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Abstract

For telecommunication companies to successfully manage their business, companies rely on mapping future

trends and usage patterns. However, the evolution of telecommunications technology and systems in the provision of

services renders imperfections in telecommunications data and impinges on a company’s’ ability to properly evaluate and

plan their business. International Telecommunication Union (ITU) Recommendation E.507 provides a selection of

econometric models for forecasting these trends. However, no specific guidance is given. This paper evaluates

whether simple extrapolation techniques in Recommendation E.507 can generate accurate forecasts. Standard forecast

error statistics—mean absolute percentage error (MAPE), median absolute percentage error and percentage better—show

the ARIMA, Holt and Holt-D models provide better forecasts than a random walk and other linear extrapolation

methods.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the current environment telecommunications industry boundaries are rapidly changing, markets are
increasingly competitive, and company-based data are more fragmented and proprietary. Within this context,
telecommunications companies must develop strategy to deal with a rapidly changing and expanding mix of
telecommunications services, especially the emergence of substitutes and complements. That is, to successfully
manage their business carriers must rely on data to monitor, analyze and optimize their systems to map future
trends and use patterns. Forecasting is an integral input into such network traffic management, infrastructure
optimization and planning, and the scenario planning process. Data-based forecasts, excluding the analysis,
are constructed from data that is processed via statistical models from which inferences are drawn. The
analysis of Grubesic and Murray (2005) addresses concerns related to the quality of available (spatial) data. In
particular, Grubesic and Murray argue that, because of the complexity of telecommunications systems,
analysts need to concern themselves with the impact of using imperfect spatial information. Finally, Grubesic
e front matter r 2006 Elsevier Ltd. All rights reserved.
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and Murray develop a framework to address the sensitivity of spatial analyzes to imperfect spatial data. By
contrast, this study focuses on identifying appropriate statistical method given no information about the
available data. This approach is in the spirit of the International Telecommunication Union (ITU)
Recommendation E.507. The Recommendation provides an overview of existing mathematical techniques for
forecasting that includes curve-fitting models, autoregressive models, autoregressive integrated moving
average (ARIMA) models, state space models with Kalman filtering and regression models.1 However,
Recommendation E.507 provides no guidance as to which models are the most appropriate for forecasting
telecommunications series. This study contributes by examining the forecast performance of these
extrapolation models by comparing forecasts against those from a random walk model.2 In particular, the
paper follows the format of a competition between simple models that do not require detailed domain
knowledge. Namely, the comparison of forecast accuracy is based on telecommunications data via series
pattern recognition. The paper is structured as follows. Section 2 describes the M3-competition
telecommunications data. Section 3 reviews linear univariate forecast methods used in this study, and
discusses error statistics used to evaluate forecast performance. Section 4 presents the forecast results and
Section 5 concludes.
2. Data

Data used are acquired from the Institute of Forecasters web site located at http://www.forecasters.org.
M3-competition data are comprised of 3003 series. One hundred and forty nine series are telecommunications
industry data, of which 29 are monthly series and 120 series are of unknown periodicity (and labelled ‘other’).
Monthly and ‘other’ series consist of 53 and 63 observations, respectively. All observations have strictly
positive values. No additional information is provided by the Institute. A representative specimen of the
monthly and ‘other’ data are shown in Figs. 1 and 2.

Grambsch and Stahel (1990) and Fildes (1992) find telecommunications data exhibit both non stationary
and strong negative trends.3 Similarly, most of the monthly and ‘other’ series in this study exhibit negative
trends. For the monthly series, only one of 29 series shows a positive trend. For the ‘other’ series, 115 series
exhibits a negative trend, while only five series exhibit a positive trend.

Average summary statistics for the monthly and ‘other’ series are presented in Tables 1 and 2, respectively.
The tables indicate that the mean, standard deviation, degree of skewness and number of outliers for the
‘other’ series are higher than those of the monthly series. The sample average of standard deviation for the
monthly and ‘other’ series are 386.8 and 921.5, respectively. This indicates that the spread of the ‘other’ series
is about 2.4 times larger than that of the monthly series. The corresponding coefficients of variation (0.08 and
0.13) for both series also indicate the differences in the spread of the series.

