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Achievable Rates of Full-Duplex MIMO Radios in
Fast Fading Channels with Imperfect Channel

Estimation
Ali Cagatay Cirik, Yue Rong, Senior Member, IEEE, and Yingbo Hua, Fellow, IEEE

Abstract—We study the theoretical performance of two full-
duplex multiple-input multiple-output (MIMO) radio systems:
a full-duplex bi-directional communication system and a full-
duplex relay system. We focus on the effect of a (digitally
manageable) residual self-interference due to imperfect channel
estimation (with independent and identically distributed (i.i.d.)
Gaussian channel estimation error) and transmitter noise. We
assume that the instantaneous channel state information (CSI) is
not available the transmitters. To maximize the system ergodic
mutual information, which is a non-convex function of power
allocation vectors at the nodes, a gradient projection algorithm
is developed to optimize the power allocation vectors. This algo-
rithm exploits both spatial and temporal freedoms of the source
covariance matrices of the MIMO links between transmitters and
receivers to achieve higher sum ergodic mutual information. It is
observed through simulations that the full-duplex mode is optimal
when the nominal self-interference is low, and the half-duplex
mode is optimal when the nominal self-interference is high. In
addition to an exact closed-form ergodic mutual information
expression, we introduce a much simpler asymptotic closed-form
ergodic mutual information expression, which in turn simplifies
the computation of the power allocation vectors.

Index Terms—Full-duplex MIMO radio, bi-directional com-
munication, full-duplex relays, fast fading channels.

I. INTRODUCTION

THis paper concerns radio frequency (RF) wireless com-
munication systems or simply called radios. A radio can

be used as a wireless relay between two other radios, which we
call a relay system. Two radios can be used to communicate
directly with each other, which we call a bi-directional system.

Wireless relays have attracted a great deal of attention
for next generations of wireless communication systems as
relays can reduce the overall path loss and transmission power
consumption and they also can increase cell coverage and
capacity. A conventional wireless relay is half-duplex, which
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transmits and receives using two different channels (in time or
frequency). A full-duplex relay can transmit and receive using
a single frequency at the same time and is more spectrally
efficient [2], [3].

Bi-directional communication is commonly required in vir-
tually all modern communication systems, where two ter-
minals exchange information with each other. Currently, all
bi-directional systems are half-duplex, which requires two
different channels for two opposite directions. A full-duplex
bi-directional system uses a single frequency at the same time
for both directions and is twice as spectrally efficient [4]-[6].

Among the earliest works on full-duplex radio is [7] where
a narrowband (200kHz) full-duplex radio testbed was reported.
This research effort stayed almost dormant until the work [8]
published ten years later. It was then followed by the hardware-
based research activities in [9]-[17] as well as the theoretical
research activities in [18]-[35].

A fundamental enabler for full-duplex radios is known as the
self-interference cancelation. When a full-duplex radio trans-
mits, it causes self-interference which must be canceled satis-
factorily. The cancelation can be done by different methods,
to different degrees, and at different stages along the receiving
chain of a full-duplex radio. Cancelation of interference before
the interference-corrupted signal is digitized is called analog
cancelation. One important advantage of analog cancelation
is that the desired (weak) signal from a remote radio will be
less saturated with the receiver noise (including the receiver
quantization noise)1.

A simple testbed for analog cancelation was reported in [9]
where two transmit antennas were used to create a null at a
receive antenna. A demonstration of analog cancelation using
an analog circuit was shown in [10]. Analog cancelation using
real-time channel estimation was reported in [11]. Analog can-
celation using a single antenna and multiple antennas capable
of simultaneous reception and transmission was demonstrated
in [12]-[15] and [16], respectively. The works shown in [9]-
[13] assume that the interference channel is allpass. Broadband
analog cancelation for frequency-selective interference chan-
nels was demonstrated in [14]-[17]. The amount of cancelation

1The receiver noise includes quantization noise and nonlinearity noise.
For a fixed number of quantization bits used by a receiver, the amount of
quantization noise increases with the dynamic range of the signal (including
the interference) received. By reducing the interference at the RF front end,
the dynamic range of the signal received at the quantizer is also reduced.
The nonlinearity noise also increases with the dynamic range of the signal
received.
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demonstrated on hardware varies and depends on many pos-
sible factors in the hardware systems.

The theoretical works shown in [18]-[27] all exploit multiple
antennas for analog interference cancelation. The key idea
among all these theoretical works for analog interference
cancelation is based on a well-known concept of array pro-
cessing, which is often referred to as transmit beamforming.
The basic idea of this approach is that the self-interference
can be cancelled at the front-end of the receiver by generating
a cancellation signal based on the transmit signal in the
baseband. For example, the authors in [20], [22] propose null-
space projection and minimum mean-squared error (MMSE)
filters for spatial self-interference suppression. In [23], an
interference nulling algorithm is proposed through the opti-
mization of the relay processing vectors over the continuous
domain, which was shown to have better performance than
the methods in [22]. In [24], an overview of beamforming
and power allocation for both full-duplex and half-duplex
MIMO relays operating in decode-and-forward or amplify-
and-forward mode are provided.

In this paper, we assume that an (imperfect) analog interfer-
ence cancelation or passive suppression has been implemented
in the full-duplex radios and the residual self-interference can
be handled digitally in the baseband. We focus on a theoretical
performance of the full-duplex radios under the effect of
the residual self-interference. The contributions shown in this
paper are closely related to [26]-[27]. One of the differences
between this paper and those two is that we consider fast
fading channels and they considered slow fading channels. Fast
fading channel results from such a fast varying environment
where the channel coherence time is much less than a coding
and channel estimation delay requirement. For each residual
self-interference channel, we also apply the fast fading channel
model. This is because the self-interference channel (even if
through an RF circulator for a single antenna) still depends on
the positions of the nearby moving reflectors. Consequently,
we use an ergodic mutual information to measure the system
performance. Note that unlike slow fading channels assumed
in [26]-[27] where instantaneous CSI can be estimated with
reasonable accuracy, here we do not assume any instantaneous
CSI feedback from the receiver. Instead, we assume that the
receiver feeds the transmitter with statistical CSI (the mean
and variance of the CSI) and the knowledge of the statistics
of the CSI is used at the transmitter to design optimal power
schedules.

