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A Consistent Metric for Performance Evaluation of
Multi-Object Filters

Dominic Schuhmacher, Ba-Tuong Vo, and Ba-Ngu Vo

Abstract— The concept of a miss-distance, or error, between
a reference quantity and its estimated/controlled value, plays a
fundamental role in any filtering/control problem. Yet there is
no satisfactory notion of a miss-distance in the well-established
field of multi-object filtering. In this paper, we outline the
inconsistencies of existing metrics in the context of multi-object
miss-distances for performance evaluation. We then propose
a new mathematically and intuitively consistent metric that
addresses the drawbacks of current multi-object performance
evaluation metrics.

Index Terms— Miss-distance, Performance evaluation, Wasser-
stein distance, Multi-object systems, Multi-object filtering Multi-
target tracking, Random sets, Point processes

I. INTRODUCTION

Dating back to the early 1970s, multi-object systems re-
search was driven primarily by aerospace applications such as
radar, sonar, guidance, navigation, and air traffic control (see
[1] and references therein). Today, multi-object systems re-
search is an established discipline [2]–[4] with a host of diverse
application areas including computer vision [5], oceanogra-
phy [6], [7], autonomous vehicle/robotics [8], remote sensing
[9], and biomedical research [10]. A multi-object system is
fundamentally different from a single-object system in that
the system state, called a multi-object state, is a finite set
of vectors rather than a single vector. Thus, not only the
constituent vectors of the multi-object state evolve in time,
but the number of these vectors also changes with time due
to the appearance and disappearance of objects [4]. Filtering
involves jointly estimating the number of constituent vectors
and their values from the observation history, whereas control
involves determining the control signals to achieve a certain
objective, which in many applications is a function of the
filtering performance.

The concept of a miss-distance, or error, between a reference
quantity and its estimated/controlled value, plays a fundamen-
tal role in any filtering/control problem. For example, in single-
object systems, widely used concepts of optimality, such
as least-squares, expected value, and root-mean-square error,
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Fig. 1. Hypothetical scenarios with ◦ representing true targets and +
representing estimated targets. Which estimate is closest to the truth?

would be incomprehensible without the concept of a miss-
distance. The miss-distance is indispensable in the formulation
and evaluation of filtering and control algorithms.

While the concept of a miss-distance is taken for granted
in single-object systems, this has not been the case in the
multi-object realm. Consider a tracking application where the
number of targets is not known and is to be inferred along with
the positions of the targets. Suppose that the true number of
targets is two and consider three different estimates as shown
in Fig. 1: (a) 2 points that are close to the true positions
of the targets; (b) 1 point that almost coincides with the
true position of one target; and (c) 3 points 2 of which
almost coincide with the true positions of the targets. The
question is which of these estimates is “closest” to the truth?
A satisfactory multi-object miss-distance needs to capture the
“difference” between two sets of vectors, namely the reference
multi-object state and the estimated multi-object state, in a
mathematically consistent yet physically meaningful manner.
Thus, taking practical considerations into account, a multi-
object miss-distance should:
• be a metric on the space of finite sets,
• have a natural (meaningful) physical interpretation,
• capture cardinality errors and state errors meaningfully,
• be easily computed.
At present, a satisfactory notion of a multi-object miss-

distance is not available despite the abundance of multi-object
filtering techniques and applications [2]–[4]. Works such as
[11] discuss performance evaluation from a more applied
viewpoint. The optimal assignment paradigm of Drummond
and associates [12], [13] has an intuitively appealing physical
interpretation, but it can only measure the distance between
multi-object states of the same cardinality in a consistent
manner. The Hausdorff distance rigorously accommodates
multi-object states of different cardinalities. However, it is rel-
atively insensitive to differences in cardinalities [14]. The first



PREPRINT: IEEE TRANSACTIONS ON SIGNAL PROCESSING VOL. 56, NO. 8 PART 1, PP. 3447- 3457, 2008 2

rigorous theory of multi-object miss-distance was proposed
by Hoffman and Mahler, based on a Wasserstein construction
[14]. This miss-distance is more sensitive to differences in
cardinalities than the Hausdorff distance. Moreover, it extends
the optimal assignment paradigm of Drummond and hence
inherits the physically intuitive interpretation when the two
multi-object states have the same cardinality. However, it does
not have a physically consistent interpretation when the multi-
object states have different cardinalities, and suffers from a
number of other serious limitations.

In this article we outline the drawbacks of the miss-
distance proposed by Hoffman and Mahler in the context
of multi-object filtering performance evaluation, and propose
a mathematically consistent multi-object miss-distance that
captures what we intuitively want to measure. Our approach
is also based on a Wasserstein construction, and inherits
the optimal assignment interpretation of the miss-distances
proposed in [12], [14] when the multi-object states have
the same cardinality. More importantly, our miss-distance
can accommodate cardinality differences in a mathematically
consistent and physically meaningful manner that eliminates
any element of arbitrariness suffered by ad hoc extensions
of Drummond’s approach (as discussed in Subsection I.B
of [14]). It also addresses many of the other drawbacks of
previous approaches and can be easily computed. The miss
distance we propose has a parameter which controls the
relative emphasis of localization and cardinality errors. This
feature provides users with enough flexibility to accommodate
the goals of particular missions.

The paper is organized as follows. In Section II we give
an overview of previous metrics used for multi-object sys-
tems and identify their strengths and weaknesses. Section III
presents our proposed miss-distance, demonstrates how it
solves the problems associated with the earlier metrics, and
gives details about its computation. Section IV presents nu-
merical studies that verify the salient features of the new
miss-distance. Concluding remarks are given in Section V and
mathematical details are given in the appendix.

