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Abstract 

Interactions between copper ions and selected sulfide mineral concentrates were 

investigated in flask and column tests under conditions relevant to heap leaching in 

order to understand why copper recovery from a copper-nickel complex sulfide ore 

was significantly less than nickel recovery. Both pyrrhotite and pyrite were found to 

play roles in copper deposition from sulfate solutions in the range pH 1-5. The non-

oxidative dissolution of pyrrhotite, previously reported to occur under acidic 

conditions of low oxygen availability, was also found to occur in a well-aerated 

system. Soluble copper reacted with the generated hydrogen sulfide to form copper 

sulfide, mainly covellite at pH >2.3 and its re-dissolution required acid, oxygen and a 

strong oxidant such as ferric ion. While significant copper also precipitated from 

copper sulfate solutions pH >3 in the presence of pyrite, the brochantite which was 

formed was readily re-dissolved at pH <3. The poor recovery of copper experienced 

in a test heap of copper-nickel sulfide ore was attributed to the presence of pyrrhotite 

and the rise in pH as the leachate percolated through the heap bed. The copper would 

only be recovered if acidic, oxidising conditions were restored in the heap. 
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1. Introduction 

Heap leaching and bioleaching are low-cost technologies which contribute about 

20% of annual world copper production and are practised world wide. It is not 

surprising, therefore, that recent high nickel prices have stimulated interest in 

applying heap leaching to nickel laterites and heap bioleaching to low-grade and 

difficult–to-process nickel sulfide ores. In the latter case, the results of bench-scale 

tests have been sufficiently encouraging to prompt the construction and operation of 

test sulfide heaps in Australia, Finland and China (Watling, 2008).  

In two cases, the poor recovery of copper, compared with nickel, from complex 

copper-nickel ores was noted. At Talvivaara, Finland, a 17,000 tonne demonstration 

heap was constructed using a complex ore which contained pyrrhotite, pyrite, 

sphalerite, pentlandite, violarite and graphite and averaged 0.56 % Zn, 0.27% Ni, 

0.14% Cu and 0.02% Co (Riekkola-Vanhanen, 2007). Recoveries were Ni 92%, Zn 

82%, Co 14% and Cu 2% in 500 days. The poor copper recovery was attributed to the 

electrochemical properties of the ore minerals.  

Similarly, in about one year of operation, copper extraction from a test heap of 

copper-nickel sulfide ore from the Mt Sholl deposit near Karratha, Western Australia 

lagged behind that of nickel by about 5-6 months, only achieving an extraction of 

about 50% of the contained metal in the heap, compared with about 90% for nickel 

(Watling et al., 2009). It was hypothesized that lack of oxygen in some parts of the 

heap might have caused the leach chemistry to change and some solubilised copper to 

be re-deposited. The reasons for the disparate recoveries of nickel and copper were 

subsequently investigated in column and flask leaching tests. From the results of 

bioleaching columns (Watling et al., 2009), it was concluded that the key factor 

impacting on copper recovery was pyrrhotite reactivity in acidic solutions, generating 

hydrogen sulfide, high iron(III) concentrations and elemental sulfur. Subsequently, in 

abiotic columns charged with the same ore, it was found that acidity played a key role 

in maximising copper recovery but that lack of column aeration impacted only 

slightly (Maley et al., 2009). Ancillary flask tests indicated that copper in solution was 

adsorbed by, or had reacted with one or more components of the ore. 

In the present study, the interactions of soluble copper with the ore minerals 

pyrrhotite, chalcopyrite and pentlandite were investigated in flask tests under 
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conditions relevant to heap leaching. In addition, because it is a commonly found 

mineral in complex sulfide ores, the interaction of copper with pyrite was also 

investigated. The conditions under which the copper that was deposited on pyrite or 

pyrrhotite surfaces could be recovered were investigated in column tests using 

concentrates supported on an inert host rock. Treated residues were examined using 

X-ray diffraction, Raman spectroscopy and SEM-based analytical techniques to 

identify copper-rich insoluble species and thus assist in describing the reaction 

chemistry of the different systems.  

 

2.  Materials and Methods 

2.1. Sulfide concentrates and copper-nickel ore  

A representative sample of a copper-nickel sulfide ore from the Mt Sholl deposit 

near Karratha, Western Australia was pulverised to 100% passing a 125 µm screen. 

Mineralogical analysis using the Rietveld refinement of X-ray diffraction (XRD) data 

(Watling et al., 2009) revealed that the ore was comprised primarily of silicate 

minerals, augite (48%), amphibole (actinolite with magnesiohornblende - 24%) and 

chlorite (10%), with minor phases quartz and albite. The sulfide minerals were 

pyrrhotite (11%), chalcopyrite (2-4%), and pentlandite (1-2%).  

The chalcopyrite (CuFeS2) was a flotation concentrate prepared from the copper-

nickel sulfide deposit at Radio Hill, Western Australia. The concentrate was 

comprised almost entirely of chalcopyrite with very small amounts of pentlandite.  

The pentlandite ((NiFe)9S8) was a flotation concentrate also prepared from the 

copper-nickel sulfide deposit at Radio Hill. The concentrate contained primarily 

pentlandite, as well as minor quantities of chalcopyrite, pyrrhotite and small amounts 

of various silicates.  

The pyrite (FeS2) concentrate was provided by Kalgoorlie Consolidated Gold 

Mines, Western Australia, and consisted of pyrite and small amounts of quartz and 

other silicates. 