Following Fildes (1992), frequency of outliers, strength of trend and degree of randomness for the data are
analyzed. Results are shown in Figs. 5 and 6.4

Fig. 3 reveals 26 of the 29 monthly series contain only a single outlier, with three series containing more than
one outlier. The ‘other’ series exhibit some similar properties. That is Fig. 4 shows that 116 of the 120 ‘other’
1Recommendation E.507 also describes methods to evaluate and select an appropriate technique, depending on available data and

forecast period.
2Standard univariate linear models are useful for this application as they are simple to implement and easily understood, and therefore

used for commercial applications.
3These observations lead Grambsch and Stahel (1990) and Fildes (1992) to argue the simple exponential smoothing model is

inappropriate for forecasting these data.
4An observation is defined as being an outlier when either XtoLx�1.5(Ux�L) or Xt4Lx+1.5(Ux�L), where Lx denotes the lower

quartile and Ux is the upper quartile. The strength of trend is measured by the correlation between series (with outliers removed) and a

time trend, with the absolute value of the trend indicating its strength. Randomness is measured by estimating the regression:

X 0t ¼ aþ btþ d1X 0t�1 þ d2X 0t�2 þ d3X 0t�3,

where X 0t denotes the series Xt with outliers removed. R̄
2
measures the variation explained by the model. A higher R̄

2
indicates little

randomness, while a relatively low R̄
2
suggests a higher degree of randomness.

http://www.forecasters.org


ARTICLE IN PRESS

0

500

1000

1500

2000

2500

3000

3500

4000

Observation Sequence Number

V
a

lu
e

 o
f 

v
a

ri
a

b
le

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

Fig. 1. Specimen of a M3 monthly series; Source. IIF(2005).
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Fig. 2. Specimen of a M3 ‘Other’ series; Source. IIF(2005).

G. Madden, J. Tan / Telecommunications Policy 31 (2007) 31–44 33
series contain only one outlier, two series contain 11 outliers and two series contains 14 outliers. The
characteristics of the M3 telecommunications data appear to be homogenous and have similar properties to
the telecommunications data analyzed by Fildes (1992).

Figs. 5 and 6 show the strength of the trend for the M3 data. The monthly series have the stronger negative
correlation with time. The histograms contained in Figs. 5 and 6 also reveal a higher correlation for the
monthly series.
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Table 2

Summary statistics of M3 ‘Other’ series

Mean Variance Skewness Kurtosis Minimum Maximum

Mean 6,748.04 5,988.95 2.75 13.31 1,749.82 42,191.30

Std Dev 921.50 1,315.54 4.37 23.94 109.88 8,988.27

Skewness 102.49 46.78 0.93 5.92 3.70 319.65

Kurtosis �0.94 0.82 4.84 34.51 �1.90 5.49

Turning Points 12.88 4.62 0.02 2.60 2.00 23.00

Step Changes 0.57 1.00 1.70 4.86 0.00 4.00

Outliers 48.10 6.68 �3.88 17.25 15.00 50.00

CV 0.13 0.06 1.03 4.44 0.03 0.32

Maximum 8,146.49 7,821.10 3.14 15.79 2,127.00 55,794.00

Minimum 5,221.50 4,523.13 2.65 12.67 1,276.00 30,908.00

Runs 17.58 5.46 0.00 2.82 4.00 30.00

Autocorrelation 0.98 0.03 �4.71 27.37 0.81 1.00

Note: The number of series tested is 120. The summary statistics report represents the summary statistics of each series. Std Dev is the

standard deviation; Turing Points and Step Changes are the number of turning points and step changes, respectively, defined in Shah

(1997); Outliers is the number of outliers greater than 3 standard deviations; CV is the coefficient of variation; Runs is the number of runs;

autocorrelation is the estimate of autocorrelation of lag 1.

