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Abstract
In this paper, we consider a class of singular fractional differential equations with
infinite-point boundary conditions. The fractional orders are involved in the
nonlinearity of the boundary value problem, and the nonlinearity is allowed to be
singular with respect to not only the time variable but also to the space variable.
Firstly, we give Green’s function and establish its properties. Then, we utilize the
sequential technique and regularization to investigate the existence of positive
solutions. Finally, we give an example of application of our result.
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1 Introduction
In this paper, we consider the following class of nonlinear singular fractional differential
equations:

⎧
⎪⎨

⎪⎩

Dα
+u(t) + f (t, u(t), Dμ

+ u(t), Dμ
+ u(t), . . . , Dμn–

+ u(t)) = ,  < t < ,
u() = u′() = · · · = u(n–)() = ,
u(n–)() =

∑∞
j= ηju(ξj),

(.)

where α,μi ∈ R

+ = [, +∞), n ∈ N (the set of natural numbers), and n –  < α ≤ n, n ≥ ,

i –  < μi ≤ i (i = , , . . . , n – ), f (t, x, x, . . . , xn–) may have singularity at t = , , xi = 
(i = , , . . . , n – ),  < ξ < ξ < · · · < ξj < · · · < , ηj >  (j = , , . . .),

∑∞
j= ηjξ

α–
j < �, � =

(α – )(α – ) · · · (α – n + ), and Dα
+ u, Dμi

+ u (i = , , . . . , n – ) are the Riemann-Liouville
derivatives.

Boundary value problems for nonlinear fractional differential equations arise from the
studies of complex problems in many disciplinary areas such as fluid flows, electrical net-
works, rheology, biology chemical physics, and so on. Fractional-order models have been
shown to be more accurate than integer-order models, and in applications of these models,
it is important to theoretically establish conditions for the existence of positive solutions.
In recent years, many authors investigated the existence of positive solutions for fractional
equation boundary value problems (see [–] and the references therein), and a great deal
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of results have been developed for differential and integral boundary value problems. In
[], the author considered the following fractional differential equation:

⎧
⎪⎨

⎪⎩

Dα
+u(t) + g(t)f (t, u(t)) = ,  < t < ,

u() = u′() = · · · = u(n–)() = ,
u(i)() =

∑∞
i= αju(ξj),  ≤ i ≤ n – ,

where α ∈ R

+, n ∈ N, n –  < α ≤ n, n ≥ , αj ≥ ,  < ξ < ξ < · · · < ξj– < ξj < · · · < 

(j = , , . . .), and Dα
+ is the standard Riemann-Liouville derivative, and f ∈ C((, ) ×

(, +∞),R
+) allows singularities with respect to both time (t = , ) and space variables

(u = ). The author established the existence and multiplicity of positive solutions. In [],
the authors investigated the fractional differential equation

{
Dα

+u(t) + f (t, u(t), Dv
+ u(t), Dμ

+ u(t)) = ,  < t < ,
u() = u′() = u′′() = u′′() = ,

where α, v,μ ∈R

+,  < α ≤ ,  < v ≤ ,  < μ ≤  are real numbers, Dα

+, Dv
+ , and Dμ

+ are
the Riemann-Liouville fractional derivatives, f (t, x, y, z) is a Carathéodory function singu-
lar at x, y, z = . The authors obtained the existence and multiplicity of positive solutions
by means of Krasnoselskii’s fixed point theorem. As there do not exists  < L < M such that
(.) of [] holds, the results of the multiple solutions are not correct in []. In [], the
authors investigated the fractional differential equation

{
Dα

+u(t) + f (t, u(t), Dμ

+ u(t)) = ,  < t < ,
u() = u() = ,

where α,μ ∈ R

+,  < α ≤ , μ >  are real numbers, α – μ ≥ , Dα

+ and Dμ

+ are the
Riemann-Liouville fractional derivatives, f is a Carathéodory function, and f (t, x, y) is sin-
gular at x = . The authors obtained the existence of positive solutions by means of the
Krasnoselskii’s fixed point theorem. In [], the author investigated the fractional differ-
ential equation

{
Dα

+u(t) + f (t, u(t), u′(t), Dμ

+ u(t)) = ,  < t < ,
u() = , u′() = u′() = ,

where α,μ ∈ R

+,  < α ≤ ,  < μ ≤  are real numbers, Dα

+ and Dμ

+ are the Riemann-
Liouville fractional derivatives, f is a Carathéodory function, and f (t, x, y, z) is singular
at x, y, z = . The authors obtained the existence of positive solutions by means of the
Krasnoselskii’s fixed point theorem. In [], the author investigated the singular problem

{
Dα

+u(t) + q(t)f (t, u(t), u′(t), . . . , u(n–)(t)) = ,  < t < ,
u() = u′() = u′′() = · · · = u(n–)() = u(n–)() = ,

where α ∈ R

+, n –  < α ≤ n, n ≥ , the nonlinear function f (t, x, x, . . . , xn–) may be sin-

gular at xi =  (i = , , . . . , n – ), and q(t) may be singular at t = . The existence results of
positive solutions are obtained by a fixed point theorem for a mixed monotone operator.
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Motivated by the results mentioned, in this paper, we utilize the sequential technique
and regularization to investigate the existence of positive solutions of BVP (.), where
u ∈ Cn–[, ]∩Cn–(, ) is said to be a positive solution of BVP (.) if and only if u satisfies
(.) and u(t) >  for any t ∈ (, ]. By using the sequential technique and regularization
on a cone, some new existence results are obtained for the case where the nonlinearity is
allowed to be singular with respect to both time and space variables. We emphasize here
that our work presented in this paper has various new features. Firstly, we study singular
nonlinear differential equation boundary value problems, that is, f (t, x, x, . . . , xn–) may
have singularity at t = ,  and xi =  (i = , , . . . , n – ), which leads to many difficulties
in analysis. Secondly, compared with [–], we complete the proof without the need
of imposing the third condition of the Carathéodory conditions, that is, the condition
|f (t, x, x, . . . , xn–)| ≤ ϕH (t) is successfully removed, and, at the same time, the condition

lim
x→∞

h(x, x, . . . , x)
x

= 

is extended to

lim sup
x→∞

h(x, x, . . . , x)
x

= λ <
�(n –  – μn–)

e‖γ ‖
.

Thirdly, a special cone in a special space is established to overcome the difficulties caused
by the singularity. Finally, values at infinite points are involved in the boundary condi-
tions, and the fractional orders are involved in the nonlinearity of the boundary value
problem (.).

For convenience, we list some conditions to be used throughout the paper.

