
 ©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for 
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, 
or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195648108?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Asymptotic quotient observers for 2-D Fornasini Marchesini models

Lorenzo Ntogramatzidis and Michael Cantoni

Abstract— The concepts of conditioned-invariant, de-
tectability and input-containing subspaces are developed
within the context of observer design for 2-D Fornasini-
Marchesini models in a general form. Specifically, a link
is establised between these subspaces and the existence of
so-called quotient observers, which estimate the local state
modulo a conditioned invariant subspace. We also consider
the synthesis of observers that are asymptotic in the sense
that the estimation error (modulo a conditioned invariant
subspace) tends to zero away from the boundary values.

I. INTRODUCTION

Conditioned invariant subspaces for 1-D systems were

introduced by Basile and Marro in [1] as the dual of

controlled invariant subspaces. The role of such subspaces

in relation to the problem of estimation in the presence

of unknown input signals was investigated by the same

authors in [2]. An alternative definition of conditioned

invariance was proposed by Willems in terms of the

existence of certain observers [25]; also see the recent

textbooks [3, Chapter 4] and [24, Chapter 5].

The purpose of this paper is to first extend the definition

of conditioned invariance and input-containing subspaces

given for 1-D systems in [1], to Fornasini-Marchesini

models [7], [10] in the general form

xi+1, j+1 = A0 xi, j +A1 xi+1, j +A2 xi, j+1

+B0 ui, j +B1 ui+1, j +B2 ui, j+1,

yi, j = C xi, j +Dui, j,

(1)

of Kurek [18]. Our approach to defining conditioned

invariant subspaces is similar to that of Willems in that

we ultimately seek an observer of the form1

ωi+1, j+1 = K0ωi, j +K1ωi+1, j +K2ωi, j+1

+L0yi, j +L1yi+1, j +L2yi, j+1, (2)

so that the estimation error ei, j � Qxi, j −ωi, j, for some

full row-rank matrix Q,2 asymptotically approaches zero

away from standard boundary conditions. To this end, we

develop notions of conditioned-invariant, detectability and
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1This is different to the less general form considered in [22].
2That is, the error modulo the null space of Q.

input-containing subspaces, which turn out to be related

to the existence of matrices Λi and Γi for which

Q
[

A0 A1 A2

]

−
[

Λ0 Λ1 Λ2

]

diag(C,C,C)

=
[

Γ0 Γ1 Γ2

]

diag(Q,Q,Q).

In this way, when there are no inputs (i.e. ui, j = 0), with

Li = Λi and Ki = Γi the estimation error satisfies

ei+1, j+1 =
(

Q
[

A0 A1 A2

]

−
[

L0 L1 L2

]

diag(C,C,C)
)

[

xi, j
xi+1, j
xi, j+1

]

−
[

K0 K1 K2

]

[

ωi, j
ωi+1, j
ωi, j+1

]

= Γ0ei, j +Γ1ei+1, j +Γ2ei, j+1.

That is, the dynamics of the estimation error can be

expressed as an autonomous FM model in Kurek form.

It is interesting to note that, unlike the 1-D case, the

required notions of conditioned invariance are not dual

of the notion of controlled invariance developed in [6],

[21]. This is because the obvious dual of (1) is not in the

same form.

Notation. We denote the origin of R
n by 0n. The image,

kernel, transpose and Moore-Penrose inverse of a matrix

M are denoted imM, ker M, M⊤ and M†, respectively. The

n×m zero matrix is denoted by 0n×m. We define MD �

diag(M,M,M), and, accordingly, given a subspace J ⊆
R

n, the symbol JD denotes the subspace J×J×J of

R
3n, where × is the Cartesian product. Given the vector

ξ ∈R
n, the symbol ξ/J denotes the canonical projection

of ξ on the quotient space R
n/J . Finally, given a triple

of matrices (M0,M1,M2), we define MH � [M0 M1 M2 ]
and MV � [M⊤

0 M⊤
1 M⊤

2 ]⊤.

II. INVARIANT SUBSPACES FOR FM MODELS

We begin by considering the autonomous FM model

xi+1, j+1 = A0 xi, j +A1 xi+1, j +A2 xi, j+1. (3)

As boundary conditions for (3) we use xi, j = bi, j ∈R
n for

all (i, j) ∈ B and some constants bi, j ∈ R
n, where B �

({0}×N)∪ (N×{0}). 3

A subspace J of R
n is said to be (A0,A1,A2)-invariant

if J is Ai-invariant for i ∈ {0,1,2} in the usual 1-D

sense; i.e., Ai x ∈ J for all x ∈ J and i ∈ {0,1,2}. The

following provides geometric and matrix conditions for

invariance.

