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Abstract—We investigate the transceiver design for inter-
ference two-way amplify-and-forward multiple-input multiple-
output relay communication systems. A novel algorithm with a
closed-form solution is developed to optimize the relay precoding
matrix based on its optimal structure and a modified transmission
power constraint at the relay node. An iterative algorithm is
proposed to minimize the sum mean-squared error of the signal
waveform estimation. Simulation results demonstrate that the
proposed algorithm achieves a better performance-complexity
tradeoff compared with existing techniques.

Index Terms—Interference channel, MIMO relay, MMSE.

I. INTRODUCTION

Two-way multiple-input multiple-output (MIMO) relay
communications have attracted much research interest recently
[1]. Thanks to the technique of analog network coding [2],
two-way information exchange can be achieved in two time
slots with half-duplex relay node(s). For single user two-way
amplify-and-forward (AF) MIMO relay systems with a single
relay node, the optimal source and relay matrices have been
developed in [3] to maximize the achievable weighted sum
rate. An iterative source and relay matrices design algorithm
has been proposed in [4] by solving convex quadratically
constrained quadratic program (QCQP) problems. A unified
framework has been developed in [5] to optimize the source
and relay matrices for a broad class of frequently used
objective functions. The impact of mean-squared error (MSE)
constraints on two-way MIMO relay systems has been stud-
ied in [6]. For a single-user two-way MIMO relay system
with multiple parallel relay nodes, a gradient descent based
transceiver design algorithm has been proposed in [7].

Zero-forcing (ZF) and minimum MSE (MMSE) based
transceiver design algorithms have been developed in [8] for
interference two-way MIMO relay systems, where each user
transmits a single data stream. An MMSE based iterative
transceiver design algorithm has been proposed in [9] where
each user may transmit multiple data streams. In [10], a pro-
jection based separation of multiple operators (ProBaSeMo)
relay transmit strategy has been developed which provides a
significant gain in terms of the sum rate. In [11], a general
cellular two-way relay network has been investigated which
includes many two-way relay networks as special cases.

In this letter, we investigate the transceiver design for in-
terference two-way MIMO relay systems where multiple two-
way links communicate simultaneously with the aid of a single
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relay node. Due to its attractive features [12], [13], the MMSE
is chosen as the design criterion. We propose an iterative
algorithm to optimize the source, relay, and receiver matrices
to suppress the interference and minimize the sum MSE
(SMSE) of the signal waveform estimation at the receivers,
subjecting to transmission power constraints at the source and
relay nodes.

The contributions of this letter compared with existing
works such as [8]-[11] are: (1) We derive the optimal struc-
ture of the relay precoding matrix. (2) By modifying the
power constraint at the relay node, we propose a novel
relay precoding matrix optimization algorithm with a closed-
form solution. (3) The proposed iterative transceiver design
algorithm provides a better performance-complexity tradeoff
which is very useful for practical interference two-way MIMO
relay communication systems.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We study an interference two-way MIMO relay communica-
tion system where K user pairs communicate simultaneously
with the aid of a single relay node as shown in Fig. 1. For
simplicity, the direct links between user pairs are ignored as
they undergo much larger path attenuation compared with the
links via the relay node. The kth node at site 1 and site 2 is
equipped with Nk,1 and Nk,2 antennas, respectively, and the
number of antennas at the relay node is Nr.
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Fig. 1. Block diagram of an interference two-way MIMO relay system.

We assume that the relay node works in the practical half-
duplex mode so the communication between the user pairs
is completed in two time slots. In the first time slot, the kth
nodes at site i = 1, 2, encodes the d× 1 information-carrying
symbol vector sk,i with the Nk,i × d source precoding matrix
Bk,i before transmitting the Nk,i × 1 precoded signal vector

xk,i = Bk,isk,i, k = 1, · · · ,K, i = 1, 2 (1)

to the relay node. The received signal vector at the relay node
is given by

yr =
K∑

k=1

2∑
i=1

Hk,ixk,i + nr (2)

where Hk,i is the Nr × Nk,i up-link MIMO channel matrix
between the kth node at site i and the relay node, nr is the
Nr × 1 additive white Gaussian noise (AWGN) vector at the
relay node with zero mean and covariance matrix E[nrn

H
r ] =

σ2
rINr . Here (·)H denotes matrix Hermitian transpose, E[·]
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stands for the statistical expectation, and In denotes the n×n
identity matrix.