(H) f satisfies the local Carathéodory condition on [, ] × (,∞)n– if
() f (t, x, x, . . . , xn–) : [, ] →R


+ is measurable for all

(x, x, . . . , xn–) ∈ (, +∞)n–;
() f (t, x, x, . . . , xn–) : (, +∞)n– →R


+ is continuous for a.e. t ∈ [, ].

(H) There exists a constant C >  such that, for a.e. t ∈ [, ] and for any (x, x, . . . , xn–) ∈
(,∞)n–,

f (t, x, x, . . . , xn–) ≥ C. (.)

(H) For all (x, x, . . . , xn–) ∈ (,∞)n– and a.e. t ∈ [, ],

f (t, x, x, . . . , xn–) ≤ β(t)p(x, x, . . . , xn–) + γ (t)h(x, x, . . . , xn–),

where β ,γ ∈ L((, ), (, +∞)), p ∈ C((,∞)n–,R
+) is nonincreasing with respect to

all arguments, h ∈ (Rn–
+ ,R

+) is nondecreasing with respect to all arguments, and

∫ 


β(s)p

(

Msα–,
(n –  – μ)M

n!
sn––μ , . . . ,

(n –  – μn–)M
!

sn––μn–

)

ds < ∞,

M =
C

(α – n + )�(α + )
.
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(H)

lim sup
x→∞

h(x, x, . . . , x)
x

= λ <
�(n –  – μn–)

e‖γ ‖
,

where e = �
P()�(α–n+) .

The main result of this paper is as follows.

Theorem . If (H)-(H) hold, then problem (.) has a positive solution x, and for t ∈
[, ], we have

x(t) ≥ Mtα–, Dμi
+ x(t) ≥ (n –  – μi)M

(n – i + )!
tn––μi , i = , , . . . , n – , (.)

where M is defined by (H).

In order to overcome the singularity, we utilize the sequential technique and regulariza-
tion to testify the existence of positive solutions for problem (.). Next, for any m ∈N, we
define Xm : R →R

 and fm : [, ] ×R
n–
+ →R

 by the following formulas:

Xm(τ ) =

{
τ if τ ≥ 

m ,

m if τ < 

m

for all (x, x, . . . , xn–) ∈R
n– and a.e. t ∈ [, ],

fm(t, x, x, . . . , xn–) = f
(
t, Xm(x), Xm(x), . . . , Xm(xn–)

)
.

Then condition (H) gives that fm satisfies the local Carathéodory condition on [, ]×R
n–
+

and fm(t, x, x, . . . , xn–) ≥ C for a.e. t ∈ [, ] and all (x, x, . . . , xn–) ∈R
n–
+ . Condition (H)

provides that

fm(t, x, x, . . . , xn–) ≤ β(t)p
(

max

{

x,

m

}

, max

{

x,

m

}

, . . . , max

{

xn–,

m

})

+ γ (t)h
(

x +

m

, x +

m

, . . . , xn– +

m

)

(.)

for a.e. t ∈ [, ] and all (x, x, . . . , xn–) ∈R
n–
+ .

Next, we discuss the regular fractional differential equation

{
Dα

+u(t) + fm(t, u(t), Dμ
+ u(t), Dμ

+ u(t), . . . , Dμn–
+ u(t)) = ,  < t < ,

u() = u′() = · · · = u(n–)() = , u(n–)() =
∑∞

j= ηju(ξj).
(.)

2 Preliminaries and lemmas
For convenience of the reader, we first present some basic definitions and lemmas. These
definitions can be found in the recent literature such as [, ]. In this paper, ‖x‖ =
∫ 

 |x(t)|dt is the norm in L[, ], ‖x‖ = max{|x(t)| : t ∈ [, ]} is the norm in C[, ], and

‖x‖ = max
{‖x‖,

∥
∥x′∥∥,

∥
∥x′′∥∥, . . . ,

∥
∥x(n–)∥∥

}
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is the norm in E = Cn–[, ]; ACk[, ] (k = , , , . . .) is the space of absolutely continuous
functions having absolutely continuous kth-order derivatives on [, ].

Definition . [, ] The Riemann-Liouville fractional integral of order α >  of a func-
tion y : (,∞) →R

 is given by

Iα
+ y(t) =


�(α)

∫ t


(t – s)α–y(s) ds,

provided that the right-hand side is pointwise defined on (,∞).

Definition . [, ] The Riemann-Liouville fractional derivative of order α >  of a
continuous function y : (,∞) →R

 is given by

Dα
+ y(t) =


�(n – α)

(
d
dt

)n ∫ t



y(s)
(t – s)α–n+ ds

with n = [α] + , where [α] denotes the integer part of α, provided that the right-hand side
is pointwise defined on (, ∞).

Lemma . [] We have

Iα
+ : L[, ] →

{
L[, ] if α ∈ (, ),
AC[α]–[, ] if α ≥ ,

where [α] is the least integer greater than or equal to α, and AC[, ] = AC[, ].

Lemma . [] If x ∈ L[, ] and α + β ≥ , then (Iα
+ Iβ

+ x)(t) = (Iα+β

+ x)(t) for all t ∈ [, ],
that is,

∫ t


(t – s)α–

(∫ t


(s – ξ )β–x(ξ ) dξ

)

ds =
�(α)�(β)
�(α + β)

∫ t


(t – s)α+β–x(s) ds.

Lemma . [] Suppose that α > . If x ∈ C(, ] and Dα
+ x ∈ L[, ], then

x(t) = Iα
+ Dα

+ x(t) +
n∑

k=

cktα–k

for t ∈ (, ], where n = [α] +  and ck ∈R
 (k = , , . . . , n).

Lemma . Suppose that i –  < μi ≤ i (i = , , . . . , n – ) and u ∈ Cn–[, ], u(i)() = 
(i = , , , . . . , n – ). Then Dμi

+ u ∈ C[, ] (i = , , . . . , n – ), and

Dμi
+ u(t) =


�(n –  – μi)

∫ t


(t – s)n–μi–u(n–)(s) ds, i = , , . . . , n – . (.)

Proof By integration by parts we get

∫ t


(t – s)i––μi u(s) ds =


i – μi

∫ t


(t – s)i–μi u′(s) ds,
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∫ t


(t – s)i–μi u′(s) ds =


i +  – μi

∫ t


(t – s)i+–μi u′′(s) ds,

. . . ,
∫ t


(t – s)i+n––μi u(n–)(s) ds =


i + n –  – μi

∫ t


(t – s)i+n––μi u(n–)(s) ds.