II. PREVIOUS METRICS FOR MULTI-OBJECT SYSTEMS

We begin with a more detailed analysis of the multi-object
miss-distances mentioned in the introduction. From a mathe-
matical point of view, the fundamental requirement to allow
for consistent distance measuring is that our miss-distances
are metrics on the space of finite sets of objects [14]. For
completeness, we recall the definition of a metric. Let X be an
arbitrary non-empty set. A function d : X×X → R+ = [0,∞)
is called a metric if it satisfies the following three axioms:

1) (identity) d(x, y) = 0 if and only if x = y;
2) (symmetry) d(x, y) = d(y, x) for all x, y ∈ X ;
3) (triangle inequality) d(x, y) ≤ d(x, z) + d(z, y) for all

x, y, z ∈ X .
In the context of multi-object miss-distances, we fix a closed
and bounded observation window W ⊂ RN , and choose X to
be the set of finite subsets of W . In what follows, d denotes
always the metric used on W (typically the Euclidean metric,
d(x, y) = ‖x − y‖) while for the various metrics considered
on X appropriate indices are attached (dH , dp or d̄(c)

p ).

AHausd :∞
OMAT: undefined
OSPA: 200

BHausd: 473
OMAT: 64
OSPA: 21

CHausd: 1
OMAT: 1
OSPA: 160

DHausd: 1
OMAT: 1
OSPA: 101

EHausd: 1
OMAT: 67
OSPA: 67

FHausd: 1
OMAT: 1
OSPA: 101

Fig. 2. Six scenarios in a 1000×1000m2 window to illustrate the strengths
and weaknesses of the various metrics. ◦ actual objects, + estimates. Param-
eters are p = 1 (OMAT and OSPA) and c = 200 (OSPA). Scenarios depict
A) two false estimates; B) an outlier false estimate among several accurate
estimates; C) multiple estimates per object; D–F) a comparison of balanced
and unbalanced allocations of estimates to objects. Note that Scenarios B to
F are an artistic impression rather than an exact rendering of the situation in
the sense that the smallest distances have been considerably inflated for better
viewing (from 1 meter, which was assumed in the computations, to 40 meters
in the scale of the pictures).

A. Hausdorff metric
For finite non-empty subsets X and Y of W , define

dH(X,Y ) = max
{

max
x∈X

min
y∈Y

d(x, y), max
y∈Y

min
x∈X

d(x, y)
}

. (1)

The function dH is called the Hausdorff metric. A proof that
dH is a metric is given in Subsection VII-A of [14], and
Section III of the same paper discusses some of its merits
and difficulties in the context of multi-object filtering. We
emphasize here only the most important points.

First of all, it should be noted that, from a practical point of
view, the Hausdorff metric is traditionally used as a measure
of dissimilarity between binary images, for which it is well
suited both for theoretical and for intuitive reasons (it typically
gives a good idea of the difference in the optical impressions
a human would get from two images). However, it is very
insensitive to differing cardinalities of finite sets, as can be
seen from Scenarios C to F in Fig. 2, which is not desirable
for a performance measure of multi-object filters. Furthermore,
it penalizes outliers heavily (see Scenario B of Fig. 2), and
cannot be reasonably defined if one of the sets is empty
(Scenario A of Fig. 2) though some authors set it to ∞ in
this case.

From a mathematical point of view, the Hausdorff metric
has a long tradition in stochastic geometry for its theoretical
merits. It generates the standard topology considered on the
set of closed subsets of W (see [15], p.3 or equivalently p.12),
which is used to define random sets. In the context of finite set
statistics (FISST) this topology is usually called the Matheron
topology [4].

B. Optimal Mass Transfer (OMAT) metric
In 2004, Hoffman and Mahler [14] introduced a new metric

to overcome some of the problems of the Hausdorff metric in
the context of multi-object filtering performance evaluation.
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For 1 ≤ p < ∞ and finite non-empty subsets X =
{x1, . . . , xm} and Y = {y1, . . . , yn} of W , define

dp(X,Y ) := min
C

(
m∑

i=1

n∑

j=1

Ci,jd(xi, yj)p

)1/p

,

d∞(X,Y ) := min
C

max
1≤i≤m,1≤j≤n

C̃i,jd(xi, yj),

(2)

where the minima are taken over all m × n transportation
matrices C = (Ci,j) and where C̃i,j = 1 if Ci,j 6= 0 and
C̃i,j = 0 otherwise. An m × n matrix C is a transportation
matrix if all of its entries are non-negative and if

n∑

j=1

Ci,j =
1
m

for 1 ≤ i ≤ m,

m∑

i=1

Ci,j =
1
n

for 1 ≤ j ≤ n.

We call the function dp the OMAT metric of order p, where
OMAT stands for Optimal MAss Transfer (compare the remark
about the “earth mover’s distance” after Equation (6) in [14]).
Hoffman and Mahler used the term Wasserstein metric because
the above definition yields the p-th order Wasserstein metric
between the empirical distributions of the point patterns X
and Y . Since the metric we propose in the next section is also
based on a Wasserstein construction, we refrain from using
this term in relation to the OMAT metric to avoid potential
confusion.

The merits of the OMAT metric are that it partly fixes the
undesirable cardinality behaviour of the Hausdorff metric (see
Scenario E of Fig. 2) and that it can cope with the outlier
problem by the introduction of the parameter p (Scenario B
of Fig. 2). Regarding this second point, it should be mentioned
that there are also generalizations of the Hausdorff metric that
avoid this problem [16].

On the downside, the OMAT metric entails a host of
problems; the most important of these are outlined as follows:

1) Inconsistency of the metric: Consider Scenarios D to F
in Fig. 2. Each of these examples involves a cardinality error,
and from an intuitive point of view we would say that the
estimation errors are roughly equal, but that E is probably
a bit better than F and (arguably) somewhat better than D.
While the Hausdorff distance is the same in all three examples
(undesirably small due to the cardinality problem, but at least
consistent), the OMAT metric actually depends on how well
balanced the numbers of estimate points are among the actual
objects. It therefore assigns a much larger distance in Scenario
E than in the other two cases, and thus ranks the scenario that
we intuitively prefer (E) as by far the worst among the three.

