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Derating of Asymmetric Three-Phase Transformers
Serving Unbalanced Nonlinear Loads

Mohammad A. S. Masoum, Senior Member, IEEE, Paul S. Moses, and Amir S. Masoum, Student Member, IEEE

Abstract—A new analysis into the steady-state operation and
derating of three-phase transformers under nonsinusoidal and
asymmetric operating conditions is proposed. The combined
effects of transformer core and load asymmetry, nonlinearity, and
harmonics, as well as nonsinusoidal input excitation are exam-
ined. A time-domain nonlinear model for three-phase three-leg
transformers is implemented. Transformer derating is estimated
by modeling additional power losses due to harmonics generated
by the iron core, nonsinusoidal excitation, and nonlinear (rectifier
and electric drive) loading. Laboratory tests are performed to
verify simulated waveforms. The contribution of this paper is a
nonlinear transformer modeling technique for steady-state opera-
tion under unbalanced, asymmetric, and nonsinusoidal operation,
capable of computing derating factors.

Index Terms—Asymmetry, derating, electric drives, harmonics,
nonlinear loads, transformer losses.

I. INTRODUCTION

ROPAGATION and generation of voltage and current har-

monics in three-phase transformers has received consid-
erable attention in literature. Much is known about transformer
additional losses being symptomatic of nonsinusoidal operation,
leading to thermal damage in the insulation, iron core, and wind-
ings [1]-[7]. However, past analyses have been mainly limited
to balanced and symmetric operation of transformers.

The majority of transformer harmonic models assume sym-
metrical conditions. This is seldom true as transformers often
operate in the presence of power system and load imbalances
with asymmetry in the iron core. The complete extent of symp-
toms from unbalanced, asymmetric behavior, and nonsinusoidal
operation is not so apparent in literature and limited documents
have investigated such nonlinearities [8]-[14].

A significant step forward was the development of the non-
linear three-phase magnetic circuit model by Fuchs et al. [9],
[10] that was later modified by Pedra et al. [15] to include asym-
metric nonlinear core reluctances. Clua et al. [8] investigated
unbalanced harmonic power flow in three-phase transformers
by using admittance matrices and sequence component equiva-
lent models. However, this model neglects core nonlinearity and
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assumes symmetrical core limbs with no harmonic interaction
between the network and nonlinear loads.

The impact of unsymmetrical voltage sags on three-phase
transformers has been studied by Pedra er al. [14]. The trans-
former model is similar to the one implemented in this paper.
Previous work by Medina et al. [12], [13] derived a Norton
harmonic representation of three-phase transformers. This
frequency domain technique pioneered modeling asymmetrical
core magnetization, harmonic cross coupling in the limbs, and
harmonic power flow.

A simple and effective approach for the safe operation of
transformers is to derate them under nonsinusoidal operating
conditions. Derating is the intentional reduction in load capacity
of a transformer under nonsinusoidal operation [16], [17]. It be-
comes necessary because nonsinusoidal operation gives rise to
additional fundamental and harmonic losses which may pro-
duce excessive heating. Four general techniques are used to
estimate the derating of transformers; K-Factor, harmonic loss
factor (F'gr) [21, [3], [16], [17], measured harmonic losses [1],
[19], and computed harmonics losses [5]. The last approach will
be used in this paper. Under nonsinusoidal operating conditions,
the derated fundamental load current is computed such that total
losses are equal to rated transformer losses. A similar method
has been previously demonstrated by Masoum et al. [5].

In this paper, a nonlinear transformer model [15] is modified
to include nonsinusoidal excitation, (non)linear and asymmetric
loads, transformer core nonlinearity, core asymmetry and har-
monic cross coupling effects in the legs. The developed trans-
former model is used to determine the additional losses and esti-
mate the load reduction (e.g., transformer derating [5]) required
to maintain safe operation under nonsinusoidal operation. Lab-
oratory tests with linear and nonlinear transformer loading are
performed to verify simulated waveforms and demonstrate the
accuracy of the proposed model.