So

Dμi
+ u(t) =


�(i – μi)

(
d
dt

)i ∫ t


(t – s)i––μi u(s) ds

=


�(i +  – μi)

(
d
dt

)i ∫ t


(t – s)i–μi u′(s) ds

=


�(i +  – μi)

(
d
dt

)i ∫ t


(t – s)i+–μi u′′(s) ds

=


�(i + n –  – μi)

(
d
dt

)i ∫ t


(t – s)i+n––μi u(n–)(s) ds

=


�(n –  – μi)

∫ t


(t – s)n–μi–u(n–)(s) ds, i = , , . . . , n – .

Hence, we have

Dμi
+ u(t) =


�(n –  – μi)

∫ t


(t – s)n–μi–u(n–)(s) ds, i = , , . . . , n – .

Further, by the continuity of

∫ t


(t – s)n––μi u(n–)(s) ds, t ∈ [, ], i = , , . . . , n – ,

we get that Dμi
+ u(t) (i = , , . . . , n – ) is continuous on [, ]. �

Lemma . Given g ∈ C(, ) ∩ L(, ),

u(t) =
∫ 


G(t, s)g(s) ds,

is the unique solution in Cn–[, ] ∩ Cn–(, ) of the equation

⎧
⎪⎨

⎪⎩

Dα
+ u(t) + g(t) = ,  < t < ,

u() = u′() = · · · = u(n–)() = ,
u(n–)() =

∑∞
j= ηju(ξj),

(.)

where

G(t, s) =


P()�(α)

{
tα–P(s)( – s)α–n+ – P()(t – s)α–,  ≤ s ≤ t ≤ ,
tα–P(s)( – s)α–n+,  ≤ t ≤ s ≤ 

(.)
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and

P(s) = � –
∑

s≤ξj

ηj

(
ξj – s
 – s

)α–

( – s)n–, � = (α – )(α – ) · · · (α – n + ).

Proof Applying Lemma ., we can reduce (.) to the equivalent integral equation

u(t) = –Iα
+ g(t) + Ctα– + Ctα– + · · · + Cntα–n

for C, C, . . . , Cn ∈R
. By Lemma . we have that

u(t) = –Iα
+ g(t) + Ctα– + Ctα– + · · · + Cntα–n

is a solution of (.) in C(, ]. Since u() = u′() = · · · = u(n–)() = , we have C = C =
· · · = Cn = , but C 
= , and thus

u(t) = Ctα– – Iα
+ g(t).

By Lemma . we have Iα
+ g ∈ ACn–[, ], so that

u(t) = –Iα
+ g(t) + Ctα– (.)

is a solution of (.) in the space ACn–[, ]. Taking the derivative step by step for (.),
we have

u′(t) = C(α – )tα– – Iα–
+ g(t),

u(i)(t) = C(α – )(α – ) · · · (α – i)tα–i– – Iα–i
+ g(t), i = , , . . . , n – .

On the other hand, the equality u(n–)() =
∑∞

j= ηju(ξj), combined with

u(n–)() = C� – Iα–n+
+ g(),

gives

C =
∫ 



( – s)α–n+

�(α – n + )(� –
∑∞

j= ηjξ
α–
j )

g(s) ds

–
∞∑

j=

ηj

∫ ξj



(ξj – s)α–

�(α)(� –
∑∞

j= ηjξ
α–
j )

g(s) ds

=
∫ 



( – s)α–n+P(s)
P()�(α)

g(s) ds,

where

P(s) = � –
∑

s≤ξj

ηj

(
ξj – s
 – s

)α–

( – s)n–, � = (α – )(α – ) · · · (α – n + ).
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Hence,

u(t) = Ctα– – Iα
+ g(t)

= –
∫ t



P()(t – s)α–

P()�(α)
g(s) ds +

∫ 



P(s)( – s)α–n+tα–

P()�(α)
g(s) ds

=
∫ 


G(t, s)g(s) ds,

where

G(t, s) =


P()�(α)

{
tα–P(s)( – s)α–n+ – P()(t – s)α–,  ≤ s ≤ t ≤ ,
tα–P(s)( – s)α–n+,  ≤ t ≤ s ≤ 

and

P(s) = � –
∑

s≤ξj

ηj

(
ξj – s
 – s

)α–

( – s)n–, � = (α – )(α – ) · · · (α – n + ).
�

Lemma . The Green function G(t, s) defined in Lemma . has the following properties:
()

∂ j

∂tj G(t, s) ∈ C
(
[, ] × [, ]

)
, j = , , , . . . , n – ;

()

 ≤ ∂ j

∂tj G(t, s) ≤ �

�(α – j)P()
, (t, s) ∈ [, ] × [, ], j = , , , . . . , n – ;

()

∫ 



∂ j

∂tj G(t, s) ds ≥ tα–j–

(α – n + )�(α – j + )
, t ∈ [, ], j = , , , . . . , n – 

and
∫ 



∂n–

∂tn– G(t, s) ds ≥ t( – t)
�(α – n + )

, t ∈ [, ].

Proof By calculating the derivative we get

∂ j

∂tj G(t, s) =

⎧
⎨

⎩

P(s)tα–j–(–s)α–n+–P()(t–s)α–j–

P()�(α–j) ,  ≤ s ≤ t ≤ ,
P(s)tα–j–(–s)α–n+

P()�(α–j) ,  ≤ t ≤ s ≤ 
(.)

for j = , , , . . . , n – .
() For n –  < α ≤ n, j ≤ n – , we have α – j > . Hence, by (.) we have that ∂ j

∂tj G(t, s)
(j = , , , . . . , n – ) are continuous on [, ] × [, ], and so () holds.

() By direct calculation we get P′(s) ≥ , s ∈ [, ]. Thus, P(s) is nondecreasing with
respect to s ∈ [, ], and we easily get

P(s) = � –
∑

s≤ξj

ηj

(
ξj – s
 – s

)α–

( – s)n– ≤ �, s ∈ [, ].
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On the other hand, P(s) is nondecreasing on [, ], so we have

P(s) = � –
∑

s≤ξj

ηj

(
ξj – s
 – s

)α–

( – s)n–

≥ P() = � –
∞∑

j=

ηjξ
α–
j > , s ∈ [, ].

Hence,

∂ j

∂tj G(t, s) ≤ P(s)tα–j–( – s)α–n+

P()�(α – j)

≤ �

�(α – j)P()
, (t, s) ∈ [, ] × [, ], j = , , , . . . , n – .

Next, we will prove that

∂ j

∂tj G(t, s) ≥ , (t, s) ∈ [, ] × [, ], j = , , , . . . , n – .