Table 1

Summary statistics for M3 monthly series

Mean Variance Skewness Kurtosis Minimum Maximum

Mean 4,953.84 2,337.83 0.88 2.61 2,183.06 10,740.60

Variance 386.80 362.29 2.55 10.37 57.75 1,867.98

Skewness 73.91 36.66 0.07 1.74 11.04 134.92

Kurtosis �0.82 0.85 1.84 6.35 �1.90 2.13

Turning Points 10.00 3.09 �0.54 2.11 4.00 15.00

Step Changes 0.48 0.87 1.51 3.89 0.00 3.00

Outliers 27.97 6.63 �3.14 11.42 2.00 30.00

CV 0.08 0.08 3.29 14.81 0.02 0.46

Maximum 5,562.57 2,489.95 0.74 2.58 2,384.60 11,855.20

Minimum 4,331.32 2,159.54 0.78 2.26 1,879.20 8,971.50

Runs 16.83 4.98 �0.36 2.21 6.00 24.00

Autocorrelation 0.95 0.07 �3.11 12.36 0.65 0.99

Note: The number of series tested is 29. The summary statistics report represents the summary statistics of each series. Std Dev is the

standard deviation; Turing Points and Step Changes are the number of turning points and step changes, respectively, defined in Shah

(1997); Outliers is the number of outliers greater than three standard deviations; CV is the coefficient of variation; Runs is the number of

runs; autocorrelation is the estimate of autocorrelation of lag 1.
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Figs. 7 and 8 show both the monthly and ‘other’ series exhibit a low degree of randomness and have a strong
positive correlation with a linear trend. The results suggests that it is appropriate to use linear models to
forecast the M3 telecommunications data.

3. Forecast models applied

The univariate linear extrapolative techniques applied for forecasting are ARARMA (Parzen 1982),
ARIMA, Holt, Holt-D, Holt–Winters, simple exponential smoothing (SES) and the robust trend (RT;
Grambsch & Stahel 1990) models.5 These forecast methods are used as the models are proposed in
5Only the no trend, no seasonal version of the SES model is included in the analysis, i.e., the SES model used is yt ¼ yt�1+aet, with

a ¼ 0.3.
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Fig. 3. Outlier frequency of M3 monthly series.
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Fig. 4. Outlier frequency of M3 ‘Other’ series.
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Fig. 5. Correlation with time for M3 monthly series.
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Recommendation E.507 and are shown to be reliable by Makridakis et al. (1993), Fildes, Hibon, Makridakis,
and Meade (1998), and Makridakis and Hibon (2000) by performing consistently in the M-competition
studies. All models are estimated beginning at observation 6. This means parameter estimates for all models
are estimated from observation 6 to observation 53, and observation 6 to observation 63 for the monthly and
the ‘other’ series, respectively. To estimate the parameters of the ARARMA and ARIMA models, an
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Fig. 6. Correlation with time for M3 ‘Other’ series.
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Fig. 7. Variation explained by the Linear/AR for M3 monthly series.
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automatic procedure with a maximum 5-period lag is used. The automatic procedure estimates the parameters
of all possible combinations of ARARMA and ARIMA models within the imposed lag limit generating 60
possible models for each ARARMA and ARIMA model, respectively.6 A grid search is then carried out on
the generated ARARMA and ARIMA models to determine the optimal lag length. This is done by comparing
the Akaike information criterion (AIC) statistic values of the generated models.7 The ‘best’ ARARMA and
ARIMA models are those that generate the lowest AIC. Holt, Holt-D, Holt–Winters and RT models have
6The maximum lags for the ARARMA model is 5 periods. The ARARMA is estimated by applying an AR model 1- and 2-period lags.