II. NONLINEAR TRANSFORMER MODEL

The proposed transformer model for asymmetrical, unbal-
anced and (non)sinusoidal operation is derived from reference
[15]. It is based on the simultaneous solution of electric and
magnetic equivalent circuits of three-phase three-leg trans-
formers. The nodal equations of the circuits are solved in time
domain using iterative techniques such as Newton-Raphson.
The electric circuit governs the electrical connections of the
source, load and the transformer. For three-phase transformers,
the magnetic circuit is necessary to represent the multiple
flux paths, reluctances and magnetomotive forces within
multilegged iron core structures [18]. It also incorporates the
asymmetric magnetizing behavior of the core.
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Fig. 2. Magnetic equivalent circuit of three-phase three-leg transformers.

A. Electric Equivalent Circuit

The electric circuit of Fig. 1 can be simulated by most soft-
ware packages such as PSIM or PSPICE. Typically a nodal ma-
trix of equations describing the circuit is formed and solved
through iterative time-domain numerical techniques.

The induced primary and secondary voltages are modeled as
voltage sources controlled by the time derivative of the mag-
netic fluxes (Faraday’s Law). This establishes a link between
the magnetic and electric circuits.

The transformer model implements core loss resistance Ro,e
as a linear element in parallel with the induced primary voltage.
Some models use nonlinear resistances to represent core losses
because they are functions of harmonic voltage magnitudes and
phase angles [6], [11]. However, according to [15] alinear R¢o e
is a valid simplification with good agreement shown between
model simulations and measured hysteresis loop areas, which
are proportional to core losses. Likewise, winding resistances
and leakage fluxes are assumed constant. Fuchs ef al. [7] state
this to be a valid approximation because the effects of saturation
is usually negligible in winding elements.

In this paper, the electric circuit parameters, winding resis-
tances, core loss resistances and leakage inductances are esti-
mated from three-phase open circuit and short circuit tests.

B. Magnetic Equivalent Circuit

The circuit in Fig. 2 is an approximation of the equivalent
circuit proposed by [9]. In this model, the seven reluctances of
the core are reduced to three reluctance parameters which can
be easily measured. This magnetic circuit can be programmed
in PSPICE as an electrical circuit using the magnetic-electric
duality principle.

The nonlinear reluctances in Fig. 2 are implemented in
PSPICE as flux sources dependent on their own MMF drops

o{f}=fR{f} . (1)
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F,, Fy, and F,. are the MMFs developed in the limbs by electric
circuit currents in the primary and secondary windings. This is
another relationship linking the electric and magnetic circuits.

Nonlinear reluctance functions can be fitted to each leg’s
magnetizing characteristic [15]

R{f} = [ ! K> @)

ROEN

where the empirically determined parameters K, K, p, and f
are constants that shape the function to any measured saturation
curve (¢ — f). Ky and K, are associated with the slope of
the linear and nonlinear regions, respectively, p influences the
smoothness of the knee region and f; defines where saturation
starts.

The measurement procedure to obtain the magnetic circuit
parameters of an asymmetric three-leg transformer is described
in [9]. The zero-sequence open circuit test determines the linear
air path reluctance, 3y. The A — ¢ hysteresis loops for each limb
can be obtained by exciting a phase at a time and integrating the
corresponding induced voltages.

III. TRANSFORMER DERATING

A. Modeling Additional Losses and Derating Factors

The nonlinear transformer model (Figs. 1-2) is used to cal-
culate the derating required for nonsinusoidal operating condi-
tions. The backwards solution approach similar to [5] is adopted
through the following steps.

Step 1: Compute rated losses by simulating the transformer
for rated sinusoidal excitation with rated resistive load.
PSPICE is used to sum the fundamental and harmonic
losses using the following formula for each phase:

Ploss = Pwind'ings + Pcm’e

712 L 2
- Iwindings—rmsRUMndlngS + Icore—rmsRCOTe (3)

where

I’r‘ms = \/(‘[7}};51)2 + (I]};g)2 + -+ (Iﬁ;sh max)2.

Step 2: Impose nonsinusoidal operation (e.g., nonlinear
loads and/or input voltage harmonics) while maintaining
rated fundamental output kVA by ensuring that funda-
mental load current and fundamental output voltage are at
rated values

I =Vé =1pu 4)

Step 3: If the fundamental output voltage is not at its
rated value due to reactive power demand, adjust the
fundamental input voltage to compensate.