A pyrrhotite (Fe1-xS where x varies from 0 to 0.125) concentrate from the 

Renison Bell tin mine in Tasmania, was obtained from the mineral collection at 

CSIRO Minerals. In this paper, pyrrhotite is shown as FeS. The concentrate 
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comprised hexagonal and monoclinic pyrrhotite with trace quantities of unidentified 

phases and quartz.  

Quartz was crushed and screened to provide the inert ‘host rock’ that supported 

the concentrates for column leaching tests. 

 

2.2. Reaction of copper with mineral sulfides (flask tests) 

Copper sulfate solution (150 mL; 1 g/L Cu and selected pH) was accurately 

weighed into a clean, dry, sterile 250mL conical flask. The total mass of each flask 

and solution was recorded, and a sample of solution (~1.5 mL) was removed for 

analysis using a sterile Pasteur pipette. The mass of the flask and solution was 

recorded again.  An accurately weighed amount of sulfide concentrate (~4 g, ~2.5% 

w/v) was added to each flask, after which the flask was weighed again. The flasks 

were placed in an orbital shaker (180 rpm) with the temperature controlled at 45 oC. 

Loss of solution by evaporation was compensated periodically by removing the 

flasks from the shaker and making up their previous mass by the addition of sterile 

deionised water. After the addition of water the flasks were shaken thoroughly and 

allowed to sit for 5 min so that the solid material would settle on the bottom of the 

flask. A sample of solution (~1.5 mL) was removed using a sterile glass Pasteur 

pipette and transferred to a microcentrifuge tube. The sample was centrifuged at 

16,100 rpm for 10 min, after which the supernatant solution was drawn off and its pH, 

redox potential and ferrous ion concentration determined. Concentrated hydrochloric 

acid (0.5 mL) was added to 1.0 mL of each sample and the Cu, Ni and Fe 

concentrations determined using inductively-coupled plasma – atomic emission 

spectrometry (ICP). 

After sampling, the pH of each experimental solution was adjusted to the required 

set point using sulfuric acid. The total mass of the flask and contents after pH 

adjustment was recorded before returning the flask to the shaker. At the conclusion of 

leaching the solid residue was collected using a 0.45 µm membrane filter, and rinsed 

with sulfuric acid diluted to the experimental pH using deionised water. The solids 

were dried at ambient temperature (20-25oC) to minimise oxidation of the resultant 

products. 
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The pH range tested in these experiments was pH 1 to 4, except for pyrrhotite, for 

which the range was pH 1 to 5.  

 

2.3. Dissolution of covellite using ferric ion or acid (flask tests) 

Ferric ion oxidation of covellite was examined at 45oC using the procedure 

outlined above. In each flask, an accurately weighed sample of covellite (~3 g) was 

mixed with ferric sulfate solution of the selected concentration and pH (~120 mL). 

The selected set points were pH 1, 1.5 and 1.8. Ferric ion concentrations of 

approximately 2, 1 and 0.1 g/L were tested. After 239 h, an additional amount of 

ferric sulfate was added to each flask to restore the ferric ion concentration to its 

initial concentration. The acid leaching of covellite using sulfuric acid solutions in the 

range pH 1 to 4 was similarly investigated. 

 

2.4. Column tests using quartz as support rock 

A known mass of quartz of particle size range -13.75+4.8 mm was mixed for 10 

min with an iron sulfide concentrate and 1 L sulfuric acid solution (pH 2) in a small 

cement mixer (Table 1). The coated quartz particles were removed from the mixer and 

dried at ambient temperature overnight. For each sulfide, four water-jacketed columns 

(500 mm height, 120 mm diameter) equipped with air inlets were charged with the 

dried, coated quartz. Selected columns were aerated at 1 or 3 L/min (as noted with the 

results). Each column was operated at 45 oC and irrigated (1 mL/min) with synthetic 

leach solution (8 L; pH 1.0, 1.8, 2.5 or 3.0) containing AR grade nickel sulfate (95 

mg/L Ni), copper sulfate (84 mg/L Cu), ferrous sulfate (75 mg/L Fe) and the biocide 

sodium benzoate (C6H5COONa – 0.10 g/L). Solutions were recirculated through the 

column reservoirs. Water lost through evaporation was compensated by the addition 

of deionised water prior to sampling, and the solution pH in the reservoirs was 

adjusted by the addition of concentrated sulfuric acid post sampling. Samples of the 

column discharges and the reservoir solutions were collected periodically and 

analysed. Ferrous ion concentrations, pH and solution potentials were determined 

directly on the samples. Aliquots (1.0 mL) of experimental solutions were acidified 

with 0.5 mL concentrated hydrochloric acid solution for elemental analysis. 

At the conclusion of the experiment, the columns were drained and the coated 

quartz particles collected. The sulfides were removed from the support rock by rinsing 
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with deionised water and filtration of the resulting slurry, and then dried at ambient 

temperature.  

 

2.4. Analytical  

Solutions were analysed for Ni, Cu and Fe using a Varian Liberty 220 ICP-AES.  

The plasma was located in the axial position, with a total sample uptake time of 18 s 

and a washout time of 15 s.  Solid samples were digested in aqua regia before ICP 

analysis. 

Solutions were analysed for ferrous ion content colorimetrically using a 

procedure adapted from Wilson (1960).  A volume of the analyte solution (80 µL) 

was added to an ammonium acetate buffer containing 2,2-dipyridyl (4 mL).  The 

absorbance of the resultant pink solution was measured at 525 nm using a Cary 50 Bio 

UV-vis spectrometer, with the ferrous concentration determined via a previously 

prepared calibration curve. Where necessary, samples were diluted quantitatively with 

pH 2 sulfuric acid solution before addition to the dipyridyl solution to give an 

absorbance within the calibration range. 

