect expected doses 

available to the gut wall, rather than in the circulation, so we do not believe that the 

concentrations used in our study are clinically unrealistic. The potency of P-gp inhibition in 

our study by clarithromycin and roxithromycin does suggest that these two macrolides have 

true inhibitory action against P-gp mediated efflux that may be separate to any competitive 

transport action. Gomes and others recently reported that in a 15 year population-based, Formatted: Font: Times New Roman,
12 pt
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nested case-control study, which investigated the association between hospitalization for 

digoxin toxicity and recent exposure to individual macrolide antibiotics that clarithromycin 

was associated with the highest risk of digoxin toxicity (40). Our finding would support this 

increased risk with concurrent clarithromycin use. They also reported that erythromycin and 

azithromycin were associated with much lower risk, which is again consistent with our 

findings, although we would not have predicted such an increased risk with azithromycin, 

based on P-gp inhibition. 

This study demonstrated that roxithromycin, clarithromycin and to a lesser extent, 

erythromycin, were able to inhibit P-gp efflux both for digoxin and number of its metabolites 

or derivatives. In doing so it provides an alternative explanation for the observed reduction in 

excretion of DRP in the stools and urine of high DRP excreters administered macrolides. 

Inhibition of P-gp in the gut would result in an increase in the bioavailability of both digoxin 

and it reduction products, at the same time inhibition of P-gp in the kidney decreases the 

clearance of digoxin and its reduction products. The net result would be an increase in digoxin 

serum levels and a fall in excretion of DRPs in both the stools and urine. 

From the perspective of choosing a macrolide antibiotic administrable to patients on digoxin, 

based on our results azithromycin would be the drug of choice and it has previously be 

reported not to effect cytochrome P-450, like the other macrolides
 
(34).  However, in light of 

the findings of Gomes and coworkers (40), it would seem prudent to monitor the serum levels 

of all patients commenced on a macrolide.  
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Figure Legends. 

Figure 1:  

Std curve for competition assay using Dihydrodigoxin to interfere with biotinylated digoxin in 

an Alphascreen digoxin detection kit after 60 min incubation of samples with donor beads. 

 

Figure 2:  

Bidirectional transport of 20 M digoxin (A) or digitoxin (B)  through the Caco-2 CLEFF9 

subclone. Apical to basolateral direction (squares) and basolateral to apical direction 

(diamonds), without (closed symbols) and with (open symbols) the presence of 4 M PSC-

833, a potent P-glycoprotein inhibitor, on both sides of the membrane. 

 

Figure 3: 

In vitro permeability co-efficient as an estimate of human intestinal absorption. Once P-gp 

mediated efflux was eliminated by use of P-gp blocking agents, the remaining apical to 

basolateral values for digoxin and its analogues could be plotted on our previously established 

Caco-2 permeability (22) vs human absorption comparison curve, as determined by Artursson 

and Karlsson (27) providing some indication to the inherent permeability of these molecules 

across the human gastro-intestinal tract when compared to other drugs previously transported 

across Caco-2 cell monolayers that have known human intestinal absorption percentages.



Figure 4:  

Net transport rates in the efflux direction for 20 M digoxin and metabolites / analogues using 

transport rates from Ap to Bas and Bas to Ap directions over a three hour period in Caco-2 

monolayers grown on Millicell polycarbonate filter membranes. Results shown equate to 

transport in the Bas to Ap direction after removal of the Ap to Bas direction component for 

identical Drug and inhibitor concentrations. PSC 833 and GF120918 were each used at 4 M, 

with probenecid at 500 M. Solid columns = digoxin, white = digoxigenin, upwards angled 

lines = digoxigenin bis-digitoxoside, dotted = digitoxin and downward angled lines = 

dihydrodigoxin. Significance of inhibitor use reducing efflux compared to glycoside alone is 

shown (#) where p<0.05. 