Since computing the closed form expression of the ergodic
mutual information for fast fading channels is intractable, un-
like [26]-[27], we assume that the variances of the transmission
noise and the receiver noise do not depend on the variance of
the transmitted signal and the received signal, respectively.
Such an assumption is reasonable, since recent experimen-
tal results presented in [11] suggest that the residual self-
interference of a point-to-point full-duplex system is additive,
noise-like and its variance does not depend on the variance
of the transmitted signal, which is also pointed out in [28].
In addition, the approximation of the effects of nonlinearities
in [26]-[27] is valid only if higher order nonlinearities are
contributing significantly [29], which is not the model we are

considering in this paper. This invariant transmission noise
model has been commonly used in other papers [20], [22],
[29], [30], [31], [32]. 2

By exploiting both spatial and temporal freedoms of the
source covariance matrices of the MIMO links, the authors
of [26] and [27] maximize the lower bound of the achievable
rates for full-duplex MIMO relay channels and full-duplex bi-
directional MIMO channels for slow fading channels using
gradient projection (GP) method under transmitter and receiver
distortions, respectively. Using the same transmit/receive dis-
tortion model in [26], [27], the authors in [33] consider the
weighted sum-rate (WSR) maximization problem subject to
total power constraint of the full-duplex bi-directional MIMO
system. Based on the relationship between WSR and weighted
minimum mean-squared-error problem, a low complexity iter-
ative alternating algorithm is proposed. Sum-rate maximization
problem subject to multiple generalized linear constraints is
considered in [34], and is solved using two sub-optimal tech-
niques. In this paper, we develop algorithms useful to reveal
a lower bound on the ergodic mutual information of a full-
duplex bi-directional MIMO system and a full-duplex MIMO
relay system under a simpler transmitter distortion model for
fast fading channels where the instantaneous CSI is not known
at the transmitters and imperfectly known at the receivers.
In particular, using statistical CSI at the transmitters, we
optimize the power allocation vectors at the nodes to maximize
the ergodic mutual information of the full-duplex systems
subject to power constraints at the nodes under transmitter
impairments. We develop a GP method to solve these non-
convex optimization problems.

Moreover, based on [36], we introduce a simpler asymptotic
closed-form expression for the ergodic mutual information of
these full-duplex systems, which is shown to be an accurate
approximation even for systems with a small number of
antennas. This expression simplifies the computation of the
non-convex power allocation problem. It is shown through
numerical simulations that at a high self-interference power
level (when the INR is above the transmission SNR), the
optimal power schedule is the half-duplex mode and at a
low self-interference power level (when the INR is below the
transmission SNR), the optimal power schedule is the full-
duplex mode.

This paper is organized as follows. In Section II, the system
model of full-duplex bi-directional MIMO system is discussed.
In Section III, we formulate the exact closed form of the
lower bound ergodic mutual information expression for the
full-duplex bi-directional MIMO system. In Section IV, we
maximize the sum ergodic mutual information subject to per
node average power constraints using the GP method, and

2Note that the baseband cancellation is only possible when the residual self-
interference is small. Subject to a small self-interference, it is appropriate to
model the transmission noise variance and receiver noise variance as inde-
pendent of the variance of the transmitted and received signal, respectively.
This is because that the impact of these noises is much smaller than the
self-interfering “signal”. Note that the power of the transmission noise is
typically 30− 40dB below that of the transmitted signal. The model we use
is completely reasonable for a small dynamic range commonly encountered
in baseband processing, and this paper only claims the applicability in this
situation.
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a simple asymptotic closed-form ergodic mutual information
expression is introduced as well. In Section V, the system
model of full-duplex MIMO relay system is discussed. In
Section VI, simulation results are provided to validate the
performance of the algorithms. The main results of this paper
are concluded in Section VII.

The following notations are used in this paper. Matrices
and vectors are denoted by bold capital and lowercase letters,
respectively. For matrices and vectors, (·)T and (·)H denote
transpose and conjugate transpose, respectively. EH {·} stands
for the statistical expectation with respect to the channel matrix
H; IN denotes an N × N identity matrix; tr{·} stands for
matrix trace; |·| is the determinant; ‖ · ‖ is the Euclidean norm
of a vector and the Frobenius-norm of a matrix; (·)′ denotes
the first order derivative; diag{a1, · · · , an} denotes a diago-
nal matrix with the diagonal elements given by a1, · · · , an.
CN

(
µ, σ2

)
denotes complex Gaussian distribution with mean

µ and variance σ2. We will also refer to full-duplex as FD and
half-duplex as HD.

II. SYSTEM MODEL FOR A FD BI-DIRECTIONAL LINK

In this section, we describe the system model of a FD
bi-directional MIMO system. (A FD MIMO relay system is
discussed in Section V.) We assume that each node has N
physical antennas that can be used for simultaneous receiving
and transmitting at the same carrier frequency [16].3 Also note
that even for a single physical antenna, there is still a self-
interference channel between the virtual transmit antenna and
the virtual receive antenna, and the response of this (circuit)
channel is still affected by the reflectors around the physical
antenna. The number of virtual antennas may correspond to the
number of front-ends. A two front-end relay case was studied
in [35].

Similar to [26] and [27], we partition the data transmission
period under consideration or control into two time slots, since
the benefit when the number of time slots is larger than the
number of links is not significant [37]. The partition of the
data transmission follows the concept of space-time power
scheduling for multiple concurrent co-channel links shown
in [37]. Particularly, the use of two distinct time slots gives the
freedom to switch between FD and HD signaling depending
on the power of the self-interference channel, while one time
slot forces FD signaling, regardless of the power of the self-
interference channel. This is similar to the MIMO interference
channel in [37] and FD systems in [26], [27]. Particularly,
the data transmission period is partitioned into two non-equal-
length slots normalized to τ ∈ [0, 1] and 1−τ , respectively, and
τ can be optimized using a grid search [26]. For convenience,
we define τ(1) , τ and τ(2) , 1− τ .

As illustrated in Fig. 1, the receiver i ∈ {1, 2} receives
signals from both transmitters via MIMO channels Hij ∈
CN×N . Here, Hii is the channel for ith transmitter-receiver
pair between the two nodes, and Hij , j ∈ {1, 2} and j 6= i
denotes the self-interference channel from transmitter j to
receiver i. All the channel matrices are assumed to be mutually

3A full duplex WiFi radio that uses multiple antennas that transmit and
receive simultaneosuly was designed and implemented in [16].

Transmitter 1

Transmitter 2

Receiver 1

Receiver 2

Fig. 1. The signal flow diagram of a bi-directional full-duplex MIMO system.

independent and the entries of each matrix are i.i.d. circular
complex Gaussian variables with zero mean and unit variance4.
We adopt the channel error model used for the FD systems
in [4], [18], [19], [20], [22] and [38], where the receiver
i ∈ {1, 2} is provided with some partial information of the
channel, Hij , j = 1, 2, and with this imperfect CSI, the
receiver i performs MMSE estimation of Hij . Let us denote
the MMSE estimation as H̃ij , and the estimation error as
∆Hij = Hij − H̃ij , where H̃ij and ∆Hij are uncorrelated,
and the entries of ∆Hij are zero mean circularly symmetric
complex Gaussian with variance σ2

e,ij , as opposed to non-
i.i.d. channel estimation errors in [26], [27]. Note that σ2

e,ij is
assumed to be known to both the transmitter and receiver [39].
We will assume that the channel matrices remain constant
over two consecutive time slots, but change randomly over an
interval of many multiples of two time slots. We will design
the power schedule to maximize an ergodic system mutual
information which is averaged over the statistical distribution
of the channel matrices. This mutual information is achievable
(approximately) over the interval of many multiples of two
time slots. Therefore, our theory is valid for “fast fading”
channels, i.e., the time delay due to encoding and decoding
over many multiples of two time slots is tolerable.