Since –s
t–s is increasing with respect to s on (, t), we get that –s

t–s > 
t . For  ≤ s ≤ t ≤ , we

get

P(s)tα–j–( – s)α–n+ – P()(t – s)α–j–

≥ P()(t – s)α–n+
[

tα–j–
(

 – s
t – s

)α–n+

– (t – s)n––j
]

≥ P()(t – s)α–n+[tn–i– – (t – s)n–i–] ≥ .

On the other hand, for  ≤ t ≤ s ≤ , we get

∂ j

∂tj G(t, s) =
P(s)tα–j–( – s)α–n+

P()�(α – j)
≥ , j = , , , . . . , n – .

Hence,

∂ j

∂tj G(t, s) ≥ , (t, s) ∈ [, ] × [, ], j = , , , . . . , n – ,

so the proof of () is completed. We further prove ().
() For j = , , , . . . , n – , n – j ≥ , we have

∫ 



∂ j

∂tj G(t, s) ds =
∫ t



P(s)tα–j–( – s)α–n+ – P()(t – s)α–j–

P()�(α – j)
ds

+
∫ 

t

P(s)tα–j–( – s)α–n+

P()�(α – j)
ds

≥ P()
P()�(α – j)

(

tα–j–
∫ 


( – s)α–n+ ds –

∫ t


(t – s)α–j– ds

)
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=


�(α – j)

(
tα–j–

α – n + 
–

tα–j

α – j

)

=
tα–j–[α – j – t(α – n + )]

(α – n + )�(α – j + )

≥ tα–j–

(α – n + )�(α – j + )
, t ∈ [, ]. (.)

Changing j of (.) by n – , we have

∂ (n–)

∂t(n–) G(t, s) =

{ P(s)tα–n+(–s)α–n+–P()(t–s)α–n+

P()�(α–n+) ,  ≤ s ≤ t ≤ ,
P(s)tα–n+(–s)α–n+

P()�(α–n+) ,  ≤ t ≤ s ≤ .
(.)

Hence, for t ∈ [, ], we have

∫ 



∂n–

∂tn– G(t, s) ds =
∫ t



P(s)tα–n+( – s)α–n+ – P()(t – s)α–n+

P()�(α – n + )
ds

+
∫ 

t

P(s)tα–n+( – s)α–n+

P()�(α – n + )
ds

≥ P()
P()�(α – n + )

(

tα–n+
∫ 


( – s)α–n+ ds –

∫ t


(t – s)α–n+ ds

)

=


�(α – n + )

(
tα–n+

α – n + 
–

tα–n+

α – n + 

)

=
tα–n+( – t)
�(α – n + )

≥ t( – t)
�(α – n + )

.

It is clear that

∫ 



∂n–

∂tn– G(t, s) ds ≥ t( – t)
�(α – n + )

, t ∈ [, ].

The proof of Lemma . is completed. �

3 Auxiliary regular problem
Let E = Cn–[, ] and define the cone K in E as

K =
{

u ∈ E, u(i)() = , u(i)(t) ≥ , t ∈ [, ], i = , , , . . . , n – 
}

.

By Lemma . and (.) we have

Dμi
+ u ∈ C[, ], Dμi

+ u(t) ≥ , u ∈ K , t ∈ [, ], i = , , , . . . , n – . (.)

For any m ∈N, define the operator Qm : K → E as follows:

(Qmu)(t) =
∫ 


G(t, s)fm

(
s, u(s), Dμ

+ u(s), Dμ
+ u(s), . . . , Dμn–

+ u(s)
)

ds. (.)
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Lemma . Let (H)-(H) hold. Then, for any m ∈ N, Qm : K → K is a completely contin-
uous operator.

Proof First, we show that Qm : K → K . Given u ∈ K , by Lemma . we get that

∂ j

∂tj G(t, s), j = , , , . . . , n – ,

are nonnegative and continuous on [, ] × [, ] and G(, s) =  for s ∈ [, ]. So we have

Qmu ∈ Cn–[, ], (Qmu)(j)() = , j = , , , . . . , n – ,

(Qmu)(j)(t) ≥ , t ∈ [, ], j = , , , . . . , n – .

As a result, Qm : K → K .
In order to prove that Qm is a continuous operator, let {uk} ⊂ K be a convergent se-

quence. Suppose that limk→∞ uk = u ∈ K . Then

lim
k→∞

u(j)
k (t) = u(j)(t), j = , , , . . . , n – ,

uniformly for t ∈ [, ]. For i –  < μi ≤ i (i = , , . . . , n – ) and t ∈ [, ], we get

∣
∣Dμi

+ uk(t) – Dμi
+ u(t)

∣
∣ ≤ ‖u(n–)

k – u(n–)‖
�(n –  – μi)

∫ t


(t – s)n–μi– ds ≤ ‖u(n–)

k – u(n–)‖
�(n –  – μi)

,

so we get

lim
k→∞

Dμi
+ uk(t) = Dμi

+ u(t), i = , , . . . , n – 

uniformly for t ∈ [, ]. Moreover, {uk} ⊂ K is a convergent sequence. There exists r > 
such that ‖uk‖ ≤ r (k ∈ N). Then ‖u(j)

k ‖ ≤ r (j = , , , . . . , n – ; k ∈ N). For i –  < μi ≤ i
(i = , , . . . , n – ), by (.), for any t ∈ [, ], we have

 ≤ Dμi
+ uk(t) ≤ ‖u(n–)

k ‖
�(n –  – μi)

∫ t


(t – s)n–μi– ds

≤ ‖u(n–)
k ‖

�(n –  – μi)
≤ r

�(n –  – μi)
, i = , , , . . . , n – , k ∈N. (.)

Let

ρk(t) = fm
(
t, uk(t), Dμ

+ uk(t), Dμ
+ uk(t), . . . , Dμn–

+ uk(t)
)
,

ρ(t) = fm
(
t, u(t), Dμ

+ u(t), Dμ
+ u(t), . . . , Dμn–

+ u(t)
)
, t ∈ [, ], k ∈N.

(.)

For s ∈ [, ] \�, where mes(�) = , fm(s, x, x, . . . , xn–) is continuous on R
n–
+ with respect

to xi, so fm(s, x, x, . . . , xn–) is uniformly continuous with respect to xi on

[, r] ×
[

,
r

�(n –  – μ)

]

× · · · ×
[

,
r

�(n –  – μn–)

]

.
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Hence, for any ε > , there exists δ >  such that, for any x
, x

 ∈ [, r], x
, x

 ∈ [, r
�(n––μ) ],

. . . , x
n–, x

n– ∈ [, r
�(n––μn–) ], |x

 – x
 | < δ, |x

 – x
| < δ, . . . , |x

n– – x
n–| < δ, we have

∣
∣fm

(
s, x

, x
, . . . , x

n–
)

– fm
(
s, x

 , x
, . . . , x

n–
)∣
∣ < ε. (.)