3Other choices of B, for which a unique solution of (3) exists, are
possible; see [11]. The results in this paper can be adapted to these cases.
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Lemma 2.1: The following are equivalent:

1) J is (A0,A1,A2)-invariant;

2) AH JD ⊆ J ;

3) There exist L0,L1,L2 ∈R
(n−r)×(n−r) such that QAi =

Li Q for i ∈ {0,1,2}, where Q ∈ R
(n−r)×n is a full

row-rank matrix such that ker Q = J , i.e., QAH =
LH QD.

Proof: 1) =⇒ 2) For ξi ∈ J , i ∈ {0,1,2}, it fol-

lows that Aiξi ∈ J , and hence, A0ξ0 + A1ξ1 + A2ξ2 =

AH

[

ξ⊤
0 ξ⊤

1 ξ⊤
2

]⊤
∈ J .

2) =⇒ 1) Suppose there exist an i ∈ {0,1,2} and an

ξ ∈ J such that Aiξ /∈ J ; i.e., J is not (A0,A1,A2)-

invariant. Then AH

[

ξ⊤ 0 0
]⊤

/∈ J , which contradicts

2).

2) ⇔ 3) Note that 2) is equivalent to kerQD ⊆ kerQAH , by

which the result holds, since for any matrices M ∈ R
p×m

and N ∈ R
q×p, kerM ⊆ kerN if and only if there exist an

L ∈ R
q×m such that N = LM.

The following theorem is the 2-D counterpart of a well-

known result (see [1]) concerning the decomposition of a

1-D system matrix with respect to an invariant subspace.

Theorem 2.1: The following are equivalent:

1) There exists an r-dimensional subspace J ⊆R
n that

is (A0,A1,A2)-invariant;

2) There exists a similarity transformation S ∈ R
n×n

such that for each i ∈ {0,1,2}

Âi � SAi S−1 =

[

Â11
i Â12

i

0(n−r)×r Â22
i

]

. (4)

Proof: In view of Lemma 2.1, the proof follows that

of Theorem 2.1 in [21], via a similarity transformation T

such that T−1 = S, where S is any non-singular matrix for

which QS−1 = [0(n−r)×r I(n−r) ], where Q is a full row-rank

matrix such that kerQ = V . In particular, with respect to

the corresponding basis, the identities QAi = LiAi in 3) of

Lemma 2.1 can be expressed as

[

0(n−r)×r I(n−r)

]

[

Â11
i Â12

i

0 Â22
i

]

= Li

[

0(n−r)×r I(n−r)

]

,

by which Li = Â22
i .

A. Invariant Subspaces and Local-State Trajectories

Lemma 2.2: Consider an (A0,A1,A2)-invariant sub-

space J . A boundary condition xi, j = bi, j ∈ J , for

(i, j) ∈ B, gives rise to xi, j ∈ J for all i, j ≥ 0.

Proof: In the set of coordinates corresponding to the

similarity transformation S in Theorem 2.1, it follows that
[

x′i+1, j+1

x′′i+1, j+1

]

=

[

Â11
0 Â12

0

0 Â22
0

][

x′i, j

x′′i, j

]

+

[

Â11
1 Â12

1

0 Â22
1

][

x′i+1, j

x′′i+1, j

]

+

[

Â11
2 Â12

2

0 Â22
2

][

x′i, j+1

x′′i, j+1

]

. (5)

Note that any boundary condition xi, j = bi, j ∈ J is such

that x′′i, j = 0 for (i, j) ∈ B. Moreover, by (5), x′′i, j = 0 for

all i, j ≥ 0. Hence, xi, j ∈ J for all i, j ≥ 0.

In the basis corresponding to S in the proof of

Lemma 2.2, whereby

[

x′i, j

x′′i, j

]

= Sxi, j, the component x′i, j

is the projection of the local state xi, j onto the invariant

subspace J , while x′′i, j is the canonical projection on to

the quotient space R
n/J .