In the second time slot, the relay node amplifies the received
signal vector with the Nr ×Nr precoding matrix F as

xr = Fyr. (3)

The precoded signal vector xr is broadcast back to the nodes
at site i = 1, 2. The received signal vector at the kth node of
site i is given by

yk,i = Gk,iFyr + nk,i, k = 1, · · · ,K, i = 1, 2 (4)

where Gk,i is the Nk,i×Nr down-link MIMO channel matrix
between the relay node and the kth node at site i, nk,i is the
Nk,i × 1 AWGN vector at the kth node at site i with zero
mean and covariance matrix E[nk,in

H
k,i] = σ2

k,iINk,i
.

Due to their simplicity, linear receivers are used to retrieve
the transmitted signals. The estimated signal vector at the kth
node of site i can be written as

s̄k,i =WH
k,iyk,i, k = 1, · · · ,K, i = 1, 2 (5)

where Wk,i is an Nk,i × d receiver matrix at the kth
node of site i. As each node has the knowledge of its
own transmitted signal vector, the self-interference (SI)
WH

k,iGk,iFHk,iBk,isk,i in (5) can be easily canceled. From
(1)-(5), the estimated signals after removing the SI become

ŝk,i =WH
k,iGk,iFHk,̄iBk,̄isk,̄i︸ ︷︷ ︸+WH

k,in̄k,i︸ ︷︷ ︸
desired signal noise

+WH
k,iGk,iF

K∑
m ̸=k

(Hm,̄iBm,̄ism,̄i+Hm,iBm,ism,i)︸ ︷︷ ︸(6)

interference

where ī = 1 for i = 2, ī = 2 for i = 1, and n̄k,i = Gk,iFnr+
nk,i is the total noise at the kth node of the ith site.

The signal vector transmitted from each source node and
the relay node must satisfy the transmission power constraints

tr
(
FE[yry

H
r ]FH

)
≤ Pr (7)

tr
(
Bk,iE[sk,is

H
k,i]B

H
k,i

)
≤ Pk,i, k = 1, · · · ,K, i = 1, 2 (8)

where tr(·) stands for matrix trace, Pk,i and Pr denote the
power budget at the kth node of site i and the relay node,
respectively, E[sk,is

H
k,i] = Id is the covariance matrix of

the information-carrying symbol vectors, and E[yry
H
r ] =∑2

i=1

∑K
k=1 Hk,iBk,iB

H
k,iH

H
k,i+σ2

rINr is the covariance ma-
trix of the received signal vector at the relay node.

The aim of this work is to optimize the source precoding
matrices {Bk,i} = {Bk,i, k = 1, · · · ,K, i = 1, 2}, the relay
precoding matrix F, and the receiver matrices {Wk,i} =
{Wk,i, k = 1, · · · ,K, i = 1, 2}, to minimize the SMSE of the
signal waveform estimation at the receivers under transmission
power constraints at the source and relay nodes. From (6), the
MSE of the signal waveform estimation at the kth node of site
i can be calculated for k = 1, · · · ,K, i = 1, 2 as

MSEk,i = tr(E[(ŝk,i − sk,̄i)(ŝk,i − sk,̄i)
H ])

= tr((WH
k,iLk,i − Id)(W

H
k,iLk,i − Id)

H

+WH
k,i(Nk,i +Ξk,i)Wk,i) (9)

where Lk,i is the equivalent MIMO channel matrix of the kth
site ī-site i user pair, Nk,i = E[n̄k,in̄

H
k,i] is the covariance

matrix of the equivalent noise, and Ξk,i is the covariance
matrix of interference at the kth node of site i. They are given
for k = 1, · · · ,K, i = 1, 2 as

Lk,i =Gk,iFH̄k,̄i

Nk,i = σ2
rGk,iFF

HGH
k,i + σ2

k,iINk,i

Ξk,i =Gk,iF
2∑

j=1

K∑
m ̸=k

H̄m,jH̄
H
m,jF

HGH
k,i

where H̄k,i = Hk,iBk,i is the equivalent MIMO channel
matrix between the kth source node of site i and the relay
node. From (7)-(9), the optimal source, relay, and receiver
matrices design problem can be written as

min
{Wk,i},{Bk,i},F

2∑
i=1

K∑
k=1

MSEk,i (10)

s.t. tr
(
Bk,iB

H
k,i

)
≤ Pk,i, k = 1, · · · ,K, i = 1, 2 (11)

tr
(
FE[yry

H
r ]FH

)
≤ Pr. (12)

III. PROPOSED ALGORITHM

The problem (10)-(12) is nonconvex with matrix variables,
and a globally optimal solution is intractable to obtain. We
propose an iterative transceiver design algorithm. In each
iteration, we first optimize {Wk,i} based on {Bk,i} and
F from the previous iteration. Then using {Bk,i} from the
previous iteration, we optimize F. We derive a closed-form
solution of F based on its optimal structure and the modified
power constraint at the relay node. Finally, we optimize {Bk,i}
based on {Wk,i} and F obtained from this iteration.