Since ‖uk – u‖ → , for the above δ > , there exists N ∈N such that, for k > N ,

∣
∣uk(t) – u(t)

∣
∣,

∣
∣Dμ

+ uk(t) – Dμ
+ u(t)

∣
∣, . . . ,

∣
∣Dμn–

+ uk(t) – Dμn–
+ u(t)

∣
∣

≤ ‖uk – u‖ < δ, ∀t ∈ [, ].

Therefore, for k > N , by (.) we have

∣
∣ρk(s) – ρ(s)

∣
∣ ≤ ∣

∣fm
(
s, uk(s), Dμ

+ uk(s), Dμ
+ uk(s), . . . , Dμn–

+ uk(s)
)

– fm
(
s, u(s), Dμ

+ u(s), Dμ
+ u(s), . . . , Dμn–

+ u(s)
)∣
∣ < ε. (.)

It follows from (.) that

ρk(s) → ρ(s) for a.e. s ∈ [, ]. (.)

By (.) we have

 ≤ ρk(t) = fm
(
t, uk(t), Dμ

+ uk(t), Dμ
+ uk(t), . . . , Dμn–

+ uk(t)
)

≤ β(t)p
(

max

{

uk(t),

m

}

, max

{

Dμ
+ uk(t),


m

}

, . . . , max

{

Dμn–
+ uk(t),


m

})

+ γ (t)h
(

uk(t) +

m

, Dμ
+ uk(t) +


m

, . . . , Dμn–
+ uk(t) +


m

)

≤ β(t)p
(


m

,

m

, . . . ,

m

)

+ γ (t)h
(

r + ,
r

�(n –  – μ)
+ , . . . ,

r
�(n –  – μn–)

+ 
)

= ϕr(t), k = , , . . . . (.)

By the integrability of β(t), γ (t) on [, ] we get that ϕr ∈ L(, ), and by (.) and (.) we
have

∣
∣ρk(t) – ρ(t)

∣
∣ ≤ ϕr(t) for a.e. t ∈ [, ], k = , , , . . . .

It follows from the relations in Lemma . and the Lebesgue dominated convergence the-
orem that, for any m ∈N,

∣
∣(Qmuk)(j)(t) – (Qmu)(j)(t)

∣
∣

=
∣
∣
∣
∣

∫ 



∂ j

∂tj G(t, s)
[
fm

(
s, uk(s), Dμ

+ uk(s), Dμ
+ uk(s), . . . , Dμn–

+ uk(s)
)

– fm
(
s, u(s), Dμ

+ u(s), Dμ
+ u(s), . . . , Dμn–

+ u(s)
)]

ds
∣
∣
∣
∣
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≤ �

P()�(α – j)

∫ 



∣
∣ρk(s) – ρ(s)

∣
∣ds → ,

k → ∞, t ∈ [, ], j = , , , . . . , n – .

Hence, for any m ∈N, we have

lim
k→∞

(Qmuk)(j)(t) = (Qmu)(j)(t), j = , , , . . . , n – 

uniformly for t ∈ [, ]. Therefore, for any m ∈N, Qm is a continuous operator.
Now, for any bounded set D ⊂ K , we need to prove that {Qm(D)} is relatively com-

pact in E. In order to apply the Arzelà-Ascoli theorem, we have to prove that {Qm(D)}
is bounded in E and that,for any m ∈ N, {(Qm(D))(n–)(t)} is equicontinuous on [, ]. By
the boundedness of D ⊂ K there exists a positive number R >  such that

∥
∥u(j)∥∥ ≤ R, ∀u ∈ D, j = , , , . . . , n – .

Then (.) means that

∥
∥Dμi

+ u
∥
∥ ≤ R

�(n –  – μi)
, ∀u ∈ D, i = , , . . . , n – .

Put ρ as in (.) and  ≤ ρ(t) ≤ ϕR(t). Then, for u ∈ D, we have

 ≤ (Qmu)(j)(t) =
∫ 



∂ jG(t, s)
∂tj ρ(s) ds

≤ �

P()�(α – j)

∫ 


ϕR(s) ds

=
�‖ϕR‖

P()�(α – j)
, j = , , . . . , n – ,

which shows that, for any m ∈ N, {Qm(D)} is bounded in E. Moreover, for  ≤ t ≤ t ≤ 
and u ∈ D, we have

∣
∣(Qmu)(n–)(t) – (Qmu)(n–)(t)

∣
∣

=
∣
∣
∣
∣

∫ 



(
∂n–G(t, s)

∂tn– –
∂n–G(t, s)

∂tn–

)

fm
(
s, u(s), Dμ

+ u(s), Dμ
+ u(s), . . . , Dμn–

+ u(s)
)

ds
∣
∣
∣
∣

=
∣
∣
∣
∣

∫ 



(
∂n–G(t, s)

∂tn– –
∂n–G(t, s)

∂tn–

)

ρ(s) ds
∣
∣
∣
∣

≤ e
(
tα–n+
 – tα–n+


)
∫ 


( – s)α–n+ρ(s) ds

+


�(α – n + )

∣
∣
∣
∣

∫ t


(t – s)α–n+ρ(s) ds –

∫ t


(t – s)α–n+ρ(s) ds

∣
∣
∣
∣

≤ ‖ρ‖e
(
tα–n+
 – tα–n+


)

+


�(α – n + )

∣
∣
∣
∣

∫ t

t

(t – s)α–n+ρ(s) ds

+
∫ t



(
(t – s)α–n+ – (t – s)α–n+)ρ(s) ds

∣
∣
∣
∣
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≤ e‖ϕR‖
(
tα–n+
 – tα–n+


)

+


�(α – n + )

[

(t – t)α–n+‖ϕR‖

+
∫ t



(
(t – s)α–n+ – (t – s)α–n+)ϕR(s) ds

]

≤ e‖ϕR‖
(
tα–n+
 – tα–n+


)

+ e
[

(t – t)α–n+‖ϕR‖

+
∫ t



(
(t – s)α–n+ – (t – s)α–n+)ϕR(s) ds

]

,

where e is from (H). Since (t – s)α–n+ is uniformly continuous on [, ]× [, ] and tα–n+ is
uniformly continuous on [, ], for any ε > , there exists δ >  such that, for  ≤ t ≤ t ≤ ,
t – t < δ,  < s ≤ t,

tα–n+
 – tα–n+

 < ε,

(t – s)α–n+ – (t – s)α–n+ < ε.