The quality of transmitted signals suffer from non-linear
distortions in the power amplifier, phase noise, and IQ-
imbalance [40]. The measurement results by [41] indicate that
an i.i.d. additive Gaussian noise model accurately describes
the sum of all such residual transmitter impairments. Such
an assumption has also been commonly used in other FD
papers [20], [22], [29], [30], [31], [32].

We consider a FD bi-directional MIMO system that suffers
from self-interference. The N×1 received signal vector at the
ith receiver can be written as

yi(t) =
√
ρiHii (xi(t) + ci(t)) +

√
ηiHij (xj(t) + cj(t))

+ ni(t)

=
√
ρiH̃iixi(t) +

√
ρi∆Hiixi(t) +

√
ρiHiici(t)

+
√
ηiH̃ijxj(t) +

√
ηi∆Hijxj(t) +

√
ηiHijcj(t)

+ ni(t), i, j ∈ {1, 2} and j 6= i, (1)

4Before analog domain cancellation, the self-interference channel has a
strong line-of-sight (LOS) component, so can be modeled as Ricean distribu-
tion with a large K-factor. It is shown experimentally in [11] that after applying
an analog domain cancellation or antenna isolation, the strong LOS component
is attenuated, resulting in a Ricean distribution with a small K-factor or in a
Rayleigh distribution (if the suppression through analog cancellation is high).
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where ρi denotes the average power gain of the ith transmitter-
receiver link, ηi denotes the average power gain of the self-
interference channel, xi(t) ∼ CN (0,Qi(t)) is the signal
vector transmitted by node i within time slot t, xj(t) ∼
CN (0,Qj(t)) is the self-interference vector from the trans-
mitter j, j 6= i within time slot t, and ni(t) ∼ CN (0, IN )
is the receiver noise which is additive white Gaussian noise
(AWGN) vector. We assume that ni(t) is independent of xi(t)
and xj(t).

In (1),
√
ρici(t) denotes the transmission noise from the ith

transmitter, where ci(t) ∼ CN
(
0, σ2

t IN
)
, i = 1, 2. Note that

the transmit noise in (1) is
√
ρici(t), not ci(t) alone. And since

the signal power is ρiPi, while the transmission noise power is
ρiσ

2
t , the transmitter noise depends on the power level. Here

Pi is the averaged transmit power from the ith transmitter.
In particular, incorporating

√
ρi into ci(t), we have the same

transmission noise model as [20], [22], [29], [30], [31], [32],
[41].

The receiver i ∈ {1, 2} knows the interfering signal xj(t)
from transmitter j ∈ {1, 2}, j 6= i, so the self-interference
term

√
η
i
H̃ijxj(t) can be subtracted from yi(t) [26], [27].

ỹi(t) , yi(t)−
√
ηiH̃ijxj(t)

=
√
ρiH̃iixi(t) + vi(t), (2)

where

vi(t) =
√
ρi∆Hiixi(t) +

√
ρiHiici(t) +

√
ηi∆Hijxj(t)

+
√
ηiHijcj(t) + ni(t) (3)

is the total noise in ỹi(t). The covariance matrix of vi(t) can
be written as

Σ̃i(t)

= E
{

vi(t)vi(t)
H |H̃ii, H̃ij

}
= ρiE∆Hii

{
∆HiiQi(t)∆HH

ii

}
+ ρiσ

2
t E∆Hii

{
HiiH

H
ii

}
+ ηiE∆Hij

{
∆HijQj(t)∆HH

ij

}
+ ηiσ

2
t E∆Hij

{
HijH

H
ij

}
+IN

= ρiσ
2
e,iitr {Qi(t)} IN + ρiσ

2
t

(
H̃iiH̃

H
ii + σ2

e,iiNIN

)
+ ηiσ

2
e,ij tr {Qj(t)} IN + ηiσ

2
t

(
H̃ijH̃

H
ij + σ2

e,ijNIN

)
+ IN , i, j ∈ {1, 2} and j 6= i, (4)

where the first expectation is taken with respect to xi(t),
xj(t) and ni(t), and here we have used the identity of
E∆Hij

{
∆HijA∆HH

ij

}
= σ2

e,ij tr{A}IN , where the entries of
∆Hij are i.i.d. with CN (0, σ2

e,ij) and A ∈ CN×N is a known
matrix.

III. ACHIEVABLE RATES

In this section, we formulate the ergodic mutual information
expression for the FD bi-directional MIMO system when the
transmitters do not have instantaneous CSI and the receivers
have imperfect instantaneous CSI, i.e., Hii is unknown at
the transmitter i but partially known at the receiver i. As
a result of the channel estimation errors and transmitter
impairments in (3), the noise vi(t) is generally non-Gaussian.
To the best of our knowledge, the exact mutual information
of MIMO channels with channel estimation errors is still an

open problem even for point-to-point MIMO systems [39],
[42]. However, assuming vi(t) as Gaussian, which is the worst
noise distribution from the perspective of mutual information,
we can obtain the lower bound [42], which was also used
in [26], [27].

For a given time-sharing parameter τ , the lower bound of
the sum mutual information of the system averaged over two
time slots can be written as

I (Q1,Q2) =

2∑
i=1

2∑
t=1

τ(t) log2

∣∣∣IN + ρiH̃iiQi(t)H̃
H
ii Σ̃i(t)

−1
∣∣∣

where Qi ,
[
QT
i (1),QT

i (2)
]T

, i = 1, 2. Then, a lower bound
of the ergodic sum mutual information of the system averaged
over two time slots can be written as

Ī (Q1,Q2) (5)

=

2∑
i=1

2∑
t=1

τ(t)EH̃ii,H̃ij

{
log2

∣∣∣IN + ρiH̃iiQi(t)H̃
H
ii Σ̃i(t)

−1
∣∣∣}︸ ︷︷ ︸

Īi(Q1,Q2)

To derive a closed-form expression for the ergodic sum mu-
tual information (5), we use the eigendecomposition of Qi(t),
which can be written as Qi(t) = Ui(t)Di(t)Ui(t)

H , i = 1, 2,
where Ui(t) is the unitary matrix of eigenvectors, and

Di(t) = diag {di1(t), di2(t), . . . , diN (t)} , i = 1, 2

is a diagonal matrix of all eigenvalues. For convenience, we
will use the column vectors d1(t) and d2(t) defined as

di(t) = [di1(t), di2(t), . . . , diN (t)]
T
, i = 1, 2.