X-ray powder diffraction patterns were collected from pulverised solid samples 

using a Philips X’Pert Automated Powder Diffractometer fitted with a Cobalt Long 

Line Focus X-ray tube.  Patterns were collected between 2θ angles of 5-90o (at 40 

keV, 30 mA), and interpreted using X-plot for Windows (Version 1.34).  Phases were 

identified using the PCPDFWIN database (Version 2.02). 

Samples examined by SEM/EDS were mounted on carbon tape placed on a SEM 

stub and coated with two coats of carbon.  The samples were analysed with a JEOL 

5800LV scanning electron microscope at a working distance of 13mm.  EDS analysis 

was performed using an Oxford Instruments Link Isis system. 

Raman spectra were collected from granular solids using a Dilor LabRam 1B 

micro Raman spectrometer fitted with a 633nm (HeNe) laser.  A diffraction grating of 

1800 grooves mm-1 and an x 50 microscope objective were used.  Spectra were 

acquired for 300 seconds. 

 

3. Results and Discussion 

Flask tests, initiated with similar masses of soluble copper and solid substrate 

were monitored for about 70 hours. Soluble copper concentrations increased to 
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between 1900 mg/L (pH 1.5) and 1300 mg/L (pH 4) when chalcopyrite concentrate 

was treated with a copper sulfate solution (initially 1 g/L Cu), but in other tests with 

different substrates copper remained stable (±0.02 g) or was lost from solution in 

increased amounts with increasing pH (Figure 1).  

Direct reactions between cupric ions and chalcopyrite to form secondary copper 

sulfides are known, but occur very slowly (Equation 1) (Shang et al., 2001) and the 

oxidative leaching of chalcopyrite by oxygen or ferric ions (Equations 2 and 3) 

generates species that would be unlikely to remove soluble copper to a significant 

extent (Klauber et al., 2001; Boon and Heijnen, 1993). It is therefore unlikely that the 

direct reaction between cupric ions and chalcopyrite would contribute to the removal 

of copper species under heap leaching conditions.  

CuFeS2 + Cu2+ → 2CuS + Fe2+     1 

CuFeS2 + 4Fe3+ → 5Fe2+ + Cu2+ + 2S0  2 

CuFeS2 + 4.25O2 + H+ → Cu2+ + 2SO4
2- + Fe3+ + 0.5H2O 3 

Tests using pentlandite concentrate displayed a small initial increase in copper 

content as a portion of the small amount of copper present in the concentrate was 

leached (Figure 1).  After this point, the amount of copper in each flask remained 

relatively stable with time (±0.004 g), and there was no net loss of copper during the 

experiment despite the increase in pH.  Nickel extraction was between 10-14% in all 

tests. 

Pentlandite is oxidised readily by both molecular oxygen and ferric ions 

(Equations 4 and 5) in flask tests in the relevant pH range (Southwood, 1985; Lu et 

al., 2000). Given that acid is consumed in the oxygen-mediated reaction (Equation 4), 

it is possible that localised areas of high pH, relative to the bulk solution, existed at 

the surface of the dissolving mineral and might have created conditions for copper 

reaction.  However, the results indicated that reactions leading to copper loss, if they 

occurred, were unlikely to have contributed to the copper losses experienced in the 

copper-nickel ore test heap.  

Fe4.5Ni4.5S8 + 4.5O2 + 18H+ → 9H2O + 4.5Ni2+ + 4.5Fe2+ + 8So 4 

Fe4.5Ni4.5S8 + 18Fe3+ → 22.5Fe2+ + 4.5Ni2+ + 8So 5 
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Pulverised ore, 100% passing a 125 µm screen, was treated with copper sulfate 

solution (1 g/L Cu) in the same way as the concentrates (Figure 1). At the same time, 

control tests at different pH (copper sulfate solutions without added ore) were 

conducted. There was minimal net loss of copper in the control tests (<0.004 g) 

confirming that solution pH alone was not the cause of copper loss. In the presence of 

ore, copper losses in pH 3 and pH 4 tests were substantially less than were observed 

for the iron sulfide concentrates, indicating that copper had reacted with a minor 

component of the ore rather than adsorbing onto the major silicate minerals. 

Copper losses in tests using pyrrhotite and pyrite were more substantial (Figure 

1), especially at high pH, and were examined in detail. 

 

3.1. Copper deposition on pyrrhotite 

All tests containing pyrrhotite experienced an initial loss of copper from solution. 

The decrease at pH <3 was small but significant amounts of copper were lost in the 

pH 4 and 5 tests (Figure 2). With the exception of the pH 1 test, the soluble copper 

content declined in all tests during the experiment.  

Copper loss from solution appeared to be directly related to the presence of 

pyrrhotite, suggesting that this mineral was at least partly responsible for the delay in 

copper extraction in the test heap (compared with nickel recovery). No distinct trend 

between the amount of precipitated copper and solution pH was observed in the tests 

maintained at pH <3 but the quantity of copper lost increased appreciably at pH >3. 

Solution pH values were measured as part of the protocol to restore each solution to 

the desired pH set point. It was found that acid was consumed in tests with set points 

pH 1-3 but generated in tests with set point pH >3.   