This series of examples further reveals that the OMAT
metric is not always better than the Hausdorff metric at
detecting different cardinalities. This becomes even more
obvious in Scenario C of Fig. 2, where the cardinality of the
estimated point pattern is quite far from the truth. However,
since the estimates are perfectly balanced among the ground
truth objects, the OMAT metric does not detect this. While the
scenario depicted is certainly an extreme one, it is in essence
not unrealistic (see our comparison of the MeMBer and PHD
filters in Subsection IV-B).

2) Contrived construction for differing cardinalities: De-
composing individual objects into small parts does not seem
very attractive from an intuitive point of view and often
makes the resulting distances hard to interpret. While visual
perception sometimes tells us that a reasonable matching of
estimated objects to ground truths would involve splitting up
of unit masses (e.g. Scenario E in Fig. 2, where we would
naturally match the two estimates on the left with the one
ground truth object next to them), the OMAT metric does not
cater for such natural structure (and it is in fact hard for any
metric to do so). Instead, it tends to assign partial masses
between the two sets of objects in a complicated way, which
may be difficult to comprehend for a human observer. For
example the Hausdorff distance in Scenario B is clearly the
distance from the isolated filter estimate to its closest ground
truth object, whereas the optimal mass transfer for d1 or d2 is
not so obvious.

3) Geometry dependent behaviour: In [14], Hoffman and
Mahler describe what they call the geometry dependence of
the OMAT metric, stating that a multi-object filter should be
more heavily penalized for misestimating cardinality when the
objects are far apart than when they are closely spaced. The
rationale behind this statement is that it is harder to estimate
the number of objects when they are closely spaced. Under the
assumption that a multi-object filter consistently misestimates
the number of objects, the authors argue that the magnitude
of d∞ approximately equals the diameter of the ground truth
(and that dp shows a similar dependence on the diameter for
smaller p albeit to a lesser degree).

In contrast, we do not think that geometry dependence is
a desirable property. Ideally, an objective performance metric
should depend on as few specific features of the considered
test case as possible in order to allow direct comparisons
between different scenarios (or different stages within the same
scenario). The need for reinterpretation of the OMAT distances
according to the geometry of the ground truth as described
in [14] means that we have to transform these distances in
order to arrive at error quantities that are comparable with one
another. Such quantities, however, do not in general satisfy the
metric axioms any more and other desirable properties of the
OMAT metric might be lost as well.

Moreover, the stated dependence of d∞ on the diameter
of the ground truth is a strong simplification. Consider for
example a ground truth of n objects that are arranged as a
regular n-gon and a filter estimate that is perfect except that
one of the objects is missing. In this case the d∞-distance
will be equal to the side length of the polygon, which for
large n is very different from its diameter. In general, the
order of magnitude of dp depends substantially on the number
of objects as well as on more specific information about
the geometry of the ground truth, which makes an objective
performance evaluation based on the OMAT metric all the
more difficult. Thus, in the case where the miss-distance versus
time curve increases with time, it is virtually impossible to
tell whether a multi-object filter diverges or performs well
(compare Fig. 11). Even if this curve decreases to a small
constant value, it cannot be inferred that the filter performance
is good.
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4) Undefined if cardinality is zero: The distance dp(X, Y )
is not defined if one of the two point patterns is empty, and in
fact there is no natural extension for this case. However, when
evaluating multi-object filter performance, the situation where
there are no objects present but we obtain false estimates for
whatever reason, is quite common and should be captured by
a reasonable metric.

5) Incompatibility with mathematical theory: The topology
generated by the OMAT metric does not conform with any
well-established topology from the appropriate fields of math-
ematics such as stochastic geometry or point process theory.
While this poses no direct problem for the practical use nor
for defining random events that involve the metric (compare
the technical note at the end of Section IV in [14]), it still
makes certain theoretical statements difficult. Most notably, it
is not possible to describe the convergence of point patterns
or the convergence in distribution of random point patterns
(which are both well-defined concepts in stochastic geometry
and point process theory) based on the OMAT metric.

III. OPTIMAL SUBPATTERN ASSIGNMENT (OSPA)
METRIC

In this section, we introduce our new performance metric,
which is still based on a Wasserstein construction, but com-
pletely eliminates most of the aforementioned problems of the
OMAT metric. This metric was introduced only very recently
in [17] to address certain problems in point process theory and
spatial statistics.

Denote by d(c)(x, y) := min
(
c, d(x, y)

)
the distance1 be-

tween x, y ∈ W cut off at c > 0, and by Πk the set of
permutations on {1, 2, . . . , k} for any k ∈ N = {1, 2, . . .}.
For 1 ≤ p < ∞, c > 0, and arbitrary finite subsets
X = {x1, . . . , xm} and Y = {y1, . . . , yn} of W , where
m,n ∈ N0 = {0, 1, 2, . . .}, define

d̄(c)
p (X, Y ) :=

(
1
n

(
min
π∈Πn

m∑

i=1

d(c)(xi, yπ(i))p + cp(n−m)
))1/p

(3)
if m ≤ n, and d̄(c)

p (X,Y ) := d̄(c)
p (Y,X) if m > n; moreover,

d̄(c)
∞ (X,Y ) :=

{
min
π∈Πn

max
1≤i≤n

d(c)(xi, yπ(i)) if m = n

c if m 6= n;
(4)

in either case set the distance to zero if m = n = 0. We call
the function d̄(c)

p the OSPA metric of order p with cut-off c,
where OSPA stands for Optimal SubPattern Assignment.

It is by no means obvious that d̄(c)
p is indeed a metric. This

has been proved for the case p = 1 and c = 1 in [17]. We
give a proof for the general case in the appendix.