Consequently, for all u ∈ D,  ≤ t ≤ t ≤ , and t – t < min{δ, α–n+√ε}, we have the in-
equality

∣
∣(Qmu)(n–)(t) – (Qmu)(n–)(t)

∣
∣ ≤ e‖ϕR‖ε.

Hence, for any m ∈N, {(Qm(D))(n–)(t)} is equicontinuous on [, ]. Therefore, for any m ∈
N, Qm : K → K is a completely continuous operator. �

To prove the main results, we need the following well-known fixed point theorem.

Lemma . [] Let K be a positive cone in a Banach space E, � and � be two bounded
open sets in E such that θ ∈ � and � ⊂ �, and A : K ∩ (� \ �) → K be a completely
continuous operator, where θ denotes the zero element of E. Suppose that one of the following
two conditions holds:

(i) ‖Au‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂�; ‖Au‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂�;
(ii) ‖Au‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂�; ‖Au‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂�.

Then A has a fixed point in P ∩ (� \ �).

Theorem . Let (H)-(H) hold. Then problem (.) has a solution xm ∈ K , and

xm(t) ≥ Mtα–,

Dμi
+ xm(t) ≥ (n –  – μi)M

(n – i + )!
tn––μi , i = , , . . . , n – , t ∈ [, ], m ∈N,

(.)

where M is defined by (H).

Proof By Lemma ., Qm : K → K is a completely continuous operator. Then by (.) and
Lemma . we have

(Qmu)(t) ≥ C
∫ 


G(t, s) ds ≥ Mtα–, (.)
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and hence, ‖Qmu‖ ≥ M and ‖Qmu‖ ≥ M for u ∈ K . Let � = {u ∈ E : ‖u‖ < M}. Then

∥
∥(Qmu)

∥
∥

 ≥ ‖u‖ for u ∈ K ∩ ∂�.

Let Wm = p( 
m , 

m , . . . , 
m ). For any u ∈ K and t ∈ [, ], by Lemma . and (.) we have

 ≤ (Qmu)(i)(t)

≤ e
∫ 



(

β(t)Wm + γ (s)h
(

u(s) +

m

, Dμ
+ u(s) +


m

, Dμ
+ u(s) +


m

, . . . ,

Dμn–
+ u(s) +


m

))

ds

≤ e
(

‖β‖Wm + h
(

‖u‖ +

m

,
∥
∥Dμ

+ u
∥
∥ +


m

,
∥
∥Dμ

+ u
∥
∥ +


m

, . . . ,

∥
∥Dμn–

+ u
∥
∥ +


m

)

‖γ ‖

)

, i = , , , . . . , n – , n – , (.)

where e is from (H).
For any u ∈ K such that ‖u‖ ≤ S (S > M), by (.) and (.) we have

‖Qmu‖ ≤ e
(

‖β‖Wm + h
(

‖u‖ + ,
‖u‖

�(n –  – μ)
+ , . . . ,

‖u‖

�(n –  – μn–)
+ 

)

‖γ ‖

)

≤ e
(

‖β‖Wm + h
(

S
�(n –  – μn–)

+ ,
S

�(n –  – μn–)
+ , . . . ,

S
�(n –  – μn–)

+ 
)

‖γ ‖

)

. (.)

By (H), taking λ >  such that

lim sup
x→∞

h(x, x, . . . , x)
x

= λ < λ <
�(n –  – μn–)

e‖γ ‖
,

we have that there exists G > M +  such that, for any x > G,

h(x, x, . . . , x) < λx. (.)

Taking

S > max

{

M + , (G – )�(n –  – μn–),
e‖β‖Wm + eλ‖γ ‖

 – eλ‖γ ‖�–(n –  – μn–)

}

,

we have S
�(n––μn–) +  > G and S > M. Let � = {u ∈ E : ‖u‖ < S}. Then, for any u ∈ K ∩

∂�, by (.) and (.) we get

‖Qmu‖ ≤ e
(

‖β‖Wm +
λS‖γ ‖

�(n –  – μn–)
+ λ‖γ ‖

)

= e‖β‖Wm + eλ‖γ ‖ +
eλ‖γ ‖

�(n –  – μn–)
S ≤ S.
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Hence,

‖Qmu‖ ≤ ‖u‖ for u ∈ K ∩ ∂�. (.)

By Lemma . we get that the operator Qm has a fixed point in K ∩ (� \ �), and, as a
result, xm is a solution of problem (.). Since xm is a solution of problem (.),

xm(t) =
∫ 


G(t, s)fm

(
s, xm(s), Dμ

+ xm(s), Dμ
+ xm(s), . . . , Dμn–

+ xm(s)
)

ds,

t ∈ [, ], m ∈N, (.)

and xm satisfies xm(t) ≥ Mtα–. In addition, Lemma . and (.) imply

x(j)
m (t) ≥ C

∫ 



∂ j

∂tj G(t, s) ds

≥ Ctα–j–

(α – n + )�(α – j + )
, t ∈ [, ], m ∈N, j = , , , . . . , n – ,

x(n–)
m (t) ≥ C

∫ 



∂n–

∂tn– G(t, s) ds ≥ Ct( – t)
�(α – n + )

, t ∈ [, ], m ∈N.

By (.) we get

Dμi
+ xm(t) =


�(n –  – μi)

∫ t


(t – s)n––μi x(n–)

m (s) ds

≥ C
�(n –  – μi)�(α – n + )

∫ t


(t – s)n–μi–s( – s) ds, i = , , . . . , n – .

Further, since

∫ t


(t – s)n–μi–s( – s) ds =


(n –  – μi)

∫ t


(t – s)n––μi ( – s) ds

=


(n –  – μi)

(
tn––μi

n –  – μi
–

tn–μi

(n –  – μi)(n – μi)

)

=
tn––μi

(n –  – μi)
n – μi – t

(n –  – μi)(n – μi)

≥ tn––μi

(n –  – μi)
n –  – μi

(n –  – μi)(n – μi)

=
tn––μi

(n –  – μi)(n – μi)
, i = , , . . . , n – ,

we get

Dμi
+ xm(t) ≥ C

�(n –  – μi)�(α – n + )
tn––μi

(n –  – μi)(n – μi)

≥ C(n –  – μi)
�(n +  – μi)�(α – n + )

tn––μi , i = , , . . . , n – . (.)
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Furthermore,

�(n +  – μi) < �
(
n – (i – )

)
= (n – i + )!, i = , , . . . , n – , (.)

and then it follows from xm(t) ≥ Mtα–, (.) and (.) that, for t ∈ [, ] and m ∈ N, we
have

xm(t) ≥ Mtα–, Dμi
+ xm(t) ≥ (n –  – μi)M

(n – i + )!
tn––μi , i = , , . . . , n – , (.)

where M is defined by (H). �

In order to finish the main result, we also need the following lemma.