Step 4: Recalculate total power losses under nonsinusoidal
conditions (Step 1) to determine the additional losses

Ploss new Ploss rated
A Losses % = : :

x 100.  (5)

Ploss, rated
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TABLE I
SIMULATION RESULTS FOR THE 60 KVA TRANSFORMER (FULL LOAD CONDITION)
System and Load Conditions Transformer Secondary Current [%)] Transformer Secondary Voltage [%]
Case Input Load Load Harmonic Order Harmonic Order -
Voltage Type PF h=1 h=3 h=5 h=7 THDy h=1 h=3 h=5 h=7 THDy g
1 R 1 99.4 0.09 0.03 0.01 0.10 99.4 0.09 0.03 0.01 0.10 -
2 RL 0.8 lag 100.0 0.05  0.01 0.00  0.05 100 0.10 0.03 0.02 0.10 3
3 Rated sinusoidal Pl\{)vCM 0.8lead  100.1  0.21 0.23 0.13 0.34 100 0.11 0.07  0.03 0.13 -
4 drive 1040 007 406 136 413 99 064 750 411 870 4
5 Rectifier - 1003  0.06 224 9.3 24.2 99.5 027 4.4 2.6 5.2 -
6 Rated fundamental R 1 994 013 192 008 193 994 03 192 008 193 -
7 o RL 0.8 lag 100.0  0.06 6.1 0.02 6.1 100 0.13 19.1 0.09 19.0 5
8 2nd 20% RC  08lead 100.1 029 140.1 079 1399 100 0.8 448 0.3 447 6
9 5" harmonic Rectifier 100.1 053 21.1 87 229 99 025 235 25 23.8 7
Asymmetry in (0% R 99.6 25.6 6.1 0.30 27.3 79.0 20.3 3.6 3.8 27.1 8(a)
0 e ©s Rectifir 1002 29 071 029 391 977 27 043 044 44 8(b)
Dc: R 100.7 3.0 0.62  0.61 32 97.3 2.9 0.60  0.59 32 8(c)
") The asymmetric case study simulates a transformer with a damaged phase A limb in the iron core while serving unbalanced linear and nonlinear loads.
Asymmetric case waveforms contain even order harmonics which are not shown in the table.
TABLE 11
COMPUTED DERATING FACTORS FOR THE 60 KVA TRANSFORMER
System and Load Conditions Transformer Losses Transformer Derating
Case Load Winding ~ Core Total A Increase K- Derating Derating
Input Voltage Tye Losses  Losses Losses  in Lossest Factor L (model)* (K-Far)**
P Wl W W] [%] %] %]
4 Rated sinusoidal PWM Drive 230.1 520.1 750.2 7.5 6.10 4.87 10.4 11.8
6 Nonsinusoidal: R 187.0 537.1 724.1 3.8 1.92 1.87 8.0 32
7 rated fundamental RL 189.9 555.7 745.6 6.9 1.10 1.09 15.0 0.35
8 and 20% RC 5274 563.1 1090.5 56.3 50.55  16.95 18.7 53.7
9 5% harmonic Rectifier 194.2 541.8 736 5.5 248 238 10.7 5.1

¥) Rated losses of the 60 kVA transformer is 697 W.

*) Computed derating based on losses from the nonlinear transformer model (Figs. 1-2).

**) Computed derating using IEEE standard C57.110 (K-Factor and Fyr).

Step 5: Use PSPICE’s optimization feature (performance
tool) to decrease the load level until total losses equals rated
losses. This is achieved by inserting an arbitrary resistance
Rgerate 1n series with the load and adjusting its value until
rated losses occurs:

Ploss

(6)

The result is the new current magnitude (Igerqted, €X-
pressed in per-unit) that the transformer can deliver
without exceeding rated losses.

Step 6: The new (derated) apparent power can be computed

I'=Iicratea = Ploss,rate.d-

as
kV Aderatea = kV Arated X laerated- (N
Therefore, the percentage decrease in kVA rating is
Derating = (1 — Ljeratea) X 100. )

B. K-Factor and Harmonic Loss Factor

IEEE Standard C57.110 (1986) [16] is developed to limit
transformer temperature rise due to nonsinusoidal load currents.