B. Internal and External Stability of Invariant Subspaces

A necessary and sufficient condition for asymptotic

stability of (3) – often said asymptotic stability of the

triple (A0,A1,A3) – is that ∀(z1,z2) ∈ P

det(In −A0 z1 z2 −A1 z2 −A2 z1) �= 0, (6)

where P � {(ζ1,ζ2) ∈ C × C | |ζ1| < 1 and |ζ2| < 1};

this is equivalent to xi, j → 0 as i+ j → ∞. Various, more

computationally tractable, sufficient stability conditions

have been proposed over the last two decades, in terms

of Lyapunov equations and/or spectral radius conditions

of certain matrices, see e.g. [14], [5]. In the very recent

literature, new necessary and sufficient criteria have ap-

peared for asymptotic stability in terms of conditions that

can be checked in finite terms, see [27], [9]. For the sake

of argument and clarity, however, the following simple

sufficient condition for asymptotic stability, expressed in

terms of an linear matrix inequality (LMI), will be used

herein:

Lemma 2.3: ([14]) The triple (A0,A1,A2) is asymptot-

ically stable if three symmetric positive definite matrices

P0, P1 and P2 exist such that:

diag(P0,P1,P2)−A⊤
H (P0 +P1 +P2)AH > 0. (7)

We now show that stability of (3) can be “split” into

two parts with respect to an invariant subspace J ⊆R
n×n.

Expressing (3) in the set of coordinates corresponding to

the similarity transformation S in Theorem 2.1,

det(In − Â0 z1 z2 − Â1 z2 − Â2 z1)

= det(I − Â11
0 z1 z2 − Â11

1 z2 − Â11
2 z1)

·det(I − Â22
0 z1 z2 − Â22

1 z2 − Â22
2 z1).

It follows that (3) is asymptotically stable if and only

if (Â11
0 , Â11

1 , Â11
2 ) and (Â22

0 , Â22
1 , Â22

2 ) are asymptotically

stable.

Definition 2.1: The (A0,A1,A2)-invariant subspace J
is

• internally stable if the corresponding triple

(Â11
0 , Â11

1 , Â11
2 ) is asymptotically stable.

• externally stable if the corresponding triple

(Â22
0 , Â22

1 , Â22
2 ) is asymptotically stable.

Hence, (3) is asymptotically stable if and only if any

invariant subspace is both internally and externally stable.

Corollary 2.1: Given a subspace J of R
n, let Q ∈

R
(n−r)×n be a full row-rank matrix such that ker Q =

J . Then J is an externally stable (A0,A1,A2)-invariant

subspace if and only if an asymptotically stable triple

(L0,L1,L2) exists such that QAi = Li Q for all i∈ {0,1,2}.
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Proof: See last part of the proof of Theorem 2.1, whereby

Â22
i = Li.

III. CONDITIONED INVARIANT SUBSPACES

Now we focus on the definition of conditioned invari-

ant subspaces for (1). Such subspaces are shown to be

related to the existence of a so-called quotient observer as

discussed in the introduction.

Definition 3.1: The subspace S ⊆ R
n is conditioned

invariant for (1) if AH(SD ∩ker CD) ⊆ S .

It is can be seen that the set of conditioned invariant sub-

spaces is closed under subspace intersection. Its smallest

element is 0n, its largest element is R
n.

Lemma 3.1: Let S be an s-dimensional subspace of

R
n, and let Q ∈ R

(n−s)×n be such that ker Q = S with Q

of full row-rank. The following statements are equivalent:

1) the subspace S is conditioned invariant for (1);

2) there exist matrices Γ = [Γ0 Γ1 Γ2 ]∈R
(n−s)×3(n−s) and

Λ = [Λ0 Λ1 Λ2 ] ∈ R
(n−s)×3p such that

QAH = ΓQD +ΛCD; (8)

3) there exist a matrix G = [G0 G1 G2 ]∈R
n×3p such that

(AH +GCD)SD ⊆ S . (9)

Proof: 1) =⇒ 2). Since S is such that AH(SD ∩

ker CD) ⊆ S , it follows that ker
[

QD
CD

]

⊂ kerQAH and as

such, there exist Γ∈R
(n−s)×3(n−s) and Λ∈R

(n−s)×3p such

that QAH = ΓQD +ΛCD; see Proof of Lemma 2.1. 2) =⇒
3). Equation (9) follows from (8) with any G such that

Λ = −QG. 3) =⇒ 1). This follows by defintion.