Lemma . Let xm be a solution of problem (.). If (H)-(H) hold, then the sequence {xm}
is relatively compact in E.

Proof For t ∈ [, ] and m ∈N, since p is nondecreasing, by (.) we have

p
(
xm(t), Dμ

+ xm(t), . . . , Dμn–
+ xm(t)

)

≤ p
(

Mtα–,
(n –  – μ)M

n!
tn––μ , . . . ,

(n –  – μn–)M
!

tn––μn–

)

, (.)

and by Lemma ., (.), (.), (.), and (.), for t ∈ [, ] and m ∈N, we get

 ≤ x(i)
m (t)

≤
∫ 



∂n–

∂tn– G(t, s)fm
(
s, xm(s), Dμ

+ xm(s), . . . , Dμn–
+ xm(s)

)
ds

≤ e
∫ 


β(t)p

(

Mtα–,
(n –  – μ)M

n!
tn––μ , . . . ,

(n –  – μn–)M
!

tn––μn–

)

ds

+ eh
(

‖xm‖ +

m

,
‖xm‖

�(n –  – μ)
+


m

, . . . ,
‖xm‖

�(n –  – μn–)
+


m

)∫ 


γ (s) ds

= e
(

ϒ + h
(

‖xm‖ + ,
‖xm‖

�(n –  – μ)
+ , . . . ,

‖xm‖

�(n –  – μn–)
+ 

)

‖γ ‖

)

,

i = , , , . . . , n – , n – , (.)

where

ϒ =
∫ 


β(t)p

(

Mtα–,
(n –  – μ)M

n!
tn––μ , . . . ,

(n –  – μn–)M
!

tn––μn–

)

ds.

By (H) and (.) we have

‖xm‖ ≤ e
(

ϒ + h
(

‖xm‖ + ,
‖xm‖

�(n –  – μ)
+ , . . . ,

‖xm‖

�(n –  – μn–)
+ 

)

‖γ ‖ ds
)

,

m ∈N, (.)

and ϒ < ∞.
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By (H), taking λ >  such that

lim sup
x→∞

h(x, x, . . . , x)
x

= λ < λ <
�(n –  – μn–)

e‖γ ‖
,

we have that there exists A > M +  such that, for any x > A,

h(x, x, . . . , x) < λx. (.)

In order to prove that {xm} ⊂ K is relatively compact in E = C(n–)[, ], we need to prove
that {xm} is bounded in E and {xm} is equicontinuous on [, ]. First, we prove that {xm}
is bounded in E. If {xm} is unbounded, then there exists a subsequence {xmj} ⊂ {xm} such
that ‖xmj‖ → +∞, and then there exists j such that

‖xmj
‖ > max

{

M + , (A – )�(n –  – μn–),
eϒ + eλ‖γ ‖

 – eλ‖γ ‖�–(n –  – μn–)

}

,

and then
‖xmj

‖
�(n––μn–) +  > A, and by (.) and (.) we get

‖xmj
‖ ≤ e

(

ϒ +
λ‖γ ‖‖xmj

‖

�(n –  – μn–)
+ λ‖γ ‖

)

= eϒ + eλ‖γ ‖ +
bλ‖γ ‖

�(n –  – μn–)
‖xmj

‖

< ‖xmj
‖.

This is a contradiction, which means that {xm} is bounded in E. Next, we will prove that
{x(n–)

m (t)} is equicontinuous on [, ]. Since {xm} is bounded in E, there exists � >  such
that ‖xm‖ ≤ �. Let

V = h
(

� + ,
�

�(n –  – μ)
+ , . . . ,

�

�(n –  – μn–)
+ 

)

,

φ(t) = β(t)p
(

Mtα–,
(n –  – μ)M

n!
tn––μ , . . . ,

(n –  – μn–)M
!

tn––μn–

)

, (.)

t ∈ (, ].

Then ϒ =
∫ 

 φ(t) dt, and for any m ∈ N and a.e. t ∈ [, ],

fm
(
t, xm(t), Dμ

+ xm(t), Dμ
+ xm(t), . . . , Dμn–

+ xm(t)
) ≤ φ(t) + Vγ (t). (.)

Assume that  ≤ t < t ≤ . Then by (.), for any m ∈N, we have

∣
∣x(n–)

m (t) – x(n–)
m (t)

∣
∣

=
∣
∣
∣
∣

∫ 



(
∂n–

∂tn– G(t, s) –
∂n–

∂tn– G(t, s)
)

× fm
(
s, xm(s), Dμ

+ xm(s), Dμ
+ xm(t), . . . , Dμn–

+ xm(t)
)

ds
∣
∣
∣
∣
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≤ e
(
tα–n+
 – tα–n+


)
∫ 



(
φ(s) + Vγ (s)

)
ds

+ e
∣
∣
∣
∣

∫ t


(t – s)α–n+(φ(s) + Vγ (s)

)
ds –

∫ t


(t – s)α–n+(φ(s) + Vγ (s)

)
ds

∣
∣
∣
∣

≤ e
(
ϒ + V‖γ ‖

)(
tα–n+
 – tα–n+


)

+ e
[∫ t

t

(t – s)α–n+(ϒ + V‖γ ‖
)

ds

+
∫ t



(
(t – s)α–n+ – (t – s)α–n+)(ϒ + V‖γ ‖

)
ds

]

≤ e
(
ϒ + V‖γ ‖

)(
tα–n+
 – tα–n+


)

+ e
[

(t – t)α–n+(ϒ + V‖γ ‖
)

+
∫ t



(
(t – s)α–n+ – (t – s)α–n+)(ϒ + V‖γ ‖

)
ds

]

.