Now we can rewrite (5) as

Ī (D1,D2) (6)

=

2∑
i=1

2∑
t=1

τ(t)E ˆ̃Hii,
ˆ̃Hij

{
log2

∣∣∣IN + ρi
ˆ̃HiiDi(t)

ˆ̃HH
ii

ˆ̃Σi(t)
−1
∣∣∣}

where

Di ,
[
DT
i (1),DT

i (2)
]T
, i = 1, 2

ˆ̃Hii , H̃iiUi(t), i = 1, 2
ˆ̃Hij , H̃ijUj(t), (i, j) ∈ {1, 2} and j 6= i

ˆ̃Σi(t) , ρiσ
2
e,iitr {Di(t)} IN + ρiσ

2
t

(
ˆ̃Hii

ˆ̃HH
ii + σ2

e,iiNIN

)
+ ηiσ

2
e,ij tr {Dj(t)} IN+ ηiσ

2
t

(
ˆ̃Hij

ˆ̃HH
ij+σ2

e,ijNIN

)
+ IN , i, j ∈ {1, 2} and j 6= i.

Since H̃ii has i.i.d. Gaussian entries and Ui(t) is unitary, the
statistics of ˆ̃Hii is identical to that of H̃ii [43, Lemma 5].
Therefore, for notational simplicity, in the sequel we will
drop the hats on the matrices. Thus, the ergodic sum mutual
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information expression (6) can be rewritten as

Ī (d1,d2)

=

2∑
i=1

2∑
t=1

τ(t)EH̃ii,H̃ij

{
log2

∣∣∣IN+ρiH̃iiDi(t)H̃
H
ii Σ̃i(t)

−1
∣∣∣}

=

2∑
i=1

2∑
t=1

τ(t)
[
EH̃i

{
log2

∣∣∣ρiH̃iiDi(t)H̃
H
ii + Σ̃i(t)

∣∣∣}
− EH̃i

{
log2

∣∣∣Σ̃i(t)
∣∣∣}]

=

2∑
i=1

2∑
t=1

τ(t)
[
EH̃i

{
log2

∣∣∣ρiH̃ii

(
Di(t) + σ2

t IN
)
H̃H
ii

+ ηiσ
2
t H̃ijH̃

H
ij + ci(t)IN

∣∣∣}
− EH̃i

{
log2

∣∣∣ρiσ2
t H̃iiH̃

H
ii + ηiσ

2
t H̃ijH̃

H
ij + ci(t)IN

∣∣∣}]
=

2∑
i=1

2∑
t=1

τ(t)
[
EH̃i

{
log2

∣∣∣H̃iΛi(t)H̃
H
i + IN

∣∣∣}
− EH̃i

{
log2

∣∣∣H̃iΛ̄i(t)H̃
H
i + IN

∣∣∣}] , (7)

where

H̃i =
[
H̃ii, H̃ij

]
ci(t) , ρiσ

2
e,ii1

T
Ndi(t) + ρiσ

2
t σ

2
e,iiN + ηiσ

2
e,ij1

T
Ndj(t)

+ ηiσ
2
t σ

2
e,ijN + 1, i, j ∈ {1, 2} and j 6= i

di ,
[
di(1)T ,di(2)T

]T
, i = 1, 2

Σ̃i(t) , ρiσ
2
e,iitr {Di(t)} IN + ρiσ

2
t

(
H̃iiH̃

H
ii + σ2

e,iiNIN

)
+ ηiσ

2
e,ij tr {Dj(t)}IN+ηiσ

2
t

(
H̃ijH̃

H
ij+σ2

e,ijNIN

)
+ IN , i, j ∈ {1, 2} and j 6= i

Λi(t) , diag
{
λT1,i(t),λ

T
2,i(t)

}
i = 1, 2

Λ̄i(t) , diag
{
λ̄
T
1,i(t),λ

T
2,i(t)

}
i = 1, 2

λ1,i(t) = ρi
di(t) + σ2

t 1N
ci(t)

λ2,i(t) = ηi
σ2
t

ci(t)
1N

λ̄1,i(t) = ρi
σ2
t

ci(t)
1N .

Here 1N is an N × 1 column vector of ones. Note that
1TNdi(t), (i, t) = 1, 2 is the power consumed at the ith node
at time slot t and it is not fixed and changes with respect
to self-interference power as we will see in the simulations,
whereas

∑2
t=1 1TNdi(t) is the total power consumed by the

node i and it is fixed.
The expression EH̃i

{
log2

∣∣∣H̃iΛi(t)H̃
H
i + IN

∣∣∣} in (7) can
be viewed as the ergodic mutual information of a point-
to-point MIMO channel with 2N transmit and N receive
antennas. A closed-form expression for the ergodic mutual
information of such a system has been shown in [44], where
a determinant representation for the distribution of quadratic
forms of a complex Gaussian matrix has been used. Using the

results in [44], (7) can be equivalently expressed as 5

Ī (d1,d2)

= log2(e)

2∑
i=1

2∑
t=1

τ(t)

[
N−1∑
n=0

2N∑
k=1

(ctikn (Λi(t))Q(n, λtik)

− ctikn
(
Λ̄i(t)

)
Q(n, λ̄tik)

)]
, (8)

where ctikn (Λi(t)) and Q (n, λtik) are defined in Appendix.
Here λtik , [Λi(t)]k,k and λ̄tik ,

[
Λ̄i(t)

]
k,k

, k = 1, . . . , 2N

denote the (k, k)th element of matrix Λi(t) and Λ̄i(t), re-
spectively. In (32) of Appendix, S1(x) ,

∫∞
x
e−τ/τdτ is the

exponential integral function of order 1 [45].
As shown in (8), the ergodic sum mutual information is now

expressed as a finite summation involving rational functions
and exponential integration functions of the power scheduling
vectors di(t), (i, t) ∈ {1, 2}, of both transmitting nodes. The
exponential integration function is available in many software
such as MATLAB and Mathematica. Thus, (8) is easy to
compute. Note that (8) is derived under the assumption that all
λtik, k = 1, . . . , 2N , have distinct values. Under the condition
that some of them are identical, the closed-form ergodic sum
mutual information expression can be obtained by deriving
the limit of (8) with respect to those common values of λtik
using L’Hospital’s rule. However, for numerical evaluation, it
is sufficient to slightly and randomly perturb these identical
values of λtik, since all functions are continuous and λtik
is deterministic [46]. The same assumption holds for λ̄tik as
well.

IV. MAXIMIZATION OF THE SUM ERGODIC MUTUAL
INFORMATION

In this section, we aim at maximizing the sum ergodic
mutual information (5) by choosing the transmit covariance
matrices Q1(t) and Q2(t), t = 1, 2 subject to per node
average power constraints and subsequently optimize the
time-sharing parameter τ . Note that we consider fast fading
channels in which the instantaneous CSI is assumed to be
unknown at the transmitting nodes. When the knowledge of
the instantaneous CSI is absent, statistical properties of the
CSI is necessary for designing optimal power schedules. The
optimization problem can be formulated as

max
Q1,Q2,τ(t)

2∑
i=1

Īi (Q1,Q2) (9)

s.t.
2∑
t=1

τ(t)tr {Qi(t)} ≤ Pi, i = 1, 2

Qi(t) ≥ 0, ∀i, t ∈ {1, 2},

where Īi (Q1,Q2) is given in (5) and Pi is the averaged
transmit power from the ith transmitter6.

