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Abstract 

The coordination chemistry of amide-substituted calixarenes is reviewed. The synthesis of a 

gadolinium complex of a tris-amide calix[4]arene is described, involving the reaction of  

5,11,17,23-tetra-tert-butyl-24-hydroxy-26,27,28-tris(diethylcarbamoylmethoxy)calix[4]arene 

(L) with gadolinium picrate dodecahydrate. Structural studies demonstrated that the complex 

can be formulated as [(pic-O)Gd{(L-H)(EtOH)}](pic)•2EtOH. 
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Résumé 

On fait une revue de chimie de coordination des calixarenes amide-substitué. Le synthese 

d'une complexe de gadolinium d'un tris-amide calix[4]arene est descrit; realisé par le rection 

de 5,11,17,23-tetra-tert-butyl-24-hydroxy-26,27,28-

tris(diethylcarbamoylmethoxy)calix[4]arene (L) avec gadolinium picrate dodecahydrate. Les 

études structurale á démontré que la complexe prend la forme : [(pic-O)Gd{(L-

H)(EtOH)}](pic)•2EtOH 
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1. Introduction 
 Amongst the wealth of functionalised calixarenes [1,2] under investigation as selective 

receptors, the relatively simple derivatives produced by alkylation of the lower (phenolic) rim 

with O-donor functional groups continue to attract attention as useful ionophores [3]. In 

particular, amide moieties have been found to induce effective metal ion complexation, with 

structurally characterised examples available for alkali and alkaline earth metal ion complexes 

[4-12], as well as lanthanide [13-16] and transition metal [15,17-19] complexes. The majority 

of these structures involve a tetra- or bis- amide calix[4]arene in the cone conformer, most 

commonly with the diethyl amide substituent (1 and 2 respectively). 

 The coordination chemistry of the tetraamide calix[4]arene 1, is relatively well 

established, with larger metal cations interacting with the four amide and four ether oxygen 

atoms, to give an 8-coordinate geometry that is typically closer to a square antiprism than a 

cubic geometry. The potassium complex exhibits similar K–O bond lengths for the amide and 

ether oxygens (2.74 and 2.70 Å respectively) [4]. Smaller cations are found situated closer to 

the amide oxygens, as illustrated by the equivalent bond lengths in the sodium complex (2.46 

and 2.54 Å) [4]. In the copper(II) complex of 1, the bond length difference is such that the 

copper atom is situated only 0.44 Å from the least squares plane defined by the amide O 

atoms, with a mean bond length of 1.91 Å, and a presumably weak or negligible interaction 

with ether O atoms (mean distance 2.86 Å) [18]. The copper(II) complex of the pyrrolidinyl 

amide equivalent of 1 exhibits a similar metal-ligand interaction [17]. In addition to those 

mentioned above, complexes of this nature have been structurally characterised for Sr2+ [12], 

Pb2+, Fe2+ and Zn2+ [18]. An exception is the complex of Ni2+, where the cation is approached 

by three amide O atoms (mean Ni–O, 2.00 Å), and three ether O atoms (mean Ni–O, 2.23 Å), 

with the fourth ether O atom positioned 2.77 Å from the Ni atom; the fourth amide moiety is 

oriented away from the cation so that the Ni…O distance is 4.37 Å. The resulting capped 
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octahedral geometry provides some indication that this ligand is more flexible than an 

analysis of the majority of known structures might suggest [18].  

 Substitution of the lower calixarene rim with a group of sufficient bulk is well known 

to lock the conformation of the calixarene [2], so that different conformers of 1 can be 

accessible; these include the partial cone (paco-1), and the 1,3-alternate (1,3-alt-1) and 1,2-

alternate conformations. A search of the Cambridge Structural Database revealed only two 

examples of metal complexes of these conformers. One is the 2:1 potassium complex of 1,3-

alt-1, where the metal cations lie in the cavities defined by the four O atoms and 2 phenyl 

rings at each end of the tube-like conformation [5]. The second is the lanthanum(III) complex 

of paco-1, where the metal ion interacts directly with only two amide O atoms of the 

calixarene, the remainder of the coordination sphere comprising of three picrate anions, and 

two water molecules [14]. Further development of the coordination chemistry of tetraamide 

calix[4]arenes in conformations other than the cone will be required to make any detailed 

comparison of the coordination chemistry of the different conformers. 