Hence, we can prove that {x(n–)
m (t)|m = , , . . .} is equicontinuous on [, ]. �

4 Proof of Theorem 1.1
Proof of Theorem . According to Theorem ., we know that (.) has a solution xm ∈ K
for any m ∈ N. Moreover, Lemma . implies that {xm} is relatively compact in E and
satisfies inequality (.) for t ∈ [, ] and m ∈ N. The sequence {xm} has a subsequence
converging to x� ⊂ K . Without loss of generality, we still assume that {xm} itself uniformly
converges to x�. So x� ∈ K satisfies the boundary conditions of (.), and according to (.),
we get

lim
m→∞ Dμi

+ xm = Dμi
+ x�, i = , , . . . , n – ,

in C[, ]. Take the limit in (.) as m → ∞. Then x� satisfies (.). Moreover, for a.e.
t ∈ [, ],

lim
m→∞ fm

(
t, xm(t), Dμ

+ xm(t), Dμ
+ xm(t), . . . , Dμn–

+ xm(t)
)

= f
(
t, x�(t), Dμ

+ x�(t), Dμ
+ x�(t), . . . , Dμn–

+ x�(t)
)
.

By (.) we get

∥
∥Dμi

+ xm
∥
∥ ≤ �

�(n –  – μi)
, m ∈N, i = , , . . . , n – .

Therefore, for all m ∈N and a.e. (t, s) ∈ [, ] × [, ], we get

 ≤ G(t, s)fm
(
s, xm(s), Dμ

+ xm(s), Dμ
+ xm(s), . . . , Dμn–

+ xm(s)
)

≤ �

P()�(α)

(

φ(s) + h
(

� + ,
�

�(n –  – μ)
+ , . . . ,

�

�(n –  – μn–)
+ 

)

γ (s)
)

, (.)

where φ is defined by (.). Taking m → ∞ in (.) and combining with (.), we obtain

x�(t) =
∫ 


G(t, s)f

(
s, x�(s), Dμ

+ x�(s), Dμ
+ x�(s), . . . , Dμn–

+ x�(s)
)

ds, t ∈ [, ],
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by the Lebesgue dominated convergence theorem. Hence, x� is a positive solution of prob-
lem (.) and satisfies inequality (.). �

5 Example
We consider the following nonlinear singular fractional differential equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D


+u(t) + 

t (u(t))–a + 
t (D



+ u(t))–b + 

t (D


+ u(t))–c + 

t (D


+ u(t))–d + 

+ t

 (.u(t) + (D


+ u(t))b + (D



+ u(t))c + (D



+ u(t))d ) = ,  < t < ,

u() = u′() = u′′() = u′′′() = ,
u′′′() =

∑∞
j= ηju(ξj),

(.)

where α = 
 , μ = 

 , μ = 
 , μ = 

 , ηj = 
j , ξj = 

j



, a ∈ (, 
 ), b ∈ (, 

 ), c ∈ (, 
 ), d ∈

(, 
 ), b, c, d ∈ (, ). Letting γ (t) = +t




,t



and β(t) = +t



t



, we easily get

∞∑

j=

ηjξ
α–
j =

∞∑

j=


j

(

j 



) 
 ≈ . < � =




× 


× 


=



= .,

P() = � –
∞∑

j=

ηjξ
α–
j ≈ . – . = .,

�(n –  – μn–) = �(α – n + ) = �

(



)

=


�

(



)

≈ .


= .,

e =
�

P()�(α – n + )
≈ .

. × .
=

.
.

≈ .,

�(n –  – μn–)
b‖γ ‖

≈ .
. × .

≈ ..

Then the function

f (t, x, y, z, w) =

t

x–a +

t

y–b +

t

z–c +

t

w–d +  +
 + t 



,t 


(
.x + yb + zc + wd

)

satisfies the hypotheses (H), (H), and (H) for

p(x, y, z, w) = x–a + y–b + z–c + w–d + ,

γ (t) =
 + t 



,t 


, β(t) =
 + t 



t 


,

h(x, y, z, w) = .x + yb + zc + wd ,

and

lim sup
x→∞

h(x, x, . . . , x)
x

= lim sup
x→∞

.x + xb + xc + xd

x
= .

= λ <
�(n –  – μn–)

e‖γ ‖
≈ .,
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so hypothesis (H) is also satisfied. Therefore, Theorem . guarantees that the fractional
differential equation (.) has one positive solution u satisfying inequality (.) for t ∈
[, ], where M = 

(α–)�(α+) .

Remark . In the examples of [], the index of the independent variables of h can-
not be , but the index of the independent variables of h can be  in this paper because
limx→∞ h(x,x,...,x)

x =  is replaced by lim supx→∞
h(x,x,...,x)

x = λ < �(n––μn–)
e‖γ ‖

.

6 Conclusions
In this paper, some existence results are obtained successfully for the boundary value
problem (.) for the case where the nonlinearity is allowed to be singular with respect
to not only the time variable but also the space variable and also the boundary conditions
may involve infinite number of points. Compared with previous work [–], we com-
plete the proof without imposing the third Carathéodory condition, that is, the condition
|f (t, x, x, . . . , xn–)| ≤ ϕH (t) is successfully removed, and, at the same time, the condition

lim
x→∞

h(x, x, . . . , x)
x

= 

is extended to

lim sup
x→∞

h(x, x, . . . , x)
x

= λ <
�(n –  – μn–)

e‖γ ‖
,

which leads to more general results. Moreover, the results of [] seem to be wrong when
limx→

h(x,x,...,x)
x = . So we have improved the result of [–]. The method we utilized for

the analysis is the sequential technique and regularization, and the existence of positive
solutions is obtained by the fixed point theorem.
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17. Stanĕk, S: The existence of positive solutions of singular fractional boundary value problems. Comput. Math. Appl. 59,
1379-1388 (2011)

18. Zhang, S: Positive solutions to singular boundary value problem for nonlinear fractional differential equation.
Comput. Math. Appl. 59, 1300-1309 (2010)

19. Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York
(1993)

20. Podlubny, I: Fractional Differential Equations. Academic Press, New York (1999)
21. Kibas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam

(2006)
22. Bai, Z, Lv, H: Positive solutions of boundary value problems of nonlinear fractional differential equation. J. Math. Anal.

Appl. 311, 2761-2767 (2005)
23. Zhang, X, Liu, L, Wu, Y: The uniqueness of positive solution for a fractional order model of turbulent flow in a porous

medium. Appl. Math. Lett. 27, 26-33 (2014)
24. Zhang, X, Liu, L, Wu, Y: The eigenvalue problem for a singular higher fractional differential equation involving

fractional derivatives. Appl. Math. Comput. 218, 8526-8536 (2012)


	Existence of positive solutions for singular higher-order fractional differential equations with inﬁnite-point boundary conditions
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries and lemmas
	Auxiliary regular problem
	Proof of Theorem 1.1
	Example
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	References