Examination of residues revealed precipitates on the pyrrhotite surfaces (Figure 

3). Spot elemental analyses (SEM-EDS) gave a composition of iron, copper and sulfur 

but not oxygen. Elemental mapping revealed that the sulfur was mainly associated 

with the copper and that copper-rich locations were low in both iron and oxygen 

contents. If it is assumed that the iron signal originated from the underlying pyrrhotite 

or some iron-rich reaction products on the mineral surface, then the precipitate of 

interest would be a copper sulfide.  
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Examination of the surfaces of the untreated and the treated (pH 4) pyrrhotite 

using Raman spectroscopy revealed the presence of elemental sulfur and goethite, due 

to surface oxidation (Table 2). The diagnostic peaks for sulfur (223, 473 cm-1) and 

goethite (250, 304, 393 cm-1) species on an oxidised pyrrhotite surface have been 

described by Kalinkin et al. (2000). Covellite exhibits two Raman-active modes, an 

S-S stretch at 474 cm-1 and a much smaller peak at ~267 cm-1 from a lattice mode 

(Parker et al., 2003). The latter, low-intensity peak would be obscured by the more 

intense peaks associated with sulfur and goethite, but the covellite S-S stretch 

appeared to contribute to a doublet with the sulfur peak at ~470 cm-1. The diagnostic 

peaks for copper oxide (298, 345 and 632 cm-1; Reimann and Syassen, 1990) or 

copper hydroxy sulfates (sulfate-stretching peaks between 800-1100 cm-1; Frost, 

2003) were not detected in this study. Thus, on this albeit slender evidence, it was 

hypothesised that the copper species formed on pyrrhotite surfaces was covellite. 

The residues from higher pH columns yielded very similar X-ray diffractograms.    

In addition to elemental sulfur and unreacted quartz, peaks associated with unreacted 

pyrrhotite and the iron oxyhydroxides lepidocrocite (γ-FeO(OH)) and goethite (α-

FeO(OH)) were detected.  Unfortunately, the expected peaks for covellite would have 

been obscured by some of the stronger peaks associated with goethite, lepidocrocite or 

sulfur, and were not distinguishable from the background noise in other parts of the 

diffractogram. However, by refreshing the copper solution repeatedly, quantities of 

reaction products were increased and, together with significant amounts of unreacted 

pyrrhotite, lepidocrocite and elemental sulfur, covellite and possibly trace 

chalcopyrite were detected in the diffractograms. 

The observed results were consistent with covellite being precipitated on the 

pyrrhotite surface by reaction with hydrogen sulfide liberated during the non-

oxidative leaching of pyrrhotite (Equation 6) (Belzile et al., 2004)).  The greater 

extent of copper precipitation at higher pH levels was attributed to the dissociation of 

H2S (Equations 7, 8) (Lide, 1995). As the pH is increased, the reactions in Equations 7 

and 8 are driven to the right, increasing the concentration of the sulfide species 

required for the precipitation of copper sulfide (Equation 9).   

FeS + 2H+ → H2S(g) + Fe2+   6 

H2S ⇌ HS- + H+  Ka = 8.9 x 10-8  7 
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HS- ⇌ H+ + S2-  Ka = 1 x 10-19  8 

S2- + Cu2+ → CuS  Ksp = 1 x 10-44  9 

In respect of the trace chalcopyrite detected with the treated pyrrhotite, Cowper 

and Rickard (1989) reported the rapid reaction of copper ions in aqueous solution with 

pyrrhotite to form chalcopyrite at temperatures <100 oC and pH 2-4.5. The authors 

proposed a relatively complex sequential reaction pathway via several unstable 

intermediates. In a subsequent study, Asael et al. (2006) reported that pyrrhotite 

reacted with copper ions readily under anoxic conditions to form sequentially 

chalcopyrite, covellite and chalcocite, with covellite being the dominant phase.  

 

3.2. Re-dissolution of copper from treated pyrrhotite 

Copper behaviour in the presence of pyrrhotite was examined under conditions of 

aeration and limited aeration in combination with varied pH in three series of columns 

in which the concentrates were supported on inert quartz chips of the size typically 

found in a heap leach operation. The conditions were: (i) aeration and synthetic leach 

solution (section 2.4) at selected pH set points throughout the experiment; (ii) no 

aeration during copper deposition (pH 4); after deposition, synthetic leach solutions 

acidified to the selected pH set points and aeration applied and (iii) no aeration, initial 

synthetic leach solutions pH 4, acidified to the selected pH set points after copper 

deposition. The synthetic leach solution had a composition similar to the leachate 

obtained during the bioleaching of the copper-nickel sulfide ore in an agitated, aerated 

tank experiment. 

Spraying or tumbling of a high solid density sulfide slurry onto or with an acid-

stable support rock results in the formation of a thin layer of sulfide (approximately 1 

mm thick) on the surface of the rock, which is stable under typical heap leach 

conditions (Whitlock, 1997).  This procedure, known as the Geocoat™ process, was 

originally developed for the bacterial treatment of refractory gold ores and 

concentrates. However, it has also been applied successfully to the leaching of 

chalcopyrite concentrates in columns (Johansson et al., 1999) and is a useful research 

tool in the present context because the number of reactive species can be controlled.  
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Four columns were aerated and the synthetic leach solutions maintained at their 

set points between pH 1, 1.8, 2.5 and 3 throughout the experiment.  These columns 

were intended to probe the impact of feed solution pH on copper precipitation onto 

pyrrhotite surfaces under well-oxygenated conditions.  This experiment was similar to 

the operation of an aerated column loaded with ore, but effects should be magnified 

because the only reactive mineral present was pyrrhotite.  