 

Figure 5:  

Net transport rates in the efflux direction for 20uM digoxin and metabolites / analogues using 

transport rates from Ap to Bas and Bas to Ap directions over a three hour period in Caco-2 

monolayers grown on Millicell polycarbonate filter membranes. Results shown equate to 

transport in the Bas to Ap direction after removal of the Ap to Bas direction component for 

identical Drug and inhibitor concentrations. Erythromycin and roxithromycin were each used 

at 200 M, while clarithriomycin and azithromycin were used at 100 M. Solid  columns = 

digoxin, white = digoxigenin, upwards angled lines = digoxigenin bis-digitoxoside, dotted = 

digitoxin and downward angled lines = dihydrodigoxin. Significance of inhibitor use reducing 

efflux compared to glycoside alone is shown (#) where p<0.05. 
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Table 1. Efflux ratios (transport in the Bas to Ap direction compared to transport in the Ap to Bas direction) for the Cardiac Glycosides, 

Digoxin, digoxigenin and digoxigenin bis-digitoxoside after 3 hour transport studies in a Caco-2 sub clone (CLEFF) over-expressing P-

glycoprotein. 

Inhibitor Digoxin Digoxigenin Digoxigenin- 

bis-digitoxoside 

 Ap to Bas 

x10-6 cm/sec 

Bas to Ap 

x10-6 cm/sec 

Ratio (B-A) Ap to Bas 

x10-6 cm/sec 

Bas to Ap 

x10-6 cm/sec 

Ratio (B-A) Ap to Bas 

x10-6 cm/sec 

Bas to Ap 

x10-6 cm/sec 

Ratio (B-A) 

None   0.9 ± 0.1 13.6 ± 0.8 15.2 ± 2.0   1.9 ± 0.1   6.7 ± 0.2 3.5 ± 0.2   1.1 ± 0.5 15.2 ± 0.8 13.7 ± 6.7 

PSC-833   3.4 ± 0.1
##

   2.9 ± 0.2
##

 0.9 ± 0.1
##

   2.5 ± 0.1
#
   2.6 ± 0.1

##
 1.0 ± 0.1

##
   1.1 ± 0.0  1.0 ± 0.0

##
 0.9 ± 0.1

##
 

GF120918   2.9 ± 0.2
##

   2.7 ± 0.1
##

 0.9 ± 0.1
##

   2.5 ± 0.1
#
   2.5 ± 0.1

##
 1.0 ± 0.1

##
   1.4 ± 0.1   1.3 ± 0.1

##
 0.9 ± 0.2

##
 

Probenecid   0.9 ± 0.1 12.9 ± 0.5 13.8 ± 1.2   2.1 ± 0.1   8.7 ± 0.2
##

 4.1 ± 0.3   0.4 ± 0.2 12.5 ± 0.2
#
 35.7 ± 6.1

#
 

          

Erythromycin   1.0 ± 0.1 15.0 ± 2.0 14.8 ± 1.1   2.1 ± 0.1   4.2 ± 0.3
##

 2.0 ± 0.2
##

   1.1 ± 0.2 10.8 ± 0.6
##

 10.4 ± 2.8 

Clarithromycin   3.3 ± 0.2
##

   7.5 ± 0.4
##

 2.3 ± 0.3
##

   3.2 ± 0.2
##

   3.7 ± 0.1
##

 1.1 ± 0.1
##

   0.9 ± 0.3   3.1 ± 0.2
##

 3.3 ± 1.3
##

 

Roxithromycin   3.3 ± 0.3
##

   4.4 ± 0.2
##

 1.3 ± 0.2
##

   2.3 ± 0.1   3.0 ± 0.2
##

 1.3 ± 0.2
##

   0.7 ± 0.2   2.5 ± 0.1
##

 3.3 ± 1.1
##
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Azithromycin   1.2 ± 0.0
#
 20.5 ± 0.5 17.6 ± 0.9   2.1 ± 0.1   5.3 ± 0.3