From a practical point of view, for p < ∞ and assuming
that m ≤ n, the OSPA distance between two point patterns X
and Y is obtained by going through the following three steps:

1) find the m point subpattern (subset consisting of m
elements) of Y that is closest to X in terms of the p-th

1An arbitrary metric d(c) with values in [0, c] could be used; in particular,
we can choose d(c)(x, y) = t(d(x, y)), where t : [0,∞) → [0, c] is any
transformation that is non-decreasing, subadditive (i.e. t(u+v) ≤ t(u)+t(v)
for all u, v ≥ 0), and satisfies t(u) = 0 if and only if u = 0.

Fig. 3. Two examples of an optimal subpattern assignment (for p = 1 and
c = 200). In the scenario on the left, the optimal assignment is immediately
clear from inspection; on the right the situation is more complicated and has
been obtained using the Hungarian method (see Subsection III-C).

order Wasserstein metric (= p-th order OMAT metric),
which results in an optimal point assignment (see Fig. 3);

2) for each point yj of Y , let αj be the cut-off value c
if there is no point assigned to it or else let αj be the
minimum of c and the distance to its assigned point
in X;

3) compute the p-th order average
(

1
n

∑n
j=1 αp

j

)1/p
of the

numbers α1, . . . , αn.
Example: In order to illustrate the three-step instruction, we
compute the OSPA distance between the two point patterns
in the left panel of Fig. 3, assuming the window to be
1000 × 1000m2, p = 1 and c = 200m. The optimal point
assignment is obtained by inspection (clearly, for any other
assignment, the average length of the dotted lines would be
larger). Going through each point + of Y (the point pattern
with the larger cardinality), we obtain that three of the αjs
are equal to the cutoff value 200m and seven of the αjs are
equal to the length of a dotted line, which is 90m. Therefore,
we have d̄(c)

1 (X, Y ) = 1
10 (3 · 200 + 7 · 90)m = 123m.

Remark: A slightly different way of constructing the OSPA
metric is the following: we fill up the point pattern X , which
has the smaller cardinality m, with n − m “dummy” points
located at distance ≥ c of any points in Y (we typically need to
extend our window W in order to do that), and then calculate
the p-th order Wasserstein metric between the resulting point
patterns. While the three-step instruction is more suitable for
practical considerations, this second interpretation is helpful
for theoretical reasoning. It furthermore provides us with an
efficient way of computing d̄(c)

p as will be seen in Subsec-
tion III-C.

A. Interpreting p and c

The order parameter p plays a role similar to the one
it has in the OMAT metric (compare the discussion after
Equation (14) in [14]). As p increases and c remains fixed,
the metric d̄(c)

p becomes ever more unforgiving to “outlier”
estimates that are not close to any objects of the ground truth.
This happens because the p-th order average assigns more
weight to exceptionally large values among the αj the larger p
is (compare also Equation (7) in the appendix). Note, however,
that in the case of the OSPA metric this effect is somewhat
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mitigated by the fact that distances between points are cut off
at c, which is also the penalty that a point gets when it is
deemed “unassignable”. Using Hölder’s inequality it can be
shown that OSPA distances are ordered according to the value
of p, i.e.

d̄(c)
p1

(X, Y ) ≤ d̄(c)
p2

(X, Y ) for 1 ≤ p1 < p2 ≤ ∞ and c > 0.

The cut-off parameter c determines the weighting of how the
metric penalizes cardinality errors as opposed to localization
errors. For p = 1 it is exactly the penalty given to any false
or missing point estimate. It thus represents the threshold
at which, with respect to the local situation, we no longer
distinguish between whether two points of different point
patterns are paired together or whether one of the points
remains unassigned while the other can make an exact match.
If they were any closer together, we would prefer pairing the
two points; if they were further apart, we would prefer to say
that they are unrelated. From the definition of the OSPA metric
it is clear that

d̄(c)
p (X, Y ) ∈ [0, c] for any c > 0 (5)

and that

d̄(c1)
p (X,Y ) ≤ d̄(c2)

p (X,Y ) for 0 < c1 < c2 < ∞.

Equation (5) gives us some “calibration” for d̄(c)
p ; that is, we

may now also consider how the metric performs in relation to
the worst possible distance c. For more applied considerations
and guidelines on how to choose c in concrete situations, see
the corresponding discussion in Subsection III-D.

B. Solving the problems of the earlier metrics

We briefly present the solutions that the OSPA metric
has to offer with regard to the five problems identified in
Subsection II-B.

1) Consistency: The consistency problem of Scenarios D to
F in Fig. 2 is resolved; see the distances given in the same. The
OSPA metric penalizes relative differences in cardinality in an
impartial way by introducing an additive component on top of
the average distance in the optimal subpattern assignment. In
this way differences in cardinalities cannot go unnoticed (for a
reasonably high cut-off c; see the discussion in Subsection III-
A) in cases where an “unfortunate” positioning of the points
occurs (see Scenarios C, D and F). Furthermore, our investi-
gations have revealed no other serious inconsistencies.

2) Intuitive construction: In Section I-B of [14], the authors
voice their concern that the process of assigning objects
(without splitting up their masses) between two point pat-
terns with different cardinalities by declaring either “false” or
“missing” points may violate the metric axioms and can easily
become arbitrary, which might then favour one multi-object
filtering algorithm over another for spurious reasons. Our
construction, however, eliminates any element of arbitrariness
by providing an objective and intuitively reasonable criterion
for the assignment, while at the same time observing the metric
axioms. It is furthermore conceptually easier than splitting up
individual objects into many small parts (compare for example
the left hand side of Fig. 3).

3) Geometry dependence: For a given cut-off and a given
value of p, the d̄(c)

p -distance does not substantially depend on
the size of the ground truth pattern (see the scenario in Sub-
section IV-B, where the targets are moving radially outwards).
This is because extra points are essentially penalized according
to the cut-off c rather than according to their distance from
other points in the pattern. While we recommend basing the
choice of c only on the most fundamental a priori requirements
of the test case, such as the size of the observation window,
sensor accuracy, and possibly expected number of targets,
more subtle adaptations may be justified in special situations,
and the OSPA metric leaves this possibility open.