The copper concentrations in the four reservoirs decreased at similar rates for the 

first five days (Figure 4) and, for the columns with feed solutions at set points pH 2.5 

and 3, continued to decrease, until almost all of the soluble copper had been removed 

from solution.  The copper concentration in the pH 1 column reservoir decreased over 

a 10-day period, after which partial re-dissolution of the precipitated copper occurred 

as the pH continued to drop. The pH 1.8 column presented an intermediate case, with 

initial copper loss which then stabilized at about 30 mg/L copper in the reservoir 

solution.  

For these columns, the pH of the discharge solutions was slightly higher than that 

of the feed solutions (Table 3), the total iron concentrations were strongly influenced 

by pH, and final copper concentrations correlated with ferric ion concentrations. For 

the first column, with feed solution pH 1, the start of copper re-dissolution on day 13 

coincided with a drop from pH 1.7 to pH 1.4 in column discharge solution and an 

increase from 400 to 700 mg/L ferric ion in the reservoir solution. From this point, the 

discharge solution was pH ≤1.4 and the ferric ion concentration rose steadily. In the 

case of the pH 1.8 column, the discharge solution was pH >2 and the ferric ion 

concentration in the reservoir was <650 mg/L, throughout. 

Comparison of copper curves for columns with feed solution pH 1 but different 

conditions of aeration (Figure 5) showed that, while aeration failed to impact on the 

initial copper deposition, it did impact indirectly on copper re-dissolution through its 

effect on ferric ion production. Ferric ion generation was low and copper re-

dissolution did not occur in the unaerated column even though the discharge solution 

fell to and remained at pH 1.1 (data not shown, see Table 3), indicating that pH alone 

has little impact on copper re-dissolution. 

In those columns where aeration was only applied after the feed solutions had 

been acidified to their selected pH set points (Figure 5), re-dissolution of precipitated 

copper was observed only in the pH 1 column and only after a 16-day delay. The key 
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parameter appeared to be the ferric ion concentration, which rose to >1000 mg/L 

during the “copper-delay” period.  Lack of oxidant (Fe3+) could be the explanation for 

the delayed copper recovery experienced in the test heap described previously 

(Watling et al., 2009). 

For the unaerated columns and the columns for which aeration was applied after 

copper deposition, copper deposition on pyrrhotite was promoted by using an initial 

feed solution at pH 4. When the feed solution pH was adjusted to one of the selected 

pH set points, a very strong odour of hydrogen sulfide (H2S) gas was detected from all 

columns and their solution reservoirs, particularly those columns with the lowest pH 

set points.  The generation of H2S gas (Equation 6), together with the deposition of 

copper in the pyrrhotite columns, was consistent with the data from the flask tests, 

where it was proposed that copper deposition was associated with the formation of a 

copper sulfide, probably covellite (Equation 9), on pyrrhotite surfaces.   

The results of the experiments strongly suggested that the deposition of copper in 

the presence of pyrrhotite was primarily governed by the leach solution pH but that 

the re-dissolution of the copper required the presence of an oxidising agent. The 

conditions required to generate ferric ions were not met in the unaerated columns, 

although total iron concentrations rose considerably in the low pH column (Table 3). 

If the columns had been inoculated with iron oxidising organisms, the amount of air 

available in the reservoirs may have permitted bacterially-assisted ferric ion 

generation (Equation 10), sufficient to cause greater re-dissolution of copper. 

However, this would not be the case in poorly aerated regions of a large sulfide heap 

because bacterial activity is dependent upon a supply of oxygen and is also strongly 

influenced by pH (Plumb et al., 2008; Watling et al., 2008). 

2Fe2+ + 2H+ + 0.5O2  2Fe3+ + H2O       10 

In ancillary flask tests it was found that covellite oxidation (Equations 11 to 12) 

was sensitive mainly to ferric ion concentration with lesser sensitivity to pH (Figure 

6). The results were consistent with the column tests, where re-dissolution of copper 

only occurred when the ferric ion concentration approached 1000 mg/L and the 

discharge solution had pH <1.5. Acid dissolution of covellite utilising dissolved 

oxygen (Equation 12) (Christison, 1994) was much slower than ferric ion oxidation 

and was largely independent of solution pH, though a slightly increased rate was 

observed for the higher pH solutions (Figure 7). Ferric ion concentrations during these 
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tests did not exceed 50 mg/L and diminished to <10 mg/L with increased pH. The 

presence of sulfur in the ferric ion oxidation tests and the absence of sulfur in the acid 

oxidation tests as observed in X-ray diffractograms of leach residues were consistent 

with there being two oxidation mechanisms. 

CuS + Fe2(SO4)3 → So + CuSO4 + 2FeSO4      11 

CuS + 2O2 → CuSO4         12 

Therefore, in order to minimise the precipitation of copper in a heap containing 

large amounts of pyrrhotite, it is necessary to ensure that a sufficient ferric ion 

concentration is maintained within a heap to oxidise any precipitated copper sulfide.   

It is at this point that the consideration of aeration within the heap becomes 

important.  Although column tests performed in this study using both pulverised 

copper-nickel ore and pyrrhotite concentrate showed that relatively high aeration rates 

had little effect on the prevention of precipitation in a full-scale bioleach heap, its role 

is significant as a driver for copper recovery.  Dissolved oxygen is required to ensure 

that bacterial ferrous ion oxidation occurs throughout a heap.  The role of dissolved 

oxygen becomes even more important should a heap be inoculated primarily with 

sulfur oxidising bacteria, as ferric ion concentrations can only be maintained by the 

slower, oxygen-mediated oxidation of ferrous ions in the leach liquors.   