5Note that in this paper we assume the same set of antennas are used for
both transmission and reception. If we assume different sets of antennas are
used for transmission and reception [27], i.e., each of the two nodes uses Nt

antennas for transmission and Nr different antennas for reception, then the
upper limits of the first and second summations inside the bracket of (8) is
replaced with Nr − 1 and 2Nt, respectively.

6Note that in (9), τ(1) = τ and τ(2) = 1−τ , where τ ∈ [0, 1]. And it can
be optimized using a grid search. Similar discussion has been held in [26].
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A. Gradient Projection Approach

For a fixed τ , the optimal d1 and d2 can be obtained by
solving the following problem

max
d1,d2

Ī(d1,d2) (10)

s.t.
2∑
t=1

τ(t)‖di(t)‖1 = Pi, i = 1, 2 (11)

di ≥ 0, i = 1, 2, (12)

where Ī(d1,d2) is given in (8) and (11) is the power constraint
at the ith transmitter. Here ‖.‖1 denotes the sum norm (or l1
norm) of a vector. For a vector x,x ≥ 0 means that each entry
of x is nonnegative.

The objective function (10) is highly non-convex and does
not have a clear structure. We can develop numerical algo-
rithms based on nonlinear programming techniques to obtain
a locally optimal solution to the problem (10)-(12). We choose
the GP method [47], which is an extension of the uncon-
strained steepest descent method to the convex constrained
problems. The GP method is simple, efficient, and guarantees
the convergence to a stationary point, provided that proper step
sizes are chosen.

There are two important steps in the GP algorithm: the
computation of the gradient of the objective function, and
the projection of the updated optimization variable onto the
convex set specified by constraint functions. To apply the
GP method to solve the problem (10)-(12), we first take
gradient steps for d1 and d2, and then project the updated
d1 and d2 onto the constraint set specified by (11) and (12).
The gradient of the objective function (10) with respect to
dlm(t), l = 1, 2, m = 1, . . . , N, t = 1, 2, is given by

∂Ī(d1,d2)

∂dlm(t)

= τ(t) log2(e)

2∑
i=1

[
N−1∑
n=0

2N∑
k=1

(c′tikn (Λi(t))Q(n, λtik)

+ ctikn (Λi(t))Q
′(n, λtik)− c′tikn

(
Λ̄i(t)

)
Q(n, λ̄tik)

− ctikn
(
Λ̄i(t)

)
Q′(n, λ̄tik)

)]
. (13)

The parameters in (13) are given in Appendix.
Let us first consider the gradient steps of the ith transmitter-

receiver pair, i ∈ {1, 2}, and denote the 2N × 1 vector of
gradient as

gi ,

[
∂Ī(d1,d2)

∂di1(1)
, . . . ,

∂Ī(d1,d2)

∂diN (2)

]T
, i = 1, 2. (14)

Then taking a step along the positive gradient direction, the
power allocation vector is updated as

d̂i = d̄i + sgi, i = 1, 2,

where s is a scalar of step size, and d̄i is the previous power
allocation vector.

The next step of the GP algorithm is to project d̂i onto
the feasible region of power vector constraints (11)-(12). The
projection operation is basically searching for a point d̃i in
the region of (11)-(12), which has a minimum Euclidean

distance to the point d̂i. Thus, the optimization problem for
the projection operation can be written as

min
d̃i

∥∥∥d̃i − d̂i

∥∥∥2

(15)

s.t.
2∑
t=1

τ(t)‖d̃i(t)‖1 = Pi, d̃i ≥ 0, i = 1, 2. (16)

The problem (15)-(16) is convex and can be efficiently solved
by the Lagrange multiplier method. It turns out that the
problem (15)-(16) has a water-filling solution which is given
by

d̃ik(t)=

[
d̂ik(t)− τ(t)µ

2

]+

, k = 1, . . . , N, (i, t) = 1, 2,(17)

where µ ≥ 0 is the Lagrange multiplier, and for a real scalar x,
[x]+ , max{x, 0}. The Lagrange multiplier µ can be obtained
by substituting (17) back into (16) and solving the following
nonlinear equation

2∑
t=1

N∑
k=1

τ(t)

[
d̂ik(t)− τ(t)µ

2

]+

= Pi, i = 1, 2. (18)

We can use the bisection method to solve (18), since the
left hand side of (18) is a piecewise linear function and
monotonically decreasing with respect to µ.

At the kth iteration, the power allocations vectors are
updated as

d̄
(k+1)
i = d̄

(k)
i + δ(k)

(
d̃

(k)
i − d̄

(k)
i

)
, i = 1, 2 (19)

d̃
(k)
i = proj

[
d̄

(k)
i + s(k)g

(k)
i

]
, i = 1, 2, (20)

where proj[.] stands for the projection operation in (15)-(16),
δ(k) and s(k) are scalars of step size and can be chosen
according to the Armijo rule [47]. In this rule, s(k) = s is a
constant throughout the iterations, and δ(k) = θmk , where mk

is the minimal nonnegative integer that satisfies the following
inequality

Ī
(
d̄(k+1)

)
− Ī

(
d̄(k)

)
≥ σθmk

2∑
i=1

(
g

(k)
i

)T (
d̃

(k)
i − d̄

(k)
i

)
, (21)

where σ and θ are constants and d̄(k) =
[
(d̄

(k)
1 )T , (d̄

(k)
2 )T

]T
.

According to [47], usually σ is chosen close to 0, and a proper
choice of θ is from 0.1 to 0.5.

The steps of (19) and (20) are performed for both nodes and
continue until vector d̄(k) converges. The GP algorithm using
the Armijo rule along the feasible direction guarantees such a
convergence [47] and the convergence criterion is given as

max abs
{

d̄(k+1) − d̄(k)
}
≤ ε, (22)

where max abs{.} denotes the maximal absolute value among
all elements of a vector and ε is a positive constant close to
0. The procedure of applying the GP technique to solve the
problem (10)-(12) is summarized in Table I. Subsequently, we
optimize over τ ∈ [0, 1] using a grid-search [26].
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TABLE I
PROCEDURE OF THE PROJECTED GRADIENT POWER

ALLOCATION APPROACH

1) Initialize power allocation vectors d̄i.
Choose step sizes. Set k = 0.

2) Set k := k + 1.

Calculate the gradient of (8) g(k)
i from (13) using (33)-(37).

Let d̂(k)
i = d̄

(k)
i + sg

(k)
i .

Project d̂(k)
i to obtain d̃

(k)
i using (17).

Update d̄
(k)
i using (19) and (20).

3) If convergent, end.
Else go to step 2.

For the bi-directional case, the ergodic mutual informa-
tion (8) and (23) are functions of averaged signal-to-noise ratio
(SNR) and nominal interference-to-noise ratio (INR). Under
the same INR for all interfering links, the desired link with
the higher SNR gets the whole data transmission slot, i.e.
τ = 1 and the link with the lower SNR does not transmit,
i.e. τ = 0. In other words, the optimal τ is either one or
zero depending on the average SNR. Though we presented
a general transmission protocol and solved the optimization
problem as a function of τ , this time-slot allocation is not fair
for the bi-directional case, so we assumed τ = 0.5 in our
simulations for the bi-directional system.