4) Cardinality zero: The OSPA metric is defined between
any two point patterns. It is equal to c (i.e. maximal) if one
of the two patterns is empty and the other is non-empty.
While sometimes it would be desirable to have different values
according to the cardinality of the non-empty pattern, this is
only a minor inconvenience.

5) Compatibility with mathematical theory: Section 2 of
[17] contains several theoretical properties of the metric d̄

(1)
1 ,

which can all be adapted for d̄(c)
p . Technical discussions of

these properties are, for the large part, beyond the scope of
this article. Nonetheless, they show that d̄(c)

p is compatible
with the mathematical theory. One aspect that we would like
to stress is that it can be shown that d̄(c)

p generates the vague
topology on the space of finite point patterns on W , which is
the standard topology used in point process theory (see [18],
Section 15.7, or [19], Section 1.1 and Appendix A)2. While
this is not the same as the Matheron topology, it is in our
opinion even better suited as a theoretical base for performance
evaluation in multi-object filtering because it takes appropriate
care of differing cardinalities. The most important difference
between the two topologies is that, if Xn consists of just two
points that merge into one as n →∞, then Xn converges with
respect to the Matheron topology against a point pattern that
has just one point (e.g. {− 1

n , 1
n} → {0} for W = [−1, 1] ⊂

R), but does not converge with respect to the vague topology.
However, it converges against a point pattern that has a double
point at one location (at 0 in the above example) if we choose
to admit such patterns for theoretical considerations.

C. Computation of the OSPA metric

The OSPA metric can be computed efficiently by using the
Hungarian method for optimal point assignment (see [21],
Section 11.2). For p < ∞ and two point patterns X =
{x1, . . . , xm} and Y = {y1, . . . , yn} with m ≤ n, we
use the distance matrix D = (Di,j)1≤i,j≤n, where Di,j =
d(c)(xi, yj)p if 1 ≤ i ≤ m and 1 ≤ j ≤ n, and Di,j = cp

otherwise. This corresponds to the introduction of n − m
“dummy” points at distance ≥ c of any points in Y that was
described earlier.

The Hungarian method is known to have an asymptotic
complexity that is cubic in the dimension of the distance
matrix, so that we obtain O

(
max(m, n)3

)
for computing the

2Some authors, such as [20] (see Section A2.3), prefer to use the weak
topology. However, we are not concerned with such fine distinctions here
because for our choice of W the two topologies coincide.
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OSPA distance. While we are not aware of a method for
computing the OMAT distance that is proven to be of a
theoretical complexity that is just as good, we remark that,
for practical purposes, the OSPA and OMAT metrics can both
be computed with similar ease and efficiency (see Section V
in [14] for methods of computing the OMAT metric).

D. Use of the OSPA metric in multi-object estimation

In the context of multi-object performance evaluation, we
can interpret the OSPA-distance as a p-th order “per-object”
error3. This error is comprised of two components each sep-
arately accounting for “localization” and “cardinality” errors.
Precisely, for p < ∞ these components are given by

ē(c)

p,loc(X,Y ) :=

(
1
n
· min

π∈Πn

m∑

i=1

d(c)(xi, yπ(i))p

)1/p

,

ē(c)

p,card(X,Y ) :=
(

cp(n−m)
n

)1/p
(6)

if m ≤ n, and ē(c)

p,loc(X, Y ) := ē(c)

p,loc(Y, X), ē(c)

p,card(X,Y ) :=
ē(c)

p,card(Y,X) if m > n. They can thus be interpreted as
contributions due to localization only (within the optimal
subpattern assignment) and cardinality only (penalized at
maximal distance). Note however, that the functions ē(c)

p,loc
and ē(c)

p,card are themselves not metrics on the space of finite
subsets. Nonetheless, ē(c)

p,loc can be considered a metric on
the space of finite subsets with fixed cardinality (i.e. once
the optimal assignment is determined), and ē(c)

p,card can be
considered a metric on the space of non-negative integers (i.e.
using the cardinalities of the sets only). We also remark that the
decomposition of the OSPA metric into separate components
is usually not necessary for performance evaluation, but may
provide valuable additional information.

As discussed in Subsection III-A, the value of p determines
the sensitivity of d̄(c)

p to outlier estimates. We emphasize here
two important choices. For p = 1, we have the benefit that the
OSPA-metric measures a first order per-object error and that
the sum of the localization and cardinality components equals
the total metric, which facilitates a direct interpretation of the
metric and its components. However, p = 2 is usually a more
practical choice since it yields smooth distance curves and is
traditionally encountered in other metrics that use a p-th order
average construction. In subsequent parts of this paper we will
not focus on the effect of choosing different values of p and
only consider p = 2 for convenience.

As alluded to in Subsection III-A, the value of the cut-
off c determines the relative weighting of the cardinality error
component against the localization error component as parts
of the total error. Smaller values of c tend to emphasize
localization errors and make the metric mostly insensitive to
cardinality errors, whereas larger values of c predominantly
indicate cardinality errors and ignore localization errors. The
following guidelines can be used for choosing the cut-off
value c. A value of c which corresponds to the magnitude of a

3Strictly speaking, the “per-object” error is a “per-estimated-object” error
when the cardinality is overestimated and a “per-true-object” error when the
cardinality is underestimated.

typical localization error can be considered small and has the
effect of emphasizing localization errors. A value of c which
corresponds to the maximal distance between objects can be
considered large and has the effect of emphasizing cardinality
errors. Any value of c significantly larger than a typical
localization error, but significantly smaller than the maximal
distance between objects, can be considered moderate and
maintains a balance between the two components. Ultimately,
the value of c should be chosen to answer the question
with what distance (“how many meters”) the designer wants
to penalize a false or missing estimate, which in concrete
application narrows down the reasonable choices significantly.
For our experiments in the next section, we consider each case
of a small, a moderate and a large value of c.