 

3.3. Copper deposition on pyrite 

Although the copper-nickel ore contained very little pyrite, it is a common 

component of many copper sulfide ores, prompting a parallel investigation of copper 

ion interactions with pyrite. Some copper was lost from solution at all pH set points 

but the amounts in tests pH ≤2 were very low (Figure 8). The largest decreases in 

copper content were observed in the flasks with set points pH ≥2.5. At pH 4, 75% of 

the copper was removed from solution. In these tests, acid was consumed 

continuously (and was compensated by periodic acidification to the pH set point). 

Whilst the pH 2.5, 3 and 4 tests were frequently adjusted to their pH set points, the 

actual pH rose to well above pH 4, with the latter two flasks remaining at pH >5.   

Well formed, tabular crystals, indicative of slow crystal growth, were formed on 

the pyrite surfaces in the pH 4 test (Figure 9). Both tabular and elongated, needle-

shaped crystal morphologies were observed on the surfaces of pyrite in the pH 3 test.  
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XRD analysis of the treated pyrite (pH 4) revealed the presence of brochantite 

(CuSO4.3Cu(OH)2). Excluding the elemental signature (SEM-EDS) of the underlying 

pyrite, the signature for the precipitate was comprised of copper, sulfur and oxygen, 

consistent with the XRD analysis. The Raman spectrum exhibited strong similarities 

to the main features of the brochantite spectrum (973, 603, 591, 496 and 473 cm-1) 

described by Burgio and Clark (2001) for those regions not obscured by the stronger 

pyrite spectrum. Brochantite and its related minerals posnjakite 

(CuSO4.3Cu(OH)2.H2O) and langite (CuSO4.3Cu(OH)2.2H2O) are known to exhibit 

both tabular and elongated morphologies (Minceva-Stefanova and Kostov, 2002) and 

have similar Raman spectra at the lower frequencies (Martens et al., 2003) which 

would make them hard to distinguish in the present study.  

Brochantite was not detected when pyrrhotite surfaces were exposed to copper 

sulfate solutions and did not precipitate in ‘control’ tests conducted over the same pH 

range without pyrite addition. Thus it is hypothesised that the pyrite surface played a 

role in brochantite formation.  

The interaction of copper ions with pyrite has been examined previously. Voigt et 

al. (1994) reported the precipitation of a copper(II) hydroxy species (not identified) at 

pH 8.5 under their experimental conditions. Fitzgerald et al. (1998) found that 

brochantite and other basic copper sulfates formed readily at pH ≥5, conditions that 

prevailed in the present study despite frequent acidification to the desired pH set 

point. Marani et al. (1995) showed that the slow addition of base to dilute copper 

sulfate solutions produced either posnjakite (CuSO4.3Cu(OH)2.H2O) or mixtures of 

posnjakite and brochantite, the latter being the more stable. Titration of sodium 

hydroxide solution into a copper sulfate solution and suspension of copper hydroxide 

in copper sulfate solutions had earlier indicated that the formation of brochantite 

occurred in two stages (Equations 13, 14) (Tanaka et al., 1991).  

Cu2+ + 2OH-  Cu(OH)2  13 

3Cu(OH)2(s) + CuSO4  CuSO4.3Cu(OH)2 14 

The results obtained in the present study indicated that the reaction of copper with 

pyrite in pyrite-containing ores could occur at lower pH than previously reported (pH 

≥2.5) and could be as significant a cause of copper deposition as the reaction of 
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copper with pyrrhotite. Therefore, it is possible that copper precipitation could occur 

in all copper sulfide heaps for ores with significant pyrite and/or pyrrhotite contents.  

 

3.4. Re-dissolution of copper from treated pyrite 

About 70 % of the copper in synthetic leach solution (pH 4) was deposited 

rapidly onto pyrite concentrate in columns irrigated for 16 days (Figure 10). In the 

same period, the pH of the column discharge solutions, initially very high, dropped 

moderately fast to pH 4 and then more slowly to pH ~3-3.5 (Figure 11). In the period 

11-16 days with pH ~3.5, a small amount of copper re-dissolution occurred.   

After the column feed solutions had been acidified, rapid re-dissolution of copper 

occurred in all columns, but with clear pH dependence (Figure 10). Copper was fully 

recovered in eight days in the pH 1 column, the pH of the discharge solution 

remaining at pH ~1.2 during this period. Initially rapid copper re-dissolution in the pH 

1.8 column slowed markedly after four days, despite the pH of the effluent solution 

continuing to decrease to pH 2.15.  At the conclusion of the experiment 80% of the 

copper reported to the solution, indicating the need for a solution pH <2.15 for 

complete copper-re-dissolution. The pH 2.5 and pH 3 columns displayed similar 

behaviour, with their discharge solutions falling to pH ~2.3 after the initial 

adjustment.  However, copper re-dissolution was lower (only 70-75%) and slower 

than for the more acidic test conditions. The rapid re-dissolution of the precipitated 

copper on exposure to lower solution pH was consistent with the presence of copper 

hydroxysulfates such as brochantite. 