As the power constraints (7) and (8) are independent of
Wk,i, with given {Bk,i} and F, the optimal Wk,i which
minimizes MSEk,i in (9) is the MMSE receiver [14]

Wk,i =
(
Lk,iL

H
k,i +Nk,i +Ξk,i

)−1
Lk,i (13)

where (·)−1 denotes matrix inversion. Substituting (13) back
into (9), SMSE =

∑2
i=1

∑K
k=1 MSEk,i can be rewritten as a

function of F as

SMSE=
2∑

i=1

K∑
k=1

tr
(
Id−LH

k,i(Lk,iL
H
k,i+Nk,i+Ξk,i)

−1Lk,i

)
=

2∑
i=1

K∑
k=1

tr
(
Id − H̄H

k,̄iF
HGH

k,i(Gk,iFH̄k,̄iH̄
H
k,̄i

×FHGH
k,i +Nk,i +Ξk,i)

−1Gk,iFH̄k,̄i

)
. (14)

Let us denote

H= [H̄1,2, · · · , H̄K,2, H̄1,1, · · · , H̄K,1] = UhΛhV
H
h (15)

G= [GT
1,1, · · · ,GT

K,1,G
T
1,2, · · · ,GT

K,2]
T = UgΛgV

H
g (16)

as the singular value decompositions (SVDs) of the equiv-
alent first-hop channel H and the equivalent second-hop
channel G. The dimensions of Uh, Λh, Vh are Nr × L1,
L1 × L1, 2Kd × L1, respectively and the dimension of Ug,
Λg, Vg are Nd × L2, L2 × L2, Nr × L2, respectively,
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where Nd =
∑2

i=1

∑K
k=1 Nk,i, L1 = min(2Kd,Nr) and

L2 = min(Nd, Nr). Based on (15) and (16), we have

Hk,iBk,i = UhΛhV
H
hk,i, Gk,i = Ugk,iΛgV

H
g (17)

where Vhk,i and Ugk,i have dimensions of d×L1, Nk,i×L2

such that Vh = [VT
h1,2, · · · , VT

hK,2, V
T
h1,1, · · · , VT

hK,1]
T ,

Ug = [UT
g1,1, · · · , UT

gK,1, U
T
g1,2, · · · , UT

gK,2]
T . Here (·)T

denotes matrix transpose.
It can be proven similar to [15] that the optimal structure

of the relay precoding matrix is

F=VgAUH
h (18)

where A is an L2 × L1 matrix that remains to be optimized.
Let us introduce

ΛgA = UH
g C =

2∑
i=1

K∑
k=1

UH
gk,iCk,i (19)

where C = [CT
1,1, · · · , CT

K,1, C
T
1,2, · · · , CT

K,2]
T and Ck,i

is an Nk,i × L1 matrix. Since UH
g Ug = IL2 , for any A, we

have C = UgΛgA. Thus, instead of optimizing A, we can
optimize C. Substituting (19) back into (18), we have

F=VgΛ
−1
g UH

g CUH
h . (20)

By substituting (17) and (20) back into (14), we have
Gk,iFH̄k,̄i = Ck,iΛhV

H
hk,̄i

, Nk,i = σ2
rCk,iC

H
k,i + σ2

k,iINk,i
.

Thus, we obtain the SMSE as a function of Ck,i as

SMSE =

2∑
i=1

K∑
k=1

qk,i(Ck,i) (21)

where

qk,i(Ck,i) = tr(Id−Vhk,̄iΛhC
H
k,i(Ck,iΛhV

H
hk,̄iVhk,̄iΛhC

H
k,i

+σ2
rCk,iC

H
k,i +Ck,i

2∑
j=1

K∑
m ̸=k

ΛhV
H
hm,jVhm,jΛhC

H
k,i

+σ2
k,iINk,i

)−1Ck,iΛhV
H
hk,̄i). (22)

It can be seen from (21) and (22) that the MSE of the signal
waveform estimation at the kth node of site i is a function
of Ck,i only. In other words, the objective function (21) is
decomposed in terms of the optimization variables.