IV. EXPERIMENTS

We demonstrate the proposed OSPA metric with two multi-
target tracking applications. In the first, we employ a typical
scenario to illustrate the use and interpretation of the OSPA
metric and compare with the OMAT metric. In the second, we
employ a more extreme scenario to illustrate how the OMAT
metric is unable to distinguish good and bad performance
due to its inconsistencies and geometry dependence, and then
illustrate how the OSPA metric resolves these drawbacks.

In both scenarios, we use the following dynamical and ob-
servation model. The duration of both scenarios is K = 100s.
The observation window is the square W = [−1000, 1000]m×
[−1000, 1000]m. The individual target states are 4-D vectors
xk = [ px,k, py,k, ṗx,k, ṗy,k ]T of x and y position and velocity.
Individual target motions follow a linear Gaussian constant
velocity motion model with a sampling period of ∆ = 1s
and process noise standard deviation of σν = 3m/s2 on
both the x and y directions. Target originated measurements
are 2-D vectors zk = [ mx,k,my,k ]T of x and y position.
Individual coordinate measurements are corrupted by additive
Gaussian noise with noise standard deviation of σε = 10m on
both the x and y coordinates. The probability of survival is
pS,k = 0.99 and the probability of detection is pD,k = 0.98
in Scenario 1 and pD,k = 0.90 in Scenario 2. Clutter follows
a uniform Poisson process over the observation window with
intensity λc,k = 1.25 × 10−5m−2 on W in Scenario 1 and
λc,k = 2.50 × 10−6m−2 on W in Scenario 2. Note that
when the metrics are computed, we take only the positional
components of the state vector.

A. Scenario 1

Consider a time-varying number of targets (max of 10)
moving with non-constant velocity as shown in Fig. 4. Note
that targets 1–6 are born at time k = 1, targets 7–10 are
born at time k = 30, and targets 3–4 die at time k = 80. The
starting and stopping positions for each track are labelled with
a circle and triangle respectively. The multi-target filters used
to test the new metric are the Gaussian mixture PHD [22] and
Gaussian mixture CPHD [23] filters. Although it is not our
primary intention here to examine these filters in detail, we
note that the former is known to have much higher variance
on its estimate of the number of targets than the latter.
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Fig. 4. True tracks in the xy plane. Targets move with non-constant velocity
along the paths shown. Start/Stop positions are shown with ◦/4.

To capture the average performance, we run 1000 Monte
Carlo (MC) trials for each filter with the same target tracks
but independently generated measurements. Fig. 5 shows the
mean and standard deviation of the estimated cardinality
distribution. These results confirm that both filters provide
unbiased estimates of the multi-target cardinality. It can also be
seen that the PHD filter has a significantly larger variance on
the estimated cardinality, but has a faster response to changes
in cardinality than the CPHD filter.
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Fig. 5. True cardinality (solid line) shown versus estimated mean cardinality
and corresponding standard deviation for the CPHD filter (•/•) and similarly
for the PHD filter (2/2). Both filters are unbiased, and the CPHD filter has a
lower variance but slower response to changes than the PHD filter.

In Fig. 6, the MC average of the OMAT distance for p = 2
is shown. Although these numerical results are consistent with
the results of Fig. 5, it is not at all clear how the numerical
values produced by the OMAT metric should be interpreted,
especially in terms of localization and cardinality error. These
results demonstrate the contrived nature of the OMAT metric
in general as discussed in Subsection II-B. In contrast, the
OSPA metric proposed in Section III has a much more natural
and intuitive interpretation.

We illustrate the effect of varying the cut-off parameter c in
Fig. 7, which shows the MC average of the OSPA distance for
p = 2 and c = 30m, 100m, 2828m. Fig. 7(a) shows the results
for c = 30m (in fact c = 3σε) which suggests that on average
the CPHD and PHD filters are making an error of roughly
11m and 12m respectively per target. It can be seen that the

CPHD filter appears to perform slightly better than the PHD
filter due to the disparity in the variance of their cardinality
estimates. However, in this case the actual magnitude of the
difference of roughly 1m per target is relatively small, since
the choice of a small cut-off effectively tells the metric not to
penalize cardinality errors harshly and hence to reflect mainly
localization errors.

Fig. 7(b) shows the results for c = 100m where the CPHD
and PHD filters make average errors of roughly 20m and
26m respectively per target. Both the magnitude of the errors
themselves and the magnitude of the difference between the
errors of the two filters have increased, due to the choice of
a moderate cut-off, which has the effect of balancing between
the localization and cardinality errors.

Fig. 7(c) shows the results for c = 2828m (the maximum
possible distance, i.e. the diagonal of the observation window),
which suggests that the CPHD and PHD filters are making
errors of 300m and 500m respectively per target. In this case
the metric is predominantly reporting a cardinality penalty
due to the choice of a very high cut-off value relative to the
magnitude of a typical localization error.
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Fig. 6. 1000 MC run average OMAT distance versus time. The numerical
values of the OMAT distances are difficult to interpret in terms of a physical
distance.