Iron oxy-hydroxy species such as goethite (FeOOH) have been shown to form on 

pyrite surfaces exposed to atmospheric oxygen and water (Cases et al., 1989; de 

Donato et al., 1993).  While the dissolution of goethite, an acid-consuming reaction 

(Equation 15) occurs more readily at pH <2, goethite is soluble at pH 4 (Cornell and 

Schwertmann, 1998), the pH of the synthetic leach solution used to irrigate the 

columns initially.  It is therefore probable that the initial increase in discharge solution 

pH from all columns, from the set point pH 4 to pH>6, is caused by the dissolution of 

iron oxy-hydroxy species on the pyrite surface. 

FeOOH + 3H+ → Fe3+ + 2H2O  15 
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Ferric ions, which constituted about 50% of the total soluble iron, were negligible 

at pH ≥4 but rose sharply, subject to pH, once the feed solutions were acidified 

(Figure 11). The presence of ferric ions would have enhanced the oxidation of pyrite 

(Equation 16), generating additional acid near the mineral surface which would 

account for the continued slow decrease in pH.  

FeS2 + 14Fe3+ + 8H2O → 15Fe2+ + 2SO4
2- + 16H+ 16 

Thus, pyrite caused the greatest loss of copper in the high pH tests (Figure 1), an 

observation consistent with the formation of brochantite or related basic copper 

sulfates, which are known to be stable at pH >5 (e.g., Zhang et al., 2002; Robbiola et 

al., 2008). However, the copper hydroxysulfate species formed in the column re-

dissolved readily once appropriately acidic conditions were restored. In a heap, it is 

anticipated that insoluble copper species associated with pyrite would be recovered 

through prolonged recycling of acidic leach solutions through the ore bed and copper 

recovery would only be delayed by the amount of time required for the acidic 

leaching front to move through the heap. 

 

4. Conclusions 

Poor copper recoveries during the heap (bio)leaching of pyrrhotite-rich, complex 

copper-nickel ores are attributed to copper ion interactions with pyrrhotite surfaces.  

The H2S-producing, non-oxidative dissolution of pyrrhotite, previously reported to 

occur under acidic conditions of low oxygen availability, also occurs in well-aerated 

systems, possibly in parallel with oxidative dissolution. Soluble copper in column (or 

heap) leachates precipitates as copper sulfide, mainly covellite, because of its 

extremely small solubility product. A critical pH level for copper stability in this 

system is pH ~2.3; higher pH leads to precipitation and lower pH lessens precipitation 

and may allow some re-dissolution. 

 Copper sulfide re-dissolution requires low pH, oxygen and an oxidant such as 

ferric ion. In the absence of aeration, re-dissolution of copper precipitates from 

pyrrhotite surfaces cannot be achieved using leach solutions as low as pH ~1.  The 

introduction of additional O2 via aeration does not directly cause copper re-dissolution 

but does enhance pyrrhotite oxidation with the result that total iron and ferric ion 

concentrations increase. Copper sulfide re-dissolution only occurs when a sufficient 
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concentration of ferric ions is present. In this study, a ferric ion concentration of about 

1 g/L was required. 

Although the selected copper-nickel ore did not contain significant pyrite content, 

pyrite often occurs in chalcopyrite and complex copper sulfide ores that may be 

amenable to heap bioleaching. Significant copper loss from solution was observed 

when a pyrite concentrate was mixed with a copper sulfate solution in tests pH >3. In 

this case the precipitated copper species was brochantite, or a structurally-related 

species. The observed acid consumption was attributed to the dissolution of oxidised 

iron compounds such as goethite or lepidocrocite on the pyrite surface.  The loss of 

copper from solution is dependant on pH, and re-dissolution occurs readily at pH <3. 

Loss of copper within an acid-consuming heap leach due to brochantite formation 

on pyrite surfaces would only be temporary.  Dissolution of copper hydroxysulfates 

would occur readily once the pyrite surfaces were exposed to pH <3 leachate as the 

acid leaching front moved downwards through the heap.  
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Table 1. Masses of quartz and pyrite or pyrrhotite used to prepare the coated quartz 

particles, and the mass of ‘ore’ loaded into each column. 

 Pyrite Pyrrhotite  Pyrrhotite*

Mass quartz in mixture before loading (kg) 28.0 20.0 18.8 

Mass sulfide in mixture before loading (kg) 3.00 1.75 1.65 

Mass quartz/sulfide mixture per column (kg) 5.00 5.00 5.11 

Mass iron sulfide in each column (g) 484 402 380 

* Experiment: combined effect of pH and aeration on copper interaction with 

pyrrhotite 
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Table 2. Assignment of the Raman spectrum of an oxidised pyrrhotite and a copper-

treated pyrrhotite obtained in this study 

Pyrrhotite - 
observed  

(cm-1) 

Copper-treated 
pyrrhotite -  

observed (cm-1) 

Assignment 

222 222 Sulfur 
234 234 Goethite 
287 287 Goethite 
400 400 Goethite 
479 ~473 (doublet) Sulfur 

 ~475 (doublet) Covellite 
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Table 3. Final solution parameters after pyrrhotite column operation 

Feed solution 
pH set point 

Discharge 
solution pH 

 
Cu mg/L 

 
Fe mg/L 

 
Fe3+ mg/L 

Aerated columns (1 L/min), feed solutions at pH set  
point, 25 days operation 

1 1.2 51 9050 2580 

1.8 2.2 25 2010 610 

2.5 3.0 7 1160 130 

3 3.8 1 1110 <100 

Feed solution pH 4 initially; pH adjusted and  
aerated (3 L/min) from day 24; 62 days operation 

1 1.1 75 14000 3680 

1.8 2.5 4 3470 190 

2.5 2.9 1 1200 230 

3 3.3 1 1010 210 

No aeration, feed solution pH 4 initially;  
pH adjusted day 17; 24 days operation 

1 1.1 1 15850 800 

1.8 4.0 2 1690 300 

2.5 3.9 1 1130 <100 

3 4.1 1 1060 <100 
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Figure captions 

 

Figure 1. Copper-balance results (flask tests, 45oC) from the treatment of sulfide 

concentrates and ore with copper sulfate solution (1 g/L Cu) at different pH set points.  