It describes a method to calculate the load reduction required to
not exceed rated losses given the harmonic spectra of the load
current. Underwriters Laboratories derived the K-Factor from
this standard which is used to specify a class of transformers
capable of serving nonsinusoidal loads. In 1998, C57.110 stan-
dard was updated with a factor similar to the K-Factor called the

harmonic loss factor (Fyr) [17]
h max
I }%hz
K= > e
h=1 R
h max
1212
Fap= Y =5 ©)
h=1 h
which are related as follows:
h max
> I
K=-"=—FuL (10)
Iy

where I, is the rms load current at harmonic order h, and I
represents the rated rms load current of the transformer.
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TABLE III
SIMULATION RESULTS FOR THE 1 KVA TRANSFORMER (FULL LOAD CONDITION)

System and Load Conditions Transformer Secondary Current [%)]

Harmonic Order

Transformer Secondary Voltage [%)]
Harmonic Order

Case Input Load Load Fi
Voltage Type PF h=1 h=3 h=5 h=7 THD; h=1 h=3 h=5 h=7 THDy &
1 R 1 100.0  0.01 0.0 0.0 0.01 100.0 0.01 0.0 0.0 0.01 10
2 RL 0.8 lag 100.1  0.01 0.0 0.0 0.01 100.1  0.01 0.0 0.0 0.01 -—
3 Rated sinusoidal RC 0.8 lead 1004  0.02 0.0 0.0 0.02 1004  0.01 0.0 0.0 0.01 -—
PWM
4 drive - 100.1  0.20 46.7 16.0 493 100.1  0.17 4.67 1.55 4.92 -
5 Rectifier -— 100.5 0.23 223 10.7 24.6 99.9 0.03 2.18 1.10 2.44 11
6 Rated fundamental R 1 100.0  0.03 19.8 0.02 19.8 100.0 0.03 19.8 0.02 19.8 -
7 . RL 0.8 lag 100.1  0.01 6.76 0.0 6.76 100.1  0.01 21.2 0.01 21.1 -—
8 mand ZOA', RC 0.8 lead 1004  0.04 64.1 0.07 63.9 1004  0.01 20.5 0.01 204 -
9 5 harmonic Rectifier 99.8 0.9 553 11.8 131 1000 006 222 118 223
TABLE IV
COMPUTED DERATING FACTORS FOR THE 1 KVA TRANSFORMER
System and Load Conditions Transformer Losses Transformer Derating
Windin Core Total A Increase Derating Derating
Case g -
Input Voltage #oag Losses  Losses  Losses  in Losses? F;Ztor Fu (model) (K-Fpr)

» W] W] [W] (%] [%] (%]

4 Rated sinusoidal PWM Drive 112.8 18.6 131.4 20.0 7.72 6.19 12.2 10.5

6 Nonsinusoidal: R 94.5 19.3 113.8 3.9 1.98 1.90 2.3 2.08

7 rated fundamental RL 92.4 194 111.8 2.1 1.12 1.11 1.1 0.26

8 and 20% RC 126.2 19.2 145.4 32.7 11.28 7.95 11.8 13.3

9 5" harmonic Rectifier 92.1 19.5 111.6 1.9 1.76 1.73 14 1.70

*) Rated losses of the 1 kVA transformer is 110 W.

The K-Factor or the harmonic loss factor can be used to cal-
culate the derating of transformers [27] given the load current
harmonics and the rated eddy current losses (Pgc_R)

A. Cases 1-3: Sinusoidal Excitation With Linear Loads

With rated sinusoidal input voltages, three types of wye-con-
nected loads (R, series RL and parallel RC) are simulated
(Table I). Therefore, the only sources of harmonics are the non-
linearities associated with the transformer magnetic core. Fig. 3

Licrated = 1+ fEC—R (pu). (11) shows simulation results for sinusoidal excitation with a rated
1+ K I (Ppc—R) series RL load. As expected, the nonsinusoidal magnetizing
h max 2 current is small and has no significant impact on the input and
h; h output waveforms.
=Fuyr

IV. SIMULATION RESULTS

There are three sources of nonlinearity and harmonic gener-
ation in three-phase transformers; nonlinearity of the magnetic
core (e.g., internally generated nonsinusoidal magnetizing cur-
rent), nonlinear loading (e.g., harmonic currents in the output
terminal), and nonsinusoidal excitation (e.g., input harmonic
voltages). To investigate the impacts of these sources on the
performance, losses and derating of transformers, three oper-
ating conditions are investigated; sinusoidal excitation with
(non)linear loads, nonsinusoidal excitation with (non)linear
loads, and asymmetrical operation (Tables I-IV). Simulations
are performed for two three-phase, wye-G/wye-G connected,
50 Hz transformers: 60 kVA, 380/220 V [15] and 1 kVA, 440/50
V.