The experiment can be further analyzed by examining the
“localization” and “cardinality” components of the OSPA
metric given in (6). The MC average of these two components
in this scenario for c = 100m is shown in Fig. 8. In terms
of localization error, the two filters are penalized in roughly
equal amounts, consistent with the standard deviation of the
measurement noise. On closer inspection of the localization
errors, the PHD filter appears to perform slightly better.
This can be attributed to the fact that the optimal subpattern
assignment gives a filter a slight advantage for the localization
component when its cardinality estimate is wrong: if there are
too many estimates, only the best ones are used; if there are
too few, they are interpreted as estimates for the closest subset
of true targets. In terms of cardinality error, the PHD filter is
penalized much more heavily than the CPHD filter as a result
of the former having a much larger variance on its cardinality
estimate than the latter. Specifically on cardinality errors, the
CPHD filter on average has half the penalty of the PHD filter
at instants when there are no cardinality changes (see Fig. 5),
but the CPHD filter is penalized for a longer duration and/or
more severely than the PHD filter at instants where there are
cardinality changes (see Fig. 5 at k = 30s, 80s) as a result of
being slower to respond to the change.
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Fig. 7. 1000 MC run average OSPA distance versus time measuring the “per-
target” error for various cut-off values. (a) c = 30m emphasizing localization
errors; (b) c = 100m balancing between localization and cardinality errors;
(c) c = 2828m emphasizing cardinality errors.
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Fig. 8. 1000 MC run average OSPA components. (a) localization component
versus time, where both filters have roughly similar errors; (b) cardinality
component versus time, where the CPHD filter performs significantly better
than the PHD filter due to the large difference in the variance of their
cardinality estimates, except at instants of cardinality changes.

B. Scenario 2

Consider 10 targets moving radially outwards with constant
velocity as shown in Fig. 9. The multi-target filters used to
test the new metric are the Gaussian mixture MeMBer filter
[4] and the Gaussian mixture PHD filter [22]. We compare
these two filters to demonstrate the inability of the OMAT
metric to adequately indicate good and bad performance, and
also to illustrate how the proposed OSPA metric resolves these
inconsistencies.
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Fig. 9. True tracks in the xy plane. Targets move with constant velocity
radially outwards. Start/Stop positions are shown with ◦/4.

Again, we perform 1000 Monte Carlo (MC) runs of each
filter with the same target tracks but independently generated
measurements. We observed that the MeMBer filter is biased
in its estimate of the multi-target cardinality, and that the bias
is systematic in the sense that the filter tends to output as esti-
mates both its time-predicted and measurement-updated tracks
for each target present. This observation will be pertinent to
the interpretation of our results. In fact, the MC average mean
and standard deviation of the estimated cardinality distribution,
shown in Fig. 10 indicate that the MeMBer filter overestimates
the cardinality by a factor of approximately 2, whereas the
PHD filter is unbiased in this respect.
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Fig. 10. True cardinality (solid line) shown versus estimated mean cardinality
and corresponding standard deviation for the MeMBer filter (•/•) and similarly
for the PHD filter (2/2). The MeMBer filter is biased but the PHD filter is
unbiased.

In Fig. 11, the MC average of the OMAT distance for
p = 2 is shown. We can see at first glance that the values
of the OMAT distance increase with time. These results are
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not an indication of filter divergence, but are actually caused
by the geometry dependence of the OMAT metric reflecting
the outward radial travel of the targets. Moreover, the relative
positions of the two curves suggest that the MeMBer filter
performs about equally well as the PHD filter (even marginally
better, in fact), in spite of the former committing significant
cardinality errors and the latter being unbiased. However, these
results are not an accurate evaluation of filter performance
since the situation here resembles that of Scenario C in Fig. 2
and is actually caused by the OMAT metric being insensitive
to multiple estimates concentrated around a single true point.
Furthermore, when cardinality errors arise in this scenario such
that it resembles that of Scenarios D–F in Fig. 2, the OMAT
metric becomes yet more difficult to interpret. We are thus
faced with a practical situation where the OMAT metric is not
a reliable measure of filter performance.

In Fig. 12, the MC average of the OSPA distance for p = 2
and c = 100m is shown. It can be seen that after the initial
settle-in phase the curves stabilize to an average error of
75m and 35m per target for the MeMBer and PHD filters
respectively. These results confirm that the OSPA metric is
not affected by the geometry of the scenario, and that it pe-
nalizes the MeMBer filter for cardinality errors appropriately
compared to the PHD filter. Examining the “localization” and
“cardinality” components of the OSPA metric given in Fig. 13
further verifies our observations. On localization errors, the
PHD filter settles to an error consistent with the standard
deviation of the measurement noise, whilst the MeMBer filter
achieves an unexpectedly lower error as a direct result of
always double-guessing the true location of each target. In
fact, in terms of localization errors only, the MeMBer filter
is at a significant advantage in this scenario since for each
target present, this filter consistently outputs its time-predicted
track as one of its states estimates, which is likely to be
very accurate considering the perfectly straight line paths of
the targets and the relatively low probability of detection
encountered here. On cardinality errors, the results indicate
that the MeMBer filter is penalized much more than the PHD
filter for always overestimating the cardinality.

0 20 40 60 80 100
0

100

200

300

Time

O
M

A
T

 (
m

)(
p=

2)

MeMBer
PHD

Fig. 11. 1000 MC run average OMAT distance versus time. The distances
increase with time due to the geometry dependence of the metric. Also, the
MeMBer filter appears to perform equally well as the PHD filter due to
inconsistencies of the metric which result in its inability to distinguish good
and bad performance.

V. CONCLUSION

This paper has identified a number of serious limitations
in previous miss-distances used in multi-object systems, in-
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Fig. 12. 1000 MC run average OSPA distance versus time. The OSPA
metric does not exhibit any geometry dependence and appropriately penalizes
cardinality errors in this scenario.
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Fig. 13. 1000 MC run average OSPA components. (a) localization component
versus time, where the MeMBer filter performs unexpectedly well due to
double-guessing, but the PHD filter performs as expected; (b) cardinality
component versus time, yielding appropriate penalties for both filters.

cluding inconsistent behaviour and the lack of a meaningful
physical interpretation if the cardinalities of the two finite sets
under consideration differ. We have subsequently introduced
a new miss-distance, called the optimal subpattern assignment
(OSPA) metric, that overcomes these limitations. It allows for
a natural physical interpretation even if the cardinalities of
two sets are not the same, without exhibiting any elements of
arbitrariness inherent in ad hoc assignment approaches.