 

Figure 2. Concentration of copper in flask tests (45oC) containing pyrrhotite 

concentrate and copper sulfate solution (initially 1 g/L Cu) at different pH set points. 

 pH 1;  pH1.5;  pH 1.8;  pH 2.5; □ pH 3;  pH 4; X pH 5. 

 

Figure 3. SEM secondary electron image (20 keV) of precipitates formed on a 

pyrrhotite surface treated with copper sulfate solution (1 g/L Cu, pH 4, 45oC) during 

flask tests. 

 

Figure 4. Copper concentrations in reservoir solutions for four aerated columns 

charged with pyrrhotite concentrate with quartz support, with feed solutions  pH 1, 

□ pH 1.8, pH 2.5, and ○ pH 3. 

 

Figure 5. Copper and ferric ion concentrations in reservoir solutions. (i) an aerated 

column with feed solution pH 1 throughout the experiment:  Cu  and  Fe3+;  (ii) a 

column for which the feed solution was adjusted to pH 1 and aeration was applied 

from day 24:  Cu and  ● Fe3+ before and  Cu and  ○ Fe3+ after aeration was 

applied. 

 

Figure 6. Copper extraction (%) during covellite oxidation by ferric ion in acidic 

solutions of different pH at 45 oC (data from day 13). 

 

Figure 8. Concentration of copper in tests containing pyrite concentrate and copper 

sulfate solution (1 g/L Cu, 45oC) at different pH set points.  pH 1;  pH1.5;  pH 

1.8;  pH 2.5; □ pH 3;  pH 4. 
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Figure 9. SEM secondary electron image (20 keV, x 2500) of precipitates on a pyrite 

surface treated with copper sulfate solution (1 g/L Cu, pH 4, 45oC). 

 

Figure 10. Copper concentrations in reservoir solutions during copper precipitation at 

pH 4 (closed symbols) in the presence of pyrite and copper re-dissolution at varied pH 

(open symbols): pH 1; □ pH 1.8;  pH 2.5.  

 

Figure 11. Column discharge solution pH (open symbols) and ferric ion 

concentrations (closed symbols) in reservoir solutions during copper treatment of 

pyrite. pH 1; □ pH 1.8;  pH 2.5; ○ pH 3. Reservoir solutions were acidified to 

their respective set points at day 16. 
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Figure 1. Copper-balance results (flask tests, 45oC) from the treatment of sulfide 

concentrates and ore with copper sulfate solution (1 g/L Cu) at different pH set points.  
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Figure 2. Concentration of copper in flask tests (45oC) containing pyrrhotite 

concentrate and copper sulfate solution (initially 1 g/L Cu) at different pH set points. 

 pH 1;  pH1.5;  pH 1.8;  pH 2.5; □ pH 3;  pH 4; X pH 5. 
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Figure 3. SEM secondary electron image (20 keV) of precipitates formed on a 

pyrrhotite surface treated with copper sulfate solution (1 g/L Cu; pH 4) during flask 

tests. 
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Figure 4. Copper concentrations in reservoir solutions for four aerated columns 

charged with pyrrhotite concentrate with quartz support, with feed solutions  pH 1, 

□ pH 1.8, pH 2.5, and ○ pH 3. 
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Figure 5. Copper and ferric ion concentrations in reservoir solutions. (i) an aerated 

column with feed solution pH 1 throughout the experiment:  Cu  and  Fe3+;  (ii) a 

column for which the feed solution was adjusted to pH 1 and aeration was applied 

from day 24:  Cu and  ● Fe3+ before and  Cu and  ○ Fe3+ after aeration was 

applied. 
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Figure 6. Copper extraction (%) during covellite oxidation by ferric ion in acidic 

solutions of different pH at 45 oC (data from day 13). 
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Figure 7. Copper extraction (%) during covellite oxidation in acidic solutions of 

different pH at 45oC as a function of pH. 
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Figure 8. Concentration of copper in tests containing pyrite concentrate and copper 

sulfate solution (1 g/L Cu) at different pH set points.  pH 1;  pH1.5;  pH 1.8; 

 pH 2.5; □ pH 3;  pH 4. 
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Figure 9. SEM secondary electron image (20 keV, x 2500) of precipitates on a pyrite 

surface treated with copper sulfate solution (1 g/L Cu; pH 4). 
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Figure 10. Copper concentrations in reservoir solutions during copper precipitation at 

pH 4 (closed symbols) in the presence of pyrite and copper re-dissolution at varied pH 

(open symbols): pH 1; □ pH 1.8;  pH 2.5.  
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Figure 11. Column discharge solution pH (open symbols) and ferric ion 

concentrations (closed symbols) in reservoir solutions during copper treatment of 

pyrite. pH 1; □ pH 1.8;  pH 2.5; ○ pH 3. Reservoir solutions were acidified to 

their respective set points at day 16. 

 

 

 