From (19), the transmission power constraint at the relay
node in (7) can be rewritten as

tr(FE[yry
H
r ]FH) = tr(CHΠCΨ) ≤ Pr (23)

where Π = UgΛ
−2
g UH

g and Ψ = Λ2
h + σ2

rIL1 . It can be
seen from (23) that Ck,i, k = 1, · · · ,K, i = 1, 2, are coupled
through the power constraint. We propose to modify (23)
by applying the inequality of tr(AB) ≤ tr(A)tr(B). The
transmission power at the relay node becomes

tr(CHΠCΨ) ≤ tr(CΨCH)tr(Π). (24)

Then the power constraint in (23) is modified to be

2∑
j=1

K∑
k=1

tr(Ck,iΨCH
k,i) ≤ Pr/tr(Λ

−2
g ). (25)

In fact, (25) imposes a stricter transmission power constraint at
the relay node, i.e., if (25) holds, the original power constraint
(23) is also satisfied.

Based on (21) and (25), the modified relay precoding matrix
optimization problem can be written as

min
C

2∑
i=1

K∑
k=1

qk,i(Ck,i) (26)

s.t.
2∑

j=1

K∑
k=1

tr(Ck,iΨCH
k,i) ≤ P̄r (27)

where P̄r = Pr/tr(Λ
−2
g ) is the modified power budget at

the relay node. We can see from (26) and (27) that the relay
precoding matrix optimization problem can be decomposed
into 2K subproblems where the (k, i)-th subproblem, k =
1, · · · ,K, i = 1, 2, is to optimize Ck,i as

min
Ck,i

qk,i(Ck,i) (28)

s.t. tr(Ck,iΨCH
k,i) ≤ Prk,i (29)

where Prk,i ≥ 0 and
∑2

i=1

∑K
k=1 Prk,i = P̄r.

Let us introduce the following matrices for k = 1, · · · ,K
and i = 1, 2

Jrk =
2∑

j=1

K∑
m ̸=k

ΛhV
H
hm,jVhm,jΛh + σ2

rIL1
(30)

Xk,i = J
− 1

2

rk ΛhV
H
hk,̄i, Yk,i = Ck,iJ

1
2

rk. (31)

Then qk,i(Ck,i) in (22) becomes

fk,i(Yk,i) = tr(Id −XH
k,iY

H
k,i(Yk,iXk,iX

H
k,iY

H
k,i

+Yk,iY
H
k,i + σ2

k,iINk,i
)−1Yk,iXk,i). (32)

Using (32), the problem (28)-(29) can be rewritten as

min
Yk,i

fk,i(Yk,i) (33)

s.t. tr(Yk,i(Xk,iX
H
k,i + IL1)Y

H
k,i) ≤ Prk,i (34)

where (34) is obtained by substituting (30)-(31) back into (29).
Interestingly, the problem (33)-(34) is the MMSE-based relay
precoding matrix optimization problem for a single-user two-
hop MIMO relay system [16] with the first-hop channel Xk,i,
the relay matrix Yk,i and the second-hop channel INk,i

. It can
be shown similar to [16] that the optimal structure of Yk,i is

Yk,i =
[
Id, 0d×(Nk,i−d)

]T
Λyk,iU

H
xk,i (35)

where Xk,i = Uxk,iΛxk,iV
H
xk,i is the SVD of Xk,i and Λyk,i

is a d × d diagonal matrix. The dimensions of Uxk,i, Λxk,i,
and Vxk,i are L1 × d, d× d, and d× d, respectively.

By substituting (35) back into (33)-(34), the relay precoding
matrix optimization problem (26)-(27) can be equivalently
rewritten as the following problem with scalar variables

min
{λyk,i,j}

2∑
i=1

K∑
k=1

d∑
j=1

(
1 +

λ2
xk,i,jλ

2
yk,i,j

λ2
yk,i,j + σ2

k,i

)−1

(36)

s.t.
2∑

i=1

K∑
k=1

d∑
j=1

λ2
yk,i,j(λ

2
xk,i,j + 1) ≤ P̄r (37)

λyk,i,j ≥ 0, k = 1, · · · ,K, i = 1, 2, j = 1, · · · , d (38)
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where λxk,i,j and λyk,i,j , j = 1, · · · , d, are the jth diagonal
elements of Λxk,i and Λyk,i, respectively, and {λyk,i,j} =
{λy1,1,1, · · · , λyK,2,d}. The problem (36)-(38) has the well-
known water-filling solution given by

λyk,i,j =

√√√√ 1

λ2
xk,i,j + 1

[√
σ2
k,iλ

2
xk,i,j

(λ2
xk,i,j + 1)µ

− σ2
k,i

]†
k = 1, · · · ,K, i = 1, 2, j = 1, · · · , d (39)

where [x]† = max(x, 0), and µ > 0 can be obtained
by substituting (39) back into (37) and solving a nonlinear
equation using the bisection method [17]. Finally, F can be
obtained from (20), (31), (35) and (39).