Property 3) in Lemma 3.1 means that S is conditioned

invariant for (1) if and only if there exists an output-

injection matrix G = [G0 G1 G2 ] ∈ R
n×3p such that S is

a (A0 +G0 C,A1 +G1C,A2 +G2C)-invariant subspace. Let

Γ and Λ be such that (8) holds, which can be written as

QAH =
[

Γ Λ
]

[

QD

CD

]

, (10)

a linear equation which can be solve for Γ and Λ. Given

a conditioned invariant subspace, the solutions of (10) are

given by

[

Γ Λ
]

= QAH

[

QD

CD

]†

+K H, (11)

where the rows of H span the null-space of
[

Q⊤
D C⊤

D

]

and K is an arbitrary matrix of suitable size. When
[

QD

CD

]

is full-rank, matrix K has zero rows; i.e., the only solution

of (10) is [Γ Λ ] = QAH

[

QD

CD

]†

. By (9), Γ̃ exists such that

Q(AH +GCD) = Γ̃QD. (12)

We now investigate the relation between the pairs (Γ,Λ)
and (G, Γ̃) satisfying (10) and (12), respectively. First,

notice that Given a pair (G, Γ̃) such that (12) holds, then

(10) is satisfied with Γ = Γ̃ and Λ = −QG. Conversely,

given a pair of matrices (Γ,Λ) such that (10) holds, then

(12) is satisfied with Γ̃ = Γ and with any G such that

Λ = −QG. As such, no generality is lost by assuming

Γ̃ = Γ, and by representing the set of all friends of the

conditioned invariant subspace S as the set of matrices

G ∈ R
n×3p satisfying Λ = −QG, where Λ ∈ R

(n−s)×3p is

any matrix for which another matrix Γ ∈ R
(n−s)×3(n−s)

exists so that (10) holds. For any pair (Γ,Λ) such that

(10) holds, the solutions of the linear equation Λ =−QG

are parameterised as

G = GΛ + G̃, (13)

where GΛ �−Q⊤(QQ⊤)−1 Λ and G̃ is any n×3p matrix

such that QG̃ = 0, or, equivalently, such that imG̃⊆ ker Q.

The choice of G̃ affects the external stability of S , but not

the internal stability of S . Similarly, GΛ can affect the

internal but not the external stability of S . With reference

to the proof of Corollary 2.1, note that with S �

[

Sc

Q

]

,

where the rows of Sc are linearly independent from those

of Q, so that QS−1 = [0 I ], we have that for all i∈ {0,1,2}

S(Ai +Gi C)S−1 =

[

∆11
i (Λ, G̃) ∆12

i (Λ, G̃)
0 ∆22

i (Λ, G̃)

]

. (14)

Lemma 3.2: For all i ∈ {0,1,2}, the matrix ∆22
i (Λ, G̃)

does not depend on G̃, and the matrix ∆11
i (Λ, G̃) does not

depend on the particular Λ which satisfies (10) for some

Γ.

Proof: First, let G̃1, G̃2 be such that QG̃1 = 0 and QG̃2 =
0. From (14) we find that

[

∆11
i (Λ, G̃1)−∆11

i (Λ, G̃2) ∆12
i (Λ, G̃1)−∆12

i (Λ, G̃2)
0 ∆22

i (Λ, G̃1)−∆22
i (Λ, G̃2)

]

= S (Ai +GΛ,i C + G̃1)S−1 −S (Ai +GΛ,i C + G̃2)S
−1

=

[

Sc

Q

]

(G̃1 − G̃2)C S−1,

so that

Q(G̃1 − G̃2)Ci T−1

=
[

0 ∆22
i (Λ, G̃1)−∆22

i (Λ, G̃2)
]

= 0,

since QG̃1 = 0 and QG̃2 = 0.

Now, from (14), it is follows that

Sc

(

Ai −Q⊤(QQ⊤)−1 ΛC + G̃C
)

(15)

= ∆11
i (Λ, G̃)Sc +∆12

i (Λ, G̃)Q.

Let Λa and Λb such that QAH = Γ⋆ QD + Λ⋆ Ĉ, for ⋆ ∈
{a,b}. The difference of these equations leads to (Λa −
Λb)CD = −(Γa − Γb)QD. By partitioning (Γa − Γb) as

[Ξ0 Ξ1 Ξ2 ], we get (Λa −Λb)CD = −Ξi Q. Writing (15)

with respect to Λa and Λb and by computing the difference
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yields

Sc

(

−Q⊤(QQ⊤)−1(Λa −Λb)CD

)

=
(

∆11
i (Λa, G̃)−∆11

i (Λb, G̃)
)

Sc

+
(

∆12
i (Λa, G̃)−∆12

i (Λb, G̃)
)

Q,

so that

Sc Q⊤(QQ⊤)−1∆i Q

=
(

∆11
i (Λa, G̃)−∆11

i (Λb, G̃)
)

Sc

+
(

∆12
i (Λa, G̃)−∆12

i (Λb, G̃)
)

Q.