B. Case 4: Sinusoidal Excitation With Three-Phase
VSI-PWM-Based Induction Motor Drive

Most harmonics in power transformers are due to nonlinear
loads at the output terminals. To demonstrate this phenomenon,
a voltage source inverter PWM drive system is used as a non-
linear load at the secondary terminals of the nonlinear three-
phase transformer. The PSPICE nonlinear transformer model
(Section II) is combined with an ac-dc rectifier and dc-ac PWM
inverter. The PSPICE model for PWM inverter circuits from
[26] is slightly modified into a variable frequency VSI-PWM-
based induction motor drive implemented with the nonlinear
transformer model. The load is selected such that rated funda-
mental output kVA is delivered. Simulation results are shown
in Fig. 4. The motor drive load exhibits significant 5th and 7th
order current harmonics (THD; = 41.3%) and distorts the
transformer secondary voltage (THDy = 8.7%) for the 60 kVA
transformer.
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1 pu (for ip, is)
0.1 pu |

1 pu-

0 ot (rad) 2n

Fig. 3. Case 2—Transformer operation with rated sinusoidal excitation and
rated kVA delivered to wye-connected series RL loads (power factor = 0.8
lagging). Full load magnetizing (7, ) and core loss (i) currents, primary (i p)
and secondary (is) currents, primary flux linkages (Ap), primary (Vp) and
secondary (V) voltages are shown in per-unit of rated values.

0.15 pu
1pu (forip, is)-

400 V (for Vpwm).
1pu VpwM Vs
0.
Vp )\.p
— — T <
0 20ms 40ms 60ms

Fig. 4. Case 4—Transformer operation with rated sinusoidal excitation and
three-phase VSI-PWM-based induction motor drive ( fpw rr = 25 Hz).

C. Case 5: Sinusoidal Excitation With Three-Phase Diode
Bridge Rectifier Load

A three-phase diode bridge rectifier (with rated resistive load
on the dc side) is placed at the output terminals of the trans-
former. The load is adjusted such that rated fundamental output
kVA is delivered. The nonlinear load deteriorates the power
quality of the output current (THD; = 24.2%) and output
voltage (THD,, = 5.2%) in the 60 kVA transformer.

2037

1pu(forip,is)l.' LI B L R B
0.1 pu+

T S T T N T T T e N TN Y Y B B

1.5 pu +—t—t—t+—t+—+—+—t+—t+—t+—t+—+—+—t+—++t+t

Ap

TN T T N Y T O Y T}
T T T

0 ot (rad) 2n

Fig.5. Case 7—Transformer operation with nonsinusoidal excitation (20% Sth
harmonic) and rated fundamental kVA delivered to wye-connected series RL
loads (power factor = 0.8 lagging).

D. Cases 6-8: Nonsinusoidal Excitation With Linear Loads

The transformer is excited by nonsinusoidal voltages with
rated fundamental component and different orders, magnitudes
and phase angle of harmonic components. Simulations are per-
formed for no-load, as well as R, RL, and RC loads. Fig. 5
shows input and output waveforms for the rated series RL load
and rated fundamental input voltage excitation with 20% of 5th
harmonic at a phase shift of zero degree. Compared to Fig. 3,
the magnetizing current (7,;) and primary flux linkages (Ap)
waveforms are more distorted and their total harmonic distor-
tions have increased.

E. Case 9: Nonsinusoidal Excitation With Three-Phase Diode
Bridge Rectifier Load

The transformer is connected to a three-phase diode bridge
rectifier (with rated resistive load on the dc side) and is excited
by nonsinusoidal voltages with rated fundamental component
and 20% of 5th harmonic at a phase shift of zero degree. Simu-
lation results are shown in Fig. 7.