B. Approximation of Sum Ergodic Mutual Information

In this subsection, we introduce a much simpler expression
of Ī(d1,d2) than the one in (8), which in turn simplifies the
computation in solving the problem (10)-(12). This simplifi-
cation is based on an asymptotical form of Ī(d1,d2) when
N → ∞ as proposed in [36]. The proof of this asymptotical
form is as follows: In [48], SNR at the output of an MMSE
receiver is shown. And using the results in [48], the authors
in [49] obtain the asymptotic capacity of an optimum receiver
for randomly spread CDMA in fading channels. With a simple
SNR normalization and by applying [49, Theorem IV.1],
the asymptotic capacity of MIMO architectures impaired by
AWGN as well as spatially colored interference can be easily
found as the number of antennas go to infinity as shown in
Appendix of [36]. Applying the result in [36], the sum ergodic
mutual information in (7) can be approximated as

Ī (d1,d2)

=

2∑
i=1

2∑
t=1

τ(t)EH̃ii,H̃ij

{
log2

∣∣∣IN + ρiH̃iiDi(t)H̃
H
ii Σ̃i(t)

−1
∣∣∣}

=

2∑
i=1

2∑
t=1

τ(t)
[
EH̃i

{
log2

∣∣∣H̃iΛi(t)H̃
H
i + IN

∣∣∣}
−EH̃i

{
log2

∣∣∣H̃iΛ̄i(t)H̃
H
i + IN

∣∣∣}]
=

2∑
i=1

2∑
t=1

τ(t)

[
2N∑
k=1

log2

(
1 +Nαi,1(t)λtik
1 +Nαi,2(t)λ̄tik

)
+N log2

(
αi,2(t)

αi,1(t)

)
+N (αi,1(t)− αi,2(t)) log2 e

]
, (23)

Source Destination

Relay

Fig. 2. The signal flow diagram of a two-hop full-duplex MIMO relay
system.

where λtik and λ̄tik is defined in (8) and 0 < αi,1(t), αi,2(t) <
1 satisfies the following nonlinear equation

αi,1(t) +

2N∑
k=1

αi,1(t)λtik
Nαi,1(t)λtik + 1

= 1, (24)

αi,2(t) +

2N∑
k=1

αi,2(t)λ̄tik
Nαi,2(t)λ̄tik + 1

= 1. (25)

We can use the bisection method to compute αi,1(t), since the
left hand side of (24) is monotonically increasing functions of
αi,1(t). Same argument also holds for αi,2(t). It is shown in
the simulations that (23) is an accurate approximation of (8)
even when N is as small as three.

With the simplified closed-form expression (23), the prob-
lem (10)-(12) can be solved by the GP method similar to the
one developed in Section IV-A. We only need the gradient
of the objective function (23) with respect to dlm(t), l =
1, 2, m = 1, . . . , N, t = 1, 2, which is given by

∂Ī (d1,d2)

∂dlm(t)
= τ(t)

2∑
i=1

2N∑
k=1

[
Nαi,1(t)λ′tik

1 +Nαi,1(t)λtik

− Nαi,2(t)λ̄′tik
1 +Nαi,2(t)λ̄tik

]
, (26)

where λ′tik and λ̄′tik are defined in (36) and (37) in Appendix,
respectively. Note that since αi,1(t) and αi,2(t) are coefficients
and are not functions of dlm(t), they can be treated as
constants in the gradient expression [50].

V. FULL-DUPLEX RELAY SYSTEMS

In this section, we study the performance of a decode-and-
forward FD relay system that suffers from self-interference,
where all nodes are equipped with multiple antennas. The
source node transmits signal streams to the destination node
via the relay node and the direct link as shown in Fig. 2.
We assume that the instantaneous CSI is not used by the
transmitters and an imperfect CSI is used by the receiver. It
can be seen from Fig. 2 that the system model of a FD relay
is similar to that of the bi-directional FD system in Fig. 1.

For the relay system, we still assume that the relay uses
N transmit antennas and N receive antennas in either FD
mode or HD mode. For relay, the direction of reception
is generally different from the direction of transmission. If
directional antennas are used, the transmit antennas and the
receive antennas should face different directions. And hence,
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even if the HD mode is considered, the relay still should use
N antennas for transmission and N antennas for reception at
any given time. For power efficiency, directional antennas are
a much better choice than omnidirectional antennas.

After the partial self-interference cancelation at the relay
node, the received signal at the relay node and the destination
is given by

yR(t) = ỹ1(t), (27)
yD(t) = ỹ2(t) +

√
η2H̃21x1(t), (28)

where ỹi(t), i = 1, 2 is defined in (2). Unlike the relay node,
where the partial self-interference is possible, the destination
node can not cancel the interference term

√
η

2
H̃21x1(t)

resulting from the direct link, but adds it to the total noise
v2(t) in (3). (If the direct link is strong, the optimal scheme
may switch to direct transmission as shown in [35]. But we
do not consider this scenario). For fixed τ , the lower bound of
the averaged ergodic mutual information of the decode-and-
forward FD relay system over two time slots can be written
as [51]

Ī (Q1,Q2) = min
{
Ī1 (Q1,Q2) , Ī2 (Q1,Q2)

}
, (29)

where Īi (Q1,Q2) , i = 1, 2 is defined in (5). The only differ-
ence is that the covariance matrix of the total noise Σ̃2(t) (4) in
Ī2 (Q1,Q2) has the additional term η2H̃21Q1(t)H̃H

21 because
of the additional term in (28).

A. Maximization of the Ergodic Mutual Information of the FD
Relay System

In this subsection, we aim at maximizing the ergodic
mutual information (29) by choosing the transmit covariance
matrices Q1(t) and Q2(t), t = 1, 2, subject to per link
power constraints and subsequently optimize over τ . Similar
to Section IV, we consider fast fading channels in which the
statistical CSI is assumed to be known at the transmitting
nodes to design the optimal power schedules. This problem
can be formulated as

max
Q1,Q2

min
{
Ī1 (Q1,Q2) , Ī2 (Q1,Q2)

}
(30)

s.t.
2∑
t=1

τ(t)tr {Qi(t)} ≤ Pi, i = 1, 2, (31)

Qi(t) ≥ 0, i = 1, 2. (32)

Applying the link equalizing algorithm proposed in [26], the
objective function min

{
Ī1 (Q1,Q2) , Ī2 (Q1,Q2)

}
in (30)

can be replaced with a ζ-weighted sum-rate problem, i.e.,
ζĪ1 (Q1,Q2) + (1 − ζ)Ī2 (Q1,Q2), where ζ is computed
using bisection method (see Section IV-A of [26] for more
details about the link-equalizing algorithm). Therefore, the ζ-
weighted sum-rate optimization problem can be expressed as

max
Q1,Q2

2∑
i=1

ζ(i)Īi (Q1,Q2) (33)

s.t.
2∑
t=1

τ(t)tr {Qi(t)} ≤ Pi, i = 1, 2, (34)

Qi(t) ≥ 0, i = 1, 2, (35)

where ζ(1) = ζ and ζ(2) = 1 − ζ. Since the optimization
problem (33)-(35) has a similar structure with (9), GP method
proposed in Section IV-A can be applied to solve (33)-(35).
Note that at each bisection step to compute ζ, GP method is
used. The closed-form ergodic mutual information expression
of the relay system can be obtained similar to (8). Due to the
additional term in (28), the only modification required is on
the term λ2,2(t) in Λ2(t) and Λ̄2(t), which is modified as

λ2,2(t) = η2
d1(t) + σ2

t 1N
c2(t)

.