The OSPA metric has two adjustable parameters p ∈ [1,∞]
and c > 0 that have meaningful interpretations as outlier
sensitivity and cardinality penalty, respectively. If for a par-
ticular application it is crucial to estimate the number of
objects correctly, we can cater for this by choosing a large
value for c, whereas, if exact position estimates are important
and cardinality errors are almost negligible, we would rather
choose a small value for c. The transparent interpretations
for p and c also mean that grossly unsuitable parameter
choices are easily seen, which provides a certain degree of
protection against abuse from biasing the metric to favour
specific scenarios for spurious reasons.

The various advantages of the OSPA metric have been
illustrated in two extensive simulation studies.
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While closer investigation of the metric reveals no serious
weaknesses, there are several minor issues worth mentioning.
First, it would sometimes be desirable to have separate control
over the threshold at which physical distances in the state
space are cut off and the penalty given to cardinality errors,
which in our definition are both determined by the single
parameter c (cf. the two occurences of c in Equation (3), first in
the role of a distance threshold, then in the role of a cardinality
penalty). However, choosing a distance threshold that is larger
than the cardinality penalty in the current definition does not
usually result in a metric. Secondly, if one of the point patterns
is empty, the OSPA metric is insensitive to the cardinality of
the non-empty point pattern, which is slightly inconvenient.
Lastly, our proposed metric is formulated only on closed
and bounded subsets, although this is not a problem in most
practical situations.

APPENDIX
PROOF THAT d̄(c)

p IS A METRIC

Fix p ∈ [1,∞] and c > 0. From the definition of d̄(c)
p

it is clear that d̄(c)
p (X, Y ) ≥ 0 and that d̄(c)

p satisfies the
identity and symmetry properties. Let X = {x1, . . . , xl},
Y = {y1, . . . , ym}, and Z = {z1, . . . , zn}, where l, m, n ∈
N0. We show d̄(c)

p (X, Y ) ≤ d̄(c)
p (X, Z) + d̄(c)

p (Z, Y ) (triangle
inequality) for p < ∞. Since this inequality is symmetric in
X and Y , we may assume without loss of generality that
l ≤ m. We furthermore assume that at most one of the
cardinalities l, m, n is zero because otherwise the inequality is
clearly satisfied. Introduce two sequences (ui)i∈N and (vi)i∈N
of pairwise distinct points in RN \W (the complement of W
in RN ) such that

d(ui, x) ≥ c, d(vj , x) ≥ c, and d(ui, vj) ≥ c

for all x ∈ W and all i, j ∈ N.4

Case 1 (l ≤ m ≤ n): Let xl+i := ui for 1 ≤ i ≤ n− l and
ym+j := vj for 1 ≤ j ≤ n − m. Choose σ, τ ∈ Πn such
that

∑n
i=1 d(c)(xi, zσ(i))p = minπ∈Πn

∑n
i=1 d(c)(xi, zπ(i))p

and
∑n

i=1 d(c)(zi, yτ(i))p = minπ∈Πn

∑n
i=1 d(c)(zi, yπ(i))p.

We then obtain
d̄(c)

p (X, Y )

=
(

1
m

min
π∈Πm

m∑

i=1

d(c)(xi, yπ(i))p

)1/p

≤
(

1
n

min
π∈Πn

n∑

i=1

d(c)(xi, yπ(i))p

)1/p

≤
(

1
n

n∑

i=1

(
d(c)(xi, zσ(i)) + d(c)(zσ(i), yτ(σ(i)))

)p
)1/p

≤
(

1
n

n∑

i=1

d(c)(xi, zσ(i))p

)1/p

+
(

1
n

n∑

i=1

d(c)(zσ(i), yτ(σ(i)))p

)1/p

= d̄(c)
p (X, Z) + d̄(c)

p (Z, Y ),

4There is often (e.g. for the Euclidean metric) a natural extension of the
metric d from W to RN that makes such a choice possible. Otherwise, extend
d by setting d(x, y) := max

(
c, diam(W )

)
if x, y ∈ RN are distinct and

not both in W , where diam(W ) = max{d(x, y); x, y ∈ W}.

using the fact that a ≤ cpm implies a
m ≤ a+cp(n−m)

n for
the second relation, and Minkowski’s inequality for the fourth
relation.

Case 2 (l, n ≤ m): Let xm−i+1 := ui for 1 ≤ i ≤ m − l
and zm−j+1 := uj for 1 ≤ j ≤ m− n (note that this implies
xi = zi for max(l, n) ≤ i ≤ m). Choose σ, τ ∈ Πm such
that

∑m
i=1 d(c)(xi, zσ(i))p = minπ∈Πl∨n

∑l∨n
i=1 d(c)(xi, zπ(i))p

and
∑m

i=1 d(c)(zi, yτ(i))p = minπ∈Πm

∑m
i=1 d(c)(zi, yπ(i))p,

where l ∨ n = max(l, n). We then have

d̄(c)
p (X, Y )

=
(

1
m

min
π∈Πm

m∑

i=1

d(c)(xi, yπ(i))p

)1/p

≤
(

1
m

m∑

i=1

(
d(c)(xi, zσ(i)) + d(c)(zσ(i), yτ(σ(i)))

)p
)1/p

≤
(

1
m

m∑

i=1

d(c)(xi, zσ(i))p

)1/p

+
(

1
m

m∑

i=1

d(c)(zσ(i), yτ(σ(i)))p

)1/p

≤ d̄(c)
p (X, Z) + d̄(c)

p (Z, Y ),

where the third relation follows by Minkowski’s inequality.
Since we have l ≤ m, combining cases 1 and 2 yields the

triangle inequality for p < ∞. By

lim
p→∞

(
1
m

m∑

i=1

αp
i

)1/p

= max
1≤i≤m

αi (7)

for αi ≥ 0, it can be seen that limp→∞ d̄(c)
p (X, Y ) =

d̄(c)
∞ (X, Y ). The triangle inequality for p = ∞ follows then

by letting p →∞ in the triangle inequality for p < ∞.
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