F. Case 10: Operation With Core and Load Asymmetries

Transformer input and output waveforms are computed under
asymmetric three-phase loading condition and asymmetric iron
core structure. Rated resistive loads are placed on phases A and
C and a single-phase half-wave diode rectifier (with rated re-
sistive load on the dc side) is connected to phase B. Phase A
leg is assumed to be damaged. A damaged leg refers to a leg’s
magnetizing characteristic that has been significantly changed
(e.g., 50% reduction) such that excitations with well below rated
voltage causes operation in the nonlinear region for that leg.
Simulation results (Fig. 8) show that the secondary voltage for
phase A is severely distorted. Furthermore, the damaged leg
causes small voltage distortions in the “healthy” legs (phases
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2 pu (for ip, is)
0.1 pu

1.5 pu ————t—————r————t————t—

0 ot (rlad) 2n

Fig. 6. Case 8—Transformer operation with nonsinusoidal excitation (20% 5th
harmonic) and rated fundamental kVA delivered to wye-connected parallel RC
loads (power factor = 0.8 leading).

0.15 pu
1 pu (for ip, is) [

—t— 1ttt

Covv0 10 I||1||-

vpc =297V

1.5 pu ——————+—+—+

TN T N [T T T N T [ N T T O T T A
T T y

0 ot (rad) 2n

Fig. 7. Case 9—Transformer operation with nonsinusoidal excitation (20% Sth
harmonic) and rated fundamental kVA delivered to a three-phase diode bridge
rectifier with resistive dc load.

B and C). The magnetizing waveforms are affected by the dam-
aged leg, compared to the nominal symmetrical case. This is due
to flux interaction with the other limbs.

G. Additional Losses and Derating of Transformer

The nonlinear transformer model is used to calculate the der-
ating required for five of the above mentioned case studies. For
comparison, the derating based on C57.110 (F', and K-Factor)
for each case study has also been calculated (Tables II and IV).
The calculations are performed with the assumption that eddy
current losses comprise 5% of total losses.

IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 23, NO. 4, OCTOBER 2008

The influence of load, power factor, nonlinearity, and input
harmonic voltages on derating is demonstrated in Fig. 9. The
fundamental kVA delivered to the load is maintained at rated
operation while the fifth harmonic magnitude with zero degree
phase shift was increased from 0 to 20% of fundamental mag-
nitude. The total losses rise at a different rate for each type of
load. The parallel RC load is highly sensitive to input harmonic
voltage magnitudes (due to the occurrence of a resonance condi-
tion, Fig. 6). This demonstrates transformers feeding capacitive
loads may require significant derating when exposed to voltage
harmonics. The three-phase rectifier, PWM motor drive load and
RL series load show transformer losses always above rated op-
eration regardless of the presence of input harmonic voltages.

Tables II and IV show the derating factors required for some
of the case studies. As expected, cases with input voltage
harmonics and nonlinear loads require the most derating (e.g.,
18.7% kVA reduction for the 60 kVA transformer with nonsi-
nusoidal excitation and rated RC loading).

For the 1 kVA transformer, there is good agreement between
derating factors computed based on C57.110 and the proposed
model (Table IV). However, the results for the 60 kVA trans-
former derating show some disagreement. Several reasons exist
for this discrepancy. Pierce [4] states “There is no allowance
in C57.110 for any increase in core loss for nonsinusoidal cur-
rents” whereas the proposed model does include harmonic core
losses. Thus, as core losses become insignificant (e.g., for the
small 1 kVA transformer), the error between derating factors
based on the model and C57.110 decreases.

Another source of error is the rated eddy losses (Prc—r)
estimation. By inspection of (11), large K-Factor and Fiy, will
magnify any errors in Pgc_ g. Furthermore, the K-Factor and
Frr1 methods do not account for the dependence of eddy current
losses on harmonic voltages and their phase shifts, and in fact,
assume the primary voltage to be sinusoidal. It is also stated
in [16], [17] that C57.110 applies to two winding transformers,
however, asymmetric core effects are not included.

V. VALIDATION OF RESULTS

To investigate the accuracy of the proposed nonlinear model,
laboratory measurements were performed for a three-phase,
three-leg, 1 kVA, 440/55V, 50 Hz transformer. A Fluke 434
power quality analyzer was used to capture steady-state wave-
forms and harmonic spectra. The two scenarios investigated
are rated wye-connected resistive load and three-phase rectifier
with rated dc load (Figs. 10 and 11). The transformer was ex-
cited with rated three-phase voltages containing small amounts
of low order harmonics.