Residuals are estimated with another ARMA model with lags of 1- to 3-periods to generate the ARARMA model.
7

AIC ¼ logðŝ2ðp;qÞÞ þ
2m

T
,

where ŝ2ðp;qÞ is the variance of the residuals of the estimated model. T is the number of observations and m is the number of parameters of

the univariate model tested.
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Fig. 8. Variation explained by the Linear/AR for M3 ‘Other’ series.
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their lag lengths fixed and so do not require a grid search to select best model.8 Following Makridakis and
Hibon (2000), a best model—for both series and method—is used to forecast a maximum 18 observations and
eight observations ahead for the first forecast in the sequence, respectively, for the monthly and ‘other’ series.
For the second forecast in the sequence, the data series expands by one period (one-step ahead) and forecasts
are made for 17 observations and seven observations ahead, respectively. Forecast accuracy measures used are
guided by Armstrong and Collopy (1992), viz., mean absolute percentage error (MAPE), median absolute
percentage error (MdAPE) and percent better (PB). The error statistics are defined in the Appendix.9
4. Forecasts

To identify the most accurate forecast model, aggregate results by method are compared using an out of
sample forecast horizon for the monthly and ‘other’ series data. Following Makridakis and Hibon (2000), a
maximum of 18 and eight steps ahead are generated for monthly and ‘other’ data, respectively. Forecast
accuracy is compared using MAPE, MdAPE and PB error statistics. Tables 3 and 4 present the MAPE and
MdAPE results for the out-of-sample monthly forecasts. MAPE statistic show the Holt model as best forecast
method for medium-and long-horizons (short-, intermediate- and long-horizons are considered), as it
consistently the yields lowest percentage error when compared to sample data. The MdAPE statistic indicates
the Holt-D model is the best method for medium- and long-horizons. For short-horizon forecasting (1-period
ahead), the MAPE and MdAPE statistics suggest the ARIMA model is best model.

The results for the PB statistic are reported for monthly series in Table 5. Similar to the MdAPE results of
Table 4 and 5 shows that the ARIMA and the Holt-D model are the best. Table 5 shows that the ARIMA
model is best at forecasting short- and long-horizons for 1-period, 12-periods and 18-periods ahead, while the
Holt-D model is best at forecasting intermediate- to long-horizons of 6-periods and 12-periods ahead.

Figs. 9–11 illustrate forecasts for 1-period to 18-periods ahead for the best forecast methods using monthly
data. The MAPE statistic in Fig. 9 shows the Holt and RW models is best for most forecast horizons. At
shorter horizons of 8-periods ahead or less, the MAPE statistic shows the ARIMA and Holt models generate
the best forecasts.
8Only the linear, no trend and non-seasonal versions of the Holt and Holt–W methods are considered. The Holt–D model is the

exponentially smoothed version of the Holt model. Parameters for these models are estimated from data rather than being fixed arbitrarily.
9Mean square error measures are not used as they are scale dependent and sensitive to outliers.
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Table 4

Median absolute percentage error for M3 monthly series

Forecast method Forecast horizon

1 6 12 18

RT 0.116 0.152 0.179 0.199

ARIMA 0.005 0.044 0.103 0.137

HOLT 0.006 0.027 0.060 0.083

HOLT-D 0.007 0.048 0.091 0.172

HOLT-W 0.006 0.029 0.075 0.123

ARARMA 0.999 1.006 1.029 1.033

SES 0.033 0.105 0.164 0.232

RW 0.007 0.066 0.120 0.197

Note: RT is the robust trend model; ARIMA is the autoregressive integrated moving average model; HOLT is Holt’s linear no trend

model; Holt-D is Holt’s model with exponential smoothing; HOLT-W is the linear no trend Holt-Winters model; ARARMA is a long

memory model; SES is the linear no trend simple exponential smoothing model. The RW is the random walk model with no drift.

Percentages in bold at a forecast horizon is the models with lowest median absolute percentage error.

Table 3

Mean absolute percentage error for M3 monthly series

Forecast method Forecast horizon

1 6 12 18

RT 0.136 0.182 0.211 0.235

ARIMA 0.004 0.077 0.183 0.322

HOLT 0.012 0.066 0.124 0.185

HOLT-D 0.008 0.085 0.397 4.119

HOLT-W 0.016 0.094 0.184 0.292

ARARMA 0.860 0.949 1.104 1.815

SES 0.042 0.119 0.190 0.267

RW 0.013 0.087 0.161 0.236

Note: RT is the robust trend model; ARIMA is the autoregressive integrated moving average model; HOLT is Holt’s linear no trend

model; Holt-D is Holt’s model with exponential smoothing; HOLT-W is the linear no trend Holt-Winters model; ARARMA is a long

memory model; SES is the linear no trend simple exponential smoothing model. The RW is the random walk model with no drift.