Similarly the gradient of the objective function (33) can be
obtained similar to (13). The only modification is on the terms
λ′t2k and λ̄′t2k, which are given at the top of the following page.

VI. SIMULATION RESULTS

In this section, we study the performance of the proposed
FD MIMO bi-directional communication system through nu-
merical simulations as a function of the averaged SNR,
the nominal INR, the number of antennas N , the channel
estimation errors σ2

e,ij and the transmitter impairments σ2
t . For

all simulation examples, we set the same channel estimation
error for all links, i.e., σ2

e,ij = σ2
e , i, j ∈ {1, 2}. The Armijo

parameters are selected as σ = 0.1, θ = 0.5, and the stopping
threshold of the GP algorithm is chosen as ε = 10−5. For
simplicity, we focus on the case of η1 = η2 = η and the same
average transmit power for each node (i.e., Pi = N, i = 1, 2).
Thus, the averaged SNR for all desired links is defined as
SNRi = ρiN, i = 1, 2 and the nominal INR for all interfering
links INRi = INR = ηN, i = 1, 2. Since the nominal INR
and the averaged SNRi, i = 1, 2 are quasi static, we assume
that their values can be obtained with relatively high precision,
so we treat them as deterministic parameters. To optimize the
HD scheme, we use the GP method to solve the problem (9)
with the HD constraint of Q1(2) = Q2(1) = 0. To show
the importance of using two time slots, we compare our FD
system using two data transmission slots (FD2) with the FD
system using only one data transmission slot (FD1). In the FD1
scheme, the same source covariance matrices are used for both
time slots, i.e., Q1(1) = Q1(2) and Q2(1) = Q2(2). Since
the GP algorithm only converges to a locally optimal solution,
we use the output of the HD scheme as the initialization
of the FD scheme. For the maximization problem (9), the
time-sharing coefficient τ can be optimized over the grid
τ ∈ {0.1, 0.2, . . . , 0.9} [26].

In the first example, we compare the exact and approximate
closed-form expressions of the lower bound ergodic mutual
information of the FD2 system using (8) and (23), respectively,
for different number of antennas. We set SNRi = SNR =
20dB, i = 1, 2, σ2

e = 0.01 and σ2
t = −30dB. It can be

seen from Fig. 3 that the ergodic mutual information of the
FD2 system is always equal to or greater than that of the HD
system (the reason is explained in Fig. 4). It can also be seen
from Fig. 3 that the asymptotic closed-form expression for the
ergodic mutual information is an accurate approximation even
when the number of antennas is as small as N = 3. Unless
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λ′t2k =



−ρ2
2c2(t)−2σ2

e,22

(
d2k(t) + σ2

t

)
, l = 2 and k 6= m and k ≤ N

ρ2
c2(t) − ρ

2
2c2(t)−2σ2

e,22

(
d2k(t) + σ2

t

)
, l = 2 and k = m and k ≤ N

−ρ2η2c2(t)−2σ2
e,22

(
d1k(t) + σ2

t

)
, l = 2 and k > N

−ρ2η2c2(t)−2σ2
e,21

(
d2k(t) + σ2

t

)
, l 6= 2 (l = 1) and k ≤ N

−η2
2c2(t)−2σ2

e,21

(
d1(k−N)(t) + σ2

t

)
, l 6= i (l = j) and k 6= N +m and k > N

η2
c2(t) − η

2
2c2(t)−2σ2

e,21

(
d1(k−N)(t) + σ2

t

)
, l 6= i (l = j) and k = N +m and k > N

.

λ̄′t2k =



−ρ2
2c2(t)−2σ2

e,22σ
2
t , l = 2 and k ≤ N

−ρ2η2c2(t)−2σ2
e,22

(
d1(k−N)(t) + σ2

t

)
, l = 2 and k > N

−ρ2η2c2(t)−2σ2
e,21σ

2
t , l 6= 2 (l = 1) and k ≤ N

−η2
2c2(t)−2σ2

e,21

(
d1(k−N)(t) + σ2

t

)
, l 6= i (l = j) and k 6= N +m and k > N

η2
c2(t) − η

2
2c2(t)−2σ2

e,21

(
d1(k−N)(t) + σ2

t

)
, l 6= i (l = j) and k = N +m and k > N

.
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Fig. 3. Ergodic mutual information comparison of the FD2 and HD systems
with different number of antennas versus INR. Here SNR = 20dB, σ2

e =
0.01, σ2

t = −30dB.

otherwise stated, hereafter we adopt the asymptotic closed-
form ergodic mutual information expression, since it has a
much lower computational complexity.

In the next example, we investigate the impact of INR on the
ergodic mutual information of the FD2, FD1, and HD schemes
with N = 3, SNR2 = 20dB, σ2

e = 0.01 and σ2
t = −30dB

for different SNR1 values. As expected, it can be observed
from Fig. 4 that the HD scheme is invariant to INR. For the
low-to-mid values of INR, the FD2 scheme has the FD system
behavior and it switches to the HD scheme at the high values
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Fig. 4. Ergodic mutual information comparison of the FD2, FD1, and HD
systems versus INR for different SNR2 values. HereN = 3, SNR1 = 20dB,
σ2
e = 0.01, σ2

t = −30dB.

of INR. The FD1 scheme performs similar to the FD2 scheme
at low-to-mid values of INR, but its performance drops below
that of the HD scheme for larger values of INR. The use of
two distinct data time slots gives the freedom to switch to the
HD signaling when the power of the self-interference channel
is high (where the HD scheme is optimal), while the FD1
system forces FD signaling at each time slot, regardless of the
strength of the self-interference channel [26], [27].

In our third example, we examine the value of INR that
FD2 converges to HD. Fig. 5 demonstrates that the behavior

ctikn (Λi(t)) =
(−1)N−n−1

n!
λN−1
tik

 2N∏
h6=k

(λtik − λtih)

−1

btikn (Λi(t)) , (30)

btikn (Λi(t)) =

{∑jr 6=k
1≤j1<...<jN−n−1≤2N λtij1 . . . λtijN−n−1

, n = 0, . . . , N − 2

1, n = N − 1,
(31)

Q(n, λtik) =

∫ ∞
0

ln(1 + x)xne−(x/λtik) dx (32)

=

n∑
r=0

n!(−1)(n−r)

(n− r)!
λr+1
tik e

1/λtikS1

(
1

λtik

)
+

n∑
r=1

r−1∑
s=0

r−s−1∑
h=0

n!(−1)(n−r)λh+s+2
tik

(n− r)!(r − s− h− 1)!(r − s)
.