A. Rated Linear Load

Balanced three-phase wye-connected resistive loads were
connected to the transformer secondary. Simulated and mea-
sured waveforms for the rated linear load show excellent
agreement (Fig. 10). This confirms the validity of the model to
predict steady-state responses for linear load conditions.

B. Three-Phase Diode Bridge Rectifier With Rated DC Load

Waveforms for a nonlinear load were simulated and measured
through the use of a three-phase diode bridge rectifier with a dc
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20 pu

+—t—t—t—t—t—t— Tttt 4 pu (for ).

4 U ——————t

1.5 pu (foris) | 1 1.5pu

L i ]

iy

0.1 pu (for ic),

0.1 pu (for ic)

1 pu A
1pu

0.1 pu (for ig) T+t Y SRR =N

b2
|||I||| T TR W I N N P IR S N  T T N AN N N N N NN I|||!|||I|||
T

0 ot (racli) 2n 0
(@

ot (rad) o 0 ot (rad) o
() ©

Fig. 8. Case 10—Transformer operation with asymmetric load (phase A: resistive load, phase B: half-wave diode rectifier load and phase C: resistive load) and
asymmetric iron core (damaged core for phase A). Full load magnetizing (i) and core loss (ic) currents, primary (ip) and secondary (i) currents, primary
flux linkages (A p), primary (V) and secondary (V) voltages are shown in per-unit of rated values for (a) phase A, (b) phase B, and (c) phase C.

800 T
PWM Drive Load

RJIC Load
(PF=0.8)

Total Losses (W)
~
N
o

720

/:\/T/‘k Rated Losses
E 697 W
0 0.05 0.1 0.15 0.2

[V"=3| Per Unit

Fig. 9. Impact of 5th harmonic excitation voltage on the 60 kVA transformer
losses (harmonic magnitude: 0 to 0.2 pu and harmonic phase angle: zero degree).

T T T T

s (simulated)

is (measured) T

Fig. 10. Simulated and measured secondary current waveforms for the 1 kVA
transformer serving a linear load consisting of wye-connected resistors oper-
ating at rated apparent power.

side resistor. The load was adjusted so that rated fundamental
apparent power was delivered from the transformer to the

is (simulated) 7
()

simulated)

®)

Fig. 11. Simulation and measured waveforms for the 1 kVA transformer
serving a three-phase rectifier load: (a) secondary currents and (b) secondary
voltages.

rectifier dc load. Laboratory and model simulations agree with
good accuracy (Fig. 11).
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VI. CONCLUSIONS

A nonlinear transformer model has been adapted to compute
input and output voltage and current waveforms, as well as, total
losses and derating under linear and nonlinear load conditions.
Nonsinusoidal excitation, asymmetry of the magnetic core and
nonlinearity of the loads are included and demonstrated in the
analysis. The accuracy of the model is verified by comparing the
simulated and measured waveforms for rated resistive and non-
linear three-phase rectifier loads. The following observations are
made:

nonsinusoidal excitation and/or nonlinear loading deteri-
orate the power quality of input and output voltages and
currents, causing significant increases in losses that require
large derating of the transformer;

asymmetry of the load has influence on transformer mag-
netizing current waveforms; however, it does not cause
considerable output voltage distortion;

asymmetric iron core saturation (due to damaged leg) se-
verely distorts the voltage of the asymmetric phase; fur-
thermore, the damaged leg causes small voltage distortions
in the “healthy” legs;

derating values based on K-Factor/Fg 1, and the proposed
model agree well when transformer core losses are small;
thus, for large transformers there is a potential improve-
ment using the proposed derating method which, unlike
the IEEE C57.110 standard, includes the effect of funda-
mental and harmonic core losses, nonsinusoidal input volt-
ages, and asymmetric nonlinear cores;

transformer operation with a wye-connected RC parallel
load was shown to have adverse effects when 5th harmonic
voltages were imposed at the input terminals; this is due
to the occurrence of resonance causing the transformer to
exhibit excessive power losses and require large derating;
several limitations might be encountered in this model;
complex circuits may cause difficulties in PSPICE’s
Newton—Raphson algorithm to converge to a solution;
furthermore, accurate model parameters might be difficult
to determine from measurements and can potentially
introduce large errors into simulations;

the presented simulation technique is general and can be
applied to most three-phase distribution transformers with
three-leg cores; the transformer model could be included in
large power system simulations for power quality assess-
ment and derating considerations.
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