Percentages in bold at a forecast horizon is the models with lowest mean absolute percentage error.

G. Madden, J. Tan / Telecommunications Policy 31 (2007) 31–4438
The MdAPE statistic in Fig. 10 indicates the Holt model and Holt-W model typically forecast best for all
horizons. The only exception is the ARIMA model forecast better than the Holt-W model at 12-periods
ahead. The PB statistic in Fig. 11 shows the Holt-D model and ARIMA model are the best forecast models for
most forecast horizons, with the Holt-W model is equally accurate in forecasting horizons 6-periods and 9-
periods ahead. That is, the MAPE, MdAPE and PB statistics suggest the Holt and Holt-D models provide an
improvement over other linear extrapolation techniques and a random walk model in providing forecasts for
monthly data. This indicates the Holt and Holt-D models are useful for establishing relatively accurate
judgement-free projections of telecommunications data up to 18-periods ahead for monthly data. Holt and
Holt-D models are superior for most forecast horizons. For short-horizon forecasts, the ARIMA model is
best.

Tables 6 and 7 present the MAPE and MdAPE results of the out-of-sample forecasts for the ‘other’ series.
The results in Tables 6 and 7 are similar to the forecast error results of the monthly series. The MAPE statistic
in Table 6 shows that the Holt model is best forecast method for medium and long horizons, and yields lowest
percentage error when forecasting 4-periods, 6-periods and 8-periods ahead. For short horizons of 1-period
ahead, the MAPE statistic shows ARIMA and the Holt-D are the best for forecasting ‘other’ series.
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Table 5

Percent better for M3 monthly series

Forecast method Forecast horizon

1 6 12 18

RT 1.400 10.345 6.897 44.828

ARIMA 75.862 72.414 79.310 79.310

HOLT 55.172 72.414 72.414 72.414

HOLT-D 55.172 75.862 79.310 75.862

HOLT-W 51.724 72.414 72.414 68.966

ARARMA 13.793 3.448 10.345 10.345

SES 3.448 3.448 6.897 6.897

Note: RT is the robust trend model; ARIMA is the autoregressive integrated moving average model; HOLT is Holt’s linear no trend

model; Holt-D is Holt’s model with exponential smoothing; HOLT-W is the linear no trend Holt-Winters model; ARARMA is a long

memory model; SES is the linear no trend simple exponential smoothing model. The RW is not shown as the PB statistic shows the

proportion of series for each model at each forecast horizon that is better than the forecasts of the RW model. Percentages in bold at a

forecast horizon is the models with highest percentage accuracy.
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Fig. 9. Mean absolute percentage error for M3 monthly series.
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Fig. 11. Percentage better for M3 monthly series.

Table 6

Mean absolute percentage error for M3 ‘Other’ series

Forecast method Forecast horizon

1 4 6 8

RT 0.079 0.084 0.086 0.097

ARIMA 0.009 0.034 0.051 0.071

HOLT 0.010 0.025 0.036 0.049

HOLT-D 0.009 0.030 0.047 0.070

HOLT-W 0.012 0.032 0.047 0.064

ARARMA 0.978 0.981 0.985 0.994

SES 0.040 0.074 0.096 0.128

RW 0.014 0.047 0.069 0.100

Note: RT is the robust trend model; ARIMA is the autoregressive integrated moving average model; HOLT is Holt’s linear no trend

model; Holt-D is Holt’s model with exponential smoothing; HOLT-W is the linear no trend Holt-Winters model; ARARMA is a long

memory model; SES is the linear no trend simple exponential smoothing model. The RW is the random walk model with no drift.