#
 2.6 ± 0.3

#
   0.3 ± 0.1 12.1 ± 0.4

#
 44.1 ± 21.7

#
 

 

 

Significance of inhibitor use in drug transport in either apical to basolateral or the reverse direction is indicated with # for (p<0.05) and ## 

for (p<0.005). 
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Table 2. Efflux ratios (transport in the Bas to Ap direction compared to transport in the Ap to Bas direction) for the Cardiac Glycosides, 

Dihydrodigoxin, digitoxin and our rapidly transported p-glycoprotein substrate, the antineoplastic agent, paclitaxel, after 3 hour transport 

studies in a Caco-2 sub clone (CLEFF) over-expressing P-glycoprotein. 

 

Inhibitor Dihydrodigoxin Digitoxin Paclitaxel 

 Ap to Bas 

x10-6 cm/sec 

Bas to Ap 

x10-6 cm/sec 

Ratio (B-A) Ap to Bas 

x10-6 cm/sec 

Bas to Ap 

x10-6 cm/sec 

Ratio (B-A) Ap to Bas 

x10-6 cm/sec 

Bas to Ap 

x10-6 cm/sec 

Ratio (B-A) 

None   7.2 ± 0.4 60.8 ± 0.4 8.4 ± 0.5   9.5 ± 0.5 36.1 ± 1.3 3.8 ± 0.4   0.1 ± 0.0 78.2 ± 2.5 391 ± 13 

PSC-833 18.2 ± 1.3
##

 18.0 ± 0.8
##

 1.0 ± 0.1
##

 25.8 ± 0.4
##

 22.2 ± 1.0
##

 0.9 ± 0.1
##

   9.7 ± 0.8
##

 12.0 ± 0.2
##

 1.2 ± 0.1
##

 

GF120918 22.8 ± 1.2
##

 15.4 ± 0.6
##

 0.7 ± 0.1
##

 19.0 ± 0.4
##

 21.8 ± 1.3
##

 1.1 ± 0.1
##

 19.9 ± 0.2
##

 38.9 ± 0.6
##

 2.0 ± 0.1
##

 

Probenecid   7.0 ± 0.4 63.0 ± 1.5 9.0 ± 0.8 12.5 ± 0.2
#
 35.6 ± 1.3 2.8 ± 0.2   0.5 ± 0.2 66.5 ± 1.0

##
 136 ± 49

#
 

          

Erythromycin   8.6 ± 0.6 47.8 ± 3.3
#
 5.6 ± 0.8

#
 13.4 ± 1.2

#
 27.7 ± 2.0

#
 2.1 ± 0.3

##
   0.4 ± 0.0 47.4 ± 0.6

##
 111.0 ± 8.8

#
 

Clarithromycin 39.1 ± 4.7
##

 37.0 ± 0.7
##

 0.9 ± 0.1
##

 31.7 ± 0.2
##

 25.3 ± 1.3
##

 0.8 ± 0.0
##

   3.8 ± 0.2
##

 42.5 ± 1.0
##

 11.2 ± 0.8
##

 

Roxithromycin 42.7 ± 1.1
##

 34.4 ± 2.4
##

 0.8 ± 0.1
##

 29.0 ± 0.9
##

 25.2 ± 0.2
##

 0.9 ± 0.0
##

 14.6 ± 0.9
##

 55.4 ± 0.3
##

 3.8 ± 0.2
##

 

Azithromycin 13.2 ± 0.7
#
 74.8 ± 6.4

#
 5.7 ± 0.8

#
 13.3 ± 1.1

#
 25.0 ± 1.6

##
 1.9 ± 0.3

##
 0.7 ± 0.0 23.6 ± 0.6

##
 36.4 ± 1.6

##
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Significance of inhibitor use in drug transport in either apical to basolateral or the reverse direction is indicated with # for (p<0.05) and ## 

for (p<0.005). 
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