10

−10 0 10 20 30 40 50 60
12

14

16

18

20

22

24

26

28

30

32

 

 

X: 40
Y: 13.76

INR (dB)

E
R

G
O

D
IC

 C
A

P
A

C
IT

Y
 (

bi
ts

/s
/H

z)

FD2 Approx, σ
e
2=0.01, σ

t
2= −30dB

FD2 Approx, σ
e
2=0.01, σ

t
2= −20dB

FD2 Approx, σ
e
2=0.001, σ

t
2= −30dB

HD Approx, σ
e
2=0.001, σ

t
2= −30dB

HD Approx, σ
e
2=0.01, σ

t
2= −30dB

HD Approx, σ
e
2=0.01, σ

t
2= −20dB

Fig. 5. Ergodic mutual information comparison of the FD2 and HD systems
versus INR for different σ2

e and σ2
t values. Here N = 3, SNR = 20dB.

of convergence depends on σ2
t and σ2

e values.
In our fourth example, we examine the ergodic mutual

information of the FD2 and HD systems versus SNRi =
SNR, i = 1, 2 for various fixed values of INR. We choose
N = 3, σ2

e = 0.01 and σ2
t = −30dB. It can be observed from

Fig. 6 that at low INR, the system operates in the FD mode
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Fig. 6. Ergodic mutual information comparison of the FD2 and HD systems
for different INR values versus SNR. Here N = 3, σ2

e = 0.01, σ2
t =

−30dB.

for all values of SNR, since SNR mostly dominates INR. At
high INR, the system operates in the HD mode at low values
of SNR (since INR dominates SNR), but switches to the FD
mode as SNR increases, since SNR starts to dominate INR.

For our fifth example, in Fig. 7, we examine the ergodic

c′tikn (Λi(t)) =
(−1)N−n−1(N − 1)

n!
λN−2
tik λ′tik

 2N∏
h6=k

(λtik − λtih)

−1

btikn (Λi(t))

− (−1)N−n−1

n!
λN−1
tik

2N∑
j=1,j 6=k


 2N∏
h6=k

(λtik − λtih)

−1

(λtik − λtij)−1
(
λ′tik − λ′tij

)
× btikn (Λi(t)) +

(−1)N−n−1

n!
λN−1
tik

 2N∏
h6=k

(λtik − λtih)

−1

b′tikn (Λi(t)) , (33)

Q′(n, λtik) =

n∑
r=0

n!(−1)(n−r)

(n− r)!
λrtikλ

′
tik

[
(r + 1)e1/λtikS1

(
1

λtik

)
− 1

λtik
e1/λtikS1

(
1

λtik

)
+ 1

]

+

n∑
r=1

r−1∑
s=0

r−s−1∑
h=0

n!(−1)(n−r)(h+ s+ 2)λh+s+1
tik

(n− r)!(r − s− h− 1)!(r − s)
λ′tik, (34)

b′tikn (Λi(t)) =



∑jr 6=k
1≤j1<...<jN−n−1≤2N λ

′
tij1

λtij2 . . . λtijN−n−1

+
∑jr 6=k

1≤j1<...<jN−n−1≤2N λtij1λ
′
tij2

. . . λtijN−n−1

+ . . .+
∑jr 6=k

1≤j1<...<jN−n−1≤2N λtij1λtij2 . . . λ
′
tijN−n−1

, n = 0, . . . , N − 2

0, n = N − 1,

(35)

λ′tik =



−ρ2
i ci(t)

−2σ2
e,ii

(
dik(t) + σ2

t

)
, l = i and k 6= m and k ≤ N

ρi
ci(t)
− ρ2

i ci(t)
−2σ2

e,ii

(
dik(t) + σ2

t

)
, l = i and k = m and k ≤ N

−ρiηici(t)−2σ2
e,iiσ

2
t , l = i and k > N

−ρiηici(t)−2σ2
e,ij

(
dik(t) + σ2

t

)
, l 6= i (l = j) and k ≤ N

−η2
i ci(t)

−2σ2
e,ijσ

2
t , l 6= i (l = j) and k > N

. (36)

λ̄′tik =


−ρ2

i ci(t)
−2σ2

e,iiσ
2
t , l = i and k ≤ N

−ρiηici(t)−2σ2
e,iiσ

2
t , l = i and k > N

−ρiηici(t)−2σ2
e,ijσ

2
t , l 6= i (l = j) and k ≤ N

−η2
i ci(t)

−2σ2
e,ijσ

2
t , l 6= i (l = j) and k > N

. (37)
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mutual information of the FD2 and HD systems versus
SNRi = SNR, i = 1, 2 for various values of σ2

t . We choose
N = 3, INR = 20dB and σ2

e = 0.01.
In the next example, we consider MIMO FD relay systems.

We obtain similar results as MIMO bi-directional FD system
as shown in Fig. 8. In particular, the relay node operates in
the FD mode when the self-interference is weak, and as the
self-interference increases, we observe a transition of the relay
node to the HD mode. Similar to [26], we can also observe
that, compared to using fixed value τ = 0.5, the optimization
of τ gives a small rate improvement.

For our last example, in Fig. 9, we investigate the role of
channel estimation errors on the lower bound of the ergodic
mutual information for MIMO FD relay systems.

VII. CONCLUSION

In this work, we have studied the ergodic mutual in-
formation maximization of two FD MIMO radio systems
(bi-directional system and relay system) that suffer from a
(digitally manageable residual) self-interference under a fast
fading channel model. The source covariance matrices are
treated as a function of time and/or frequency within any
given time/frequency band so that both spatial and temporal
freedoms of the source covariance matrices can be exploited.
Since the globally optimal solution is difficult to obtain due to
the non-convex nature of the problem, a gradient projection al-
gorithm is developed to optimize the power allocation vectors
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Fig. 9. Ergodic mutual information comparison of the FD2 and HD systems
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at two respective nodes with the knowledge of statistical CSI
useful for the transmitters. In addition to an exact closed-form
ergodic mutual information expression, we introduced a much
simpler asymptotic closed-form ergodic mutual information
expression, which is shown to be an accurate approximation
and in turn simplifies the computation of the power allocation
vectors. It is shown through numerical simulations that the
ergodic mutual information increases with the number of
antennas, decreases as the channel estimation error and/or
the transmitter distortion increases. Moreover, it is demon-
strated that at a high self-interference power level, the optimal
power schedule reduces to the HD mode, and at a low self-
interference power level, the optimal power schedule switches
to the FD mode.

APPENDIX

See (30)-(32) shown at the bottom of page 9 for the
parameters ctikn (Λi(t)) and Q (n, λtik) in (8). See (33)-(37)
shown at the bottom of the previous page for the definition of
the parameters in (13).
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