With given receiver matrices {Wk,i} and relay matrix F,
the SMSE can be rewritten as a function of {Bk,i} as

SMSE=

2∑
i=1

K∑
k=1

tr((Ḡk,iHk,̄iBk,̄i−Id)(Ḡk,iHk,̄iBk,̄i−Id)
H

+Ḡk,i

2∑
j=1

K∑
m ̸=k

Hm,jBm,jB
H
m,jH

H
m,jḠ

H
k,i

)
+ t2(40)

where t2 =
∑2

i=1

∑K
k=1 tr(W

H
k,iNk,iWk,i) can be ignored as

it is independent of {Bk,i}, and Ḡk,i = WH
k,iGk,iF. Using

(40), the source matrices optimization problem is given by
min

{Bk,i}
SMSE (41)

s.t. tr
(
Bk,iB

H
k,i

)
≤ Pk,i, k = 1, · · · ,K, i = 1, 2 (42)

tr
(
F

2∑
i=1

K∑
k=1

Hk,iBk,iB
H
k,iH

H
k,iF

H
)
≤ P̃r (43)

where P̃r = Pr − σ2
r tr(FF

H). The problem (41)-(43) is
a convex QCQP problem and can be solved by the CVX
MATLAB toolbox [18] for disciplined convex programming.

Since the dimension of {λy,k,i,j} is 2Kd, the computa-
tional complexity of solving the problem (36)-(38) is O(Kd).
Assuming 2Kd ≤ Nr, the SVD of Xk,i has a complex-
ity of O(Kd3). Therefore, the complexity of the simplified
relay matrix design is O(K2d3), which is lower than the
complexity of updating the relay matrix in [9] (O(N6

r )) and
[11] (O(KNr(K − 1)2)). Moreover, we observed through
simulations that the proposed algorithm typically converges
within three iterations. Therefore, the overall computational
complexity of the proposed transceiver design algorithm is
lower than those of [9] and [11].

IV. NUMERICAL EXAMPLES

We simulate an interference two-way MIMO relay system
where all transmitters and receivers have the same number
of antennas, i.e., Nk,i = 2, i = 1, 2, k = 1, · · · ,K, and
the relay node has Nr = 10 antennas. We assume that all
source nodes have the same power budget as Pk,i = 15dB,
i = 1, 2, k = 1, · · · ,K. All channel matrices have i.i.d.
complex Gaussian entries with zero-mean and unit variance.
The noises are i.i.d. Gaussian with zero mean and unit vari-
ance. QPSK constellations are used to modulate the source
symbols and the simulation results are averaged over 5× 105

independent channel realizations. The proposed algorithm is
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Fig. 2. Example 1: BER of five algorithms versus Pr .
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Fig. 3. Example 2: BER of the proposed algorithm at various K.

initialized with
{
B

(0)
k,i =

√
Pk,i/Nk,iINk,i

}
and F(0) =√

Pr/tr(
∑2

i=1

∑K
k=1 Hk,iBk,iBH

k,iH
H
k,i + σ2

rINr )INr .
In the first example, we compare the performance of the

proposed algorithm with the transceiver design algorithms in
[8]-[11] for a MIMO relay system with K = 2 two-way link
pairs. For a fair comparison with [8], we set d = 1. Fig. 2
shows the bit-error-rate (BER) performance of the five algo-
rithms tested versus Pr. It can be seen that while the proposed
algorithm outperforms the eigen-beamforming algorithm in [8]
and the ProBaSeMO scheme in [10], the MMSE precoding
algorithm in [9] and the power allocation algorithm in [11]
yield a lower BER than the proposed algorithm. However,
the algorithms in [9] and [11] have the highest computational
complexity among five algorithms, and the computational
complexity of the algorithms in [8] and [10] is lower than
the other three algorithms. Therefore, the proposed algorithm
provides a better performance-complexity tradeoff than those
in [8]-[11], which is very useful for practical interference two-
way MIMO relay communication systems.

In the second example, we study the BER performance of
the proposed algorithm at various K. It can be seen from Fig. 3
that as expected, the system BER increases with K.

V. CONCLUSION

We have developed a novel algorithm for jointly optimizing
the source, relay, and receiver matrices of interference two-
way MIMO relay systems. By exploiting the optimal struc-
ture of the relay precoding matrix and modifying the power
constraint at the relay node, the computational complexity of
optimizing the relay precoding matrix is significantly reduced
with only a small performance degradation.
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