Percentages in bold at a forecast horizon is the models with lowest mean absolute percentage error.

Table 7

Median absolute percentage error for M3 ‘Other’ series

Forecast method Forecast horizon

1 4 6 8

RT 0.070 0.073 0.079 0.088

ARIMA 0.006 0.028 0.041 0.058

HOLT 0.008 0.022 0.027 0.033

HOLT-D 0.006 0.022 0.036 0.050

HOLT-W 0.009 0.022 0.033 0.047

ARARMA 1.002 1.002 1.001 1.016

SES 0.037 0.066 0.089 0.119

RW 0.012 0.040 0.062 0.089

Note: RT is the robust trend model; ARIMA is the autoregressive integrated moving average model; HOLT is Holt’s linear no trend

model; Holt-D is Holt’s model with exponential smoothing; HOLT-W is the linear no trend Holt-Winters model; ARARMA is a long

memory model; SES is the linear no trend simple exponential smoothing model. The RW is the random walk model with no drift.

Percentages in bold at a forecast horizon is the models with lowest median absolute percentage error.

G. Madden, J. Tan / Telecommunications Policy 31 (2007) 31–4440
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The MdAPE error statistic presented in Table 7 shows a similar result to the MAPE statistic. The Holt
model is the best for forecasting 4-periods, 6-periods and 8-periods ahead. The MdAPE statistic also shows
the Holt-D model is best for forecasting short- and intermediate-horizon periods, viz., 1-period and 4-periods
ahead. An exception contained in Table 7 shows the Holt-W model performs well as the Holt and Holt-D
models when forecasting 4-periods ahead.

The PB statistic presented in Table 8 shows the Holt-D model is best for forecasting short- and
intermediate-horizons of 1-period and 4-periods ahead for the ‘other’ series, while the Holt model is best
suited for forecasting the intermediate to long-horizons of 6-periods and 8-periods ahead.

When forecasting the ‘other’ series, the MAPE and MdAPE statistics contained in Figs. 12 and 13 show that
the Holt, Holt-D and Holt-W methods provide an improvement over other linear extrapolation techniques
and random walk model. The PB statistic in Fig. 14 shows that the Holt model and Holt-D models provide
better forecasts for the ‘other’ series. The results suggest that the Holt model, Holt-D model and Holt-W
models are useful for establishing relatively accurate judgement-free projections of telecommunications data
of up to 8-periods ahead for telecommunications data of unknown periodicity. The results of the Holt and
Holt-D models are superior for most horizons.
Table 8

Percent better for M3 ‘Other’ series

Forecast method Forecast horizon

1 4 6 8

RT 1.667 9.167 17.500 48.333

ARIMA 65.833 67.500 68.333 70.000

HOLT 65.000 75.000 76.667 79.167

HOLT-D 69.167 75.833 75.833 76.667

HOLT-W 59.167 70.000 69.167 73.333

ARARMA 1.667 0.833 1.667 1.667

SES 6.667 5.833 5.000 5.833

Note: RT is the robust trend model; ARIMA is the autoregressive integrated moving average model; HOLT is Holt’s linear no trend

model; Holt-D is Holt’s model with exponential smoothing; HOLT-W is the linear no trend Holt-Winters model; ARARMA is a long

memory model; SES is the linear no trend simple exponential smoothing model. The RW is not shown as the PB statistic shows the

proportion of series for each model at each forecast horizon that is better than the forecasts of the RW model. Percentages in bold at a

forecast horizon is the models with highest percentage accuracy.
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Fig. 12. Mean absolute percentage error for M3 ‘Other’ series.
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Fig. 13. Median absolute percentage error for M3 ‘Other’ series.
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A summary of the results by error statistic and forecast horizon are presented in Tables 9–11. The tables
indicate that the best model for forecasting telecommunication series without any domain knowledge for the
forecast horizons tested are the ARIMA, Holt and the Holt-D models.