Since Q and Sc have linearly independent rows, we find

Sc Q⊤(QQ⊤)−1Ξi Q =
(

∆12
i (Λa, G̃)−∆12

i (Λb, G̃)
)

Q

and
(

∆11
i (Λa, G̃)−∆11

i (Λb, G̃)
)

Sc = 0,

the second yielding ∆11
i (Λa, G̃) = ∆11

i (Λb, G̃) since Sc has

linearly independent rows.

Conditioned invariance is linked to the exisitence of 2-D

quotient observers [22]. For an observer of the form (2) for

(1) with ui, j = 0,4 it follows that with ei, j := Qxi, j −ωi, j,

ei+1, j+1 = (QAH −LHCD)

[

xi, j
xi+1, j
xi, j+1

]

+KH

[

ωi, j
ωi+1, j
ωi, j+1

]

. (16)

For KH = Γ and LH = Λ, where (Λ,Γ) satisfy (10), this

becomes

ei+1, j+1 = ΓQD

[

xi, j
xi+1, j
xi, j+1

]

+Γ

[

ωi, j
ωi+1, j
ωi, j+1

]

= Γ0ei, j +Γ1ei+1, j +Γ2ei, j+1, (17)

so that with observer boundary conditions ωi, j = xi, j/S ,

for (i, j) ∈ B, it follows that ei, j = 0 for (i, j) ∈ B,

and hence, all (i, j) ∈ N×N by (17). If (Γ0,Γ1,Γ2) is

asymptotically stable, then the observer is said to be

asymptotic in the sense that ei, j → 0 as i + j → ∞ for

any boundary conditions. In view of Corollary 2.1, part

2), we are therefore interested in finding G = [G0 G1 G2 ]
such that S is an externally stable (A0 + G0C,A1 +
G1C,A2 + G2C)-invariant subspace; i.e., such that there

exists an asymptotically stable triple (Γ0,Γ1,Γ2) for which

Q(AH +GCD) = ΓQD. When such a G exists, S is called

a detectability subspace.

For a given conditioned invariant S , write (11) as
[

Γ0 Γ1 Γ2 Λ
]

=
[

V0 V1 V2 V3

]

+K
[

H0 H1 H2 H3

]

,

where
[

V0 V1 V2 V3

]

= QAH

[

QD

CD

]†

and the rows

of
[

H0 H1 H2 H3

]

, partitioned comformably with
[

Γ0 Γ1 Γ2 Λ
]

, span the kernel of
[

Q⊤
D C⊤

D

]

. If this

null space is zero, i.e., if SD + ker CD = R
3n, there is

4Recall that this is more general than the form considered in [22].

only one solution to (10), so that there are no degrees

of freedom in the choice of the triple (Γ0,Γ1,Γ2). In

this case, if (Γ0,Γ1,Γ2) = (V0,V1,V2) is stable, then with

the corresponding Λ = [Λ0 Λ1 Λ2 ] = V3, the matrix GΛ �

−Q⊤(QQ⊤)−1 Λ = [GΛ,0 GΛ,1 GΛ,2 ] is such that S is an

externally stable (A0 + GΛ,0 C,A1 + GΛ,1C,A2 + GΛ,2C)-
invariant subspace. On the other hand, if the triple

(Γ0,Γ1,Γ2) = (V0,V1,V2) is not asymptotically stable, the

subspace S is not a detectability subspace.

Now, when SD + ker CD ⊂ R
3n, the problem we need

to solve is to find a matrix K such that the resulting

triple (Γ0,Γ1,Γ2) = (V0 + KH0,V1 + KH1,V2 + KH2) is

asymptotically stable; the corresponding Λ = [Λ0 Λ1 Λ2 ] =
V3 + KH3, for which (Γ,Λ) is a solution of (8), is such

that GΛ � −Q⊤(QQ⊤)−1 Λ, yielding Q(AH + GΛCD) =
ΓQD, so that S is an externally stable (A0 +GΛ,0C,A1 +
GΛ,1C,A2 + GΛ,2C)-invariant subspace. Towards charac-

terising a subset of such matrices K, we can rewrite the

sufficient condition for asymptotic stability in Lemma 2.3

for the triple (Γ0,Γ1,Γ2) as shown below




Φ 0 0

0 Ψ 0

0 0 Θ−Φ−Ψ



−





Γ⊤
0

Γ⊤
1

Γ⊤
2



Θ
[

Γ0 Γ1 Γ2

]

> 0,

for some Φ � P0 > 0, Ψ � P1 > 0 and Θ � P0 +P1 +P2 > 0.

Standard manipulation and Γi = Vi + KHi, for i = 0,1,2,

yield the equivalent condition








Φ 0 0 Ṽ⊤
i

0 Ψ 0 Ṽ⊤
1

0 0 Θ−Φ−Ψ Ṽ⊤
2

Ṽ0 Ṽ1 Ṽ2 Θ









> 0 (18)

for some Φ > 0, Ψ > 0, Θ > 0 and Π of suitable

dimensions, where Ṽi � ΘVi +ΠHi and Π = ΘK.

Theorem 3.1: Let S be a conditioned invariant

subspace for (1), [V0 V1 V2 V3 ] = QAH

[

QD

CD

]†

and

[H0 H1 H2 H3 ] be such that its rows are a basis for the

kernel of
[

Q⊤
D C⊤

D

]

. The subspace S is a detectability

subspace if there exist Φ = Φ⊤ > 0, Ψ = Ψ⊤ > 0, Θ =
Θ⊤ > 0 and Π of suitable dimensions such that (18) holds.

Moreover, given a quadruple (Θ,Φ,Ψ,Π) in the convex

set defined by (18), a matrix K for which the triple

(Γ0,Γ1,Γ2) is asymptotically stable is given by K =
Θ−1 Π⊤.

IV. INPUT-CONTAINING SUBSPACES

Now we turn our attention to input-containing sub-

spaces, which are particular types of conditioned in-

variant subspaces useful in the context of various fil-

tering/estimation problems, like unknown-input observa-

tion [22].

Definition 4.1: We define a input-containing subspace

S for (1) as a subspace of R
n such that

[

AH BH

]

(

(SD ×R
3m)∩ker

[

CD DD

]

)

⊆ S .
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The set of input-containing subspaces for (1) is de-

noted by the symbol S0. The intersection of two input-

containing subspaces is input-containing. It follows that

the set S0 is closed under subspace intersection. The same

is not true for subspace addition. The intersection of all

the input-containing subspaces of Σ is the smallest input-

containing subspace of Σ, and is usually denoted by S ⋆.

Lemma 4.1: Given the s-dimensional subspace S of

R
n, let Q ∈ R

(n−s)×n be such that kerQ = S with Q of

full row-rank. The following statements are equivalent:

1) the subspace S is input-containing for (1);

2) two matrices Γ ∈ R
(n−s)×3(n−s) and Λ ∈ R

(n−s)×3p

exist such that

Q
[

AH BH

]

=Γ
[

QD 0
]

+Λ
[

CD DD

]

; (19)

3) a matrix G ∈ R
n×3p exists such that

[

AH +GCD BH +GDD

]

(

SD ×R
3m

)

⊆ S (20)

Proof: The result follows in the same way as the result

in Lemma 3.1.

As before, given an input-containing subspace it is not

difficult to see that there exists a quotient observer of the

form (2) for (1) in the presence of unkown inputs (possibly

non-zero). In particular, it follows that

ei+1, j+1 = QAH

[

xi, j
xi+1, j
xi, j+1

]

+QBH

[

ui, j
ui+1, j
ui, j+1

]

−Γ

[

ωi, j
ωi+1, j
ωi, j+1

]

−QGCD

[

xi, j
xi+1, j
xi, j+1

]

−QGDD

[

ui, j
ui+1, j
ui, j+1

]

= Q
[

AH +GCD BH +GDD

]









[

xi, j
xi+1, j
xi, j+1

]

[

ui, j
ui+1, j
ui, j+1

]









−Γ ω̂(i, j)

= Γ0 ei, j +Γ1 ei+1, j +Γ2 ei, j+1,

where (20) has been used. Moreover if the input-

containing subspace is a detectability subspace then the

observer is asymptotic.

The following is an algorithm for computing the small-

est input-containing subspace S ⋆.

Algorithm 4.1: The sequence of subspaces (S i)i∈N

described by the recurrence

S 0 = 0n

S i =
[

AH BH

]

(

(S i−1
D ×R

3m)∩ker
[

CD DD

]

)

,

for i > 0, is monotonically non-increasing. An integer

k≤n−1 exists such that S k+1 =S k. For such k, the

identity S ⋆ =S k holds.
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