5. Conclusion

This analysis intends to identify those of the linear models proposed in ITU’s Recommendation E.507 (to aid
telecommunication companies in forecasting) provide the better forecasts when little domain information is
available. In particular, the analysis covers situation whereby little or no information is available about the
reliability or quality of data. Forecasts from the ARARMA, ARIMA and several SES model specifications
are compared against those for a random walk model. The results show despite having no knowledge of the
origin of the telecommunications series, the models can accurately forecast telecommunications data. This
suggests imperfections that may be inherent within telecommunications data might not unduly affect the
accuracy of generated telecommunication forecasts. Telecommunications data are often not well understood
and are short in length. Hence, the use of these univariate models without assumptions before may be most
appropriate. The study shows the linear extrapolation models perform well when used to forecast monthly and
‘other’ M3 telecommunications series of unknown periodicity. The sample forecast accuracy based on MAPE
and MdAPE statistics, and PB measure show the Holt and Holt-D models provides the most reliable forecasts
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Table 11

Best models for forecasting M3 series by PB

M3 series Forecast horizon

1 6 12 18

Monthly ARIMA HOLT-D HOLT/HOLT-D HOLT-D

Other HOLT-D HOLT-D HOLT HOLT

Note: RT is the robust trend model; ARMA is the autoregressive integrated moving.

Table 10

Best models for forecasting M3 series by MdAPE

M3 series Forecast horizon

1 6 12 18

Monthly ARIMA HOLT-D HOLT-D HOLT-D

Other HOLT-D HOLT/HOLT-D/HOLT-W HOLT HOLT

Note: RT is the robust trend model; ARMA is the autoregressive integrated moving.

Table 9

Best models for forecasting M3 series by MAPE

M3 series Forecast horizon

1 6 12 18

Monthly ARIMA HOLT HOLT HOLT

Other ARIMA/HOLT-D HOLT HOLT HOLT

Note: RT is the robust trend model; ARMA is the autoregressive integrated moving.
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without any knowledge of the underlying dynamics of the telecommunications data series, an outcome similar
to the recommendations of the M3-competition. The results suggest that further gains in forecast accuracy
may not be forthcoming through the deployment of more sophisticated nonlinear models, as the forecast
performance of the univariate linear models applied can generate more accurate forecasts than the random
walk for intermediate and long-horizons future periods.

Appendix

To estimate the MAPE for method i and horizon h for series j, the absolute percentage error APEi,h,j is first
calculated:

APEi;h;j ¼
F i;h;j � Ah;j

Ah;j

����
����,

where Fi,h,j is the forecast for method i for horizon h using series j and Ah,j is the actual value at horizon h for
series j. The MAPEi,h,j is then calculated by finding the mean of the APEi,h,j series:

MAPEi;h;j ¼ meanðAPEi;h;jÞ.

As none of the series observations are negative, the MAPE is appropriate. An advantage of applying the
MAPE is that it is scale-invariant. To estimate the MdAPE error statistic for method i for series j from the
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APEi,h,j error statistic, the median of the APEi,h,j series is calculated:

MdRAE ¼ medianðAPEi;h;jÞ,

where s is the total number of total number of series forecasted and MdAPE is observation (s+1)/2 if s is odd,
or the mean of observations s/2 when s is even when APEi,h,j observations are ordered by rank. The PB
statistic counts the proportion a given method has a forecasting error larger than a relative method:

PBi;h;j ¼
1

s

Xs

j¼1

di;h;j

" #
100,

where

di;h;j ¼
1 if Fi;h;j � Ah;j

�� �� � Frw;h;j � Ah;j

�� ��
0 otherwise:

(

Fi,h,j is the forecast for method i at horizon h for series j and Ah,j is the actual value at horizon h for series i.

di,h,j is a dummy variable that records the proportion of times a particular model i forecasting horizon h for
series j has a lower forecast error than the random walk model and s is the total number of series forecasted
and PBi,h,j is the proportion (in percentage) method i performs better that the relative method. The relative
method applied for comparison in this study is the random walk model. A value of greater than 50% for PBi,h,j

indicates the forecasts obtained for a particular forecasting method i is more accurate than the random walk.
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