 Complexes of the bisamide calixarene 2 have been structurally characterised for 

potassium, iron(III), and a number of lanthanide cations. The unsubstituted phenol moieties in 

2 can be deprotonated so that complexes of the singly (2-H) and doubly deprotonated (2-2H) 

ligand may be isolated, in addition to the neutral ligand adducts. These phenyl rings are also 

conformationally mobile, so that complexes of the cone, 1,3-alternate or partial cone 

conformers are accessible. A complex of 2-2H has been characterised with Fe3+; the Fe atom 

is bound to the six O atoms of the calixarene in a trigonal prismatic geometry, with average 

Fe-O bond distances: phenolic O, 1.82 ; amide-O, 2.04; ether-O atoms, 2.27 Å [15], the 

calixarene assuming a cone conformation. When 2 is combined with lanthanide picrates in the 

presence of a base, complexes formulated as [Ln(2-2H)(pic)] are isolated, where the ligand is 

again in a cone conformation with all six O atoms bound to the metal cation, with the Ln-O 
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distances increasing in the same manner as the Fe complex. The coordination sphere is 

expanded to eight O atoms by bidentate coordination to the picrate anion, with the exception 

of La, where the additional O atoms are derived from a unidentate picrate and water molecule 

[13].  

 Combination of 2 with lanthanide picrates in the absence of base (at least for Ln = La, 

Ce, Pr and Eu), results in the isolation of materials formulated as [Ln2(pic)3]. The Pr species 

has been structurally characterised [16]. The metal atom is nine-coordinate, bound to the two 

amide O atoms, one of the (protonated) phenol O atoms, and three bidentate picrate anions. 

Once again, the calixarene assumes the cone conformation. It is interesting to note that 

recrystallisation of these compounds from dichloromethane/methanol results in recovery of 

the starting material for Ln = Pr and Eu, but a new 10-coordinate complex for Ln = La and 

Ce. The charge distribution in this complex is uncertain, but is probably best described as 

[Ln(2-2H)(MeOH)2(pic)], with the ligand in the cone conformation [16].  

 To our knowledge, the only example of a metal complex of 2 with a conformation 

other than the cone, is the complex [K2]I3. Here the calixarene assumes the 1,3-alternate 

conformation in the solid-state, with the metal atom situated in the cavity defined by the four 

O atoms of the amide substituted phenyl rings and the two phenyl rings (as found in the 

dipotassium complex of 1,3-alt-1) [5].5 NMR spectroscopy indicates that the complex reverts 

to the cone conformation in solution. It is noteworthy that the potassium complex of the 

analogous p-phenylazocalix[4]arene bisamide assumes the cone conformation in the crystal, 

although here it appears that the ligand must be a monoanion [9]. The sodium complex of the 

methylated derivative, 2a, also exhibits the cone conformation [6].  

 An important aspect of calixarene chemistry is the availability of various macrocycle 

ring sizes. Analogous systems to those discussed above for the larger calixarenes are very 

poorly represented in terms of structural data; to our knowledge the only examples are the 1:1 
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Sr2+ complex of the p-t-butylcalix[6]arene hexaamide, and two 2:1 Sr2+ complexes of the p-

methoxy and p-t-butylcalix[8]arene octaamides [10]. Beyond the scope of the discussion here 

are related calixarene derivatives, such as thioamide-based ligands [17], and calixarenes 

functionalised with mixed donor groups [20-22]; it is noted that such systems are important in 

modifying the affinity of calixarenes for different cations.  

 Of particular relevance to the results presented in this paper are metal complexes of 

tris-substituted calix[4]arenes. A search of the Cambridge Structural Database for any tris-

substituted calix[4]arene suggests that the only structurally characterised metal complex of 

such a ligand is the Fe3+ complex of L [19]. As part of our program to extend the structural 

chemistry of these calixarene derivatives, we describe below a lanthanide complex of L, and 

draw comparisons with the previously published iron(III) complex.  

 

2. Experimental 

2.1 Synthesis 

5,11,17,23-Tetra-tert-butyl-24-hydroxy-26,27,28-tris(diethylcarbamoylmethoxy)calix[4]arene 

[19] and gadolinium picrate dodecahydrate [23] were synthesised by literature methods. 

[(pic-O)Gd{(L-H)(EtOH)}](pic)•2EtOH.- The calixarene L was dissolved in 1:1 

dichloromethane-ethanol (2 mL). An approximately three-fold excess of Gd(pic)3.12H2O was 

added, followed by one drop of triethylamine. Upon slow evaporation, the clear, orange 

solution deposited orange crystals suitable for single crystal X-ray diffraction studies.  

The procedure was repeated without addition of triethylamine. Once again, orange crystals 

were deposited. Diffraction studies indicated that the two products were identical. IR (KBr, 

cm-1), 1639, 1616 ν(C=O); 1574, 1548 νas (-NO2); 1364, 1327 νs (-NO2). 
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2.2 Structure determination 

A full sphere of CCD area-detector diffractometer data was measured (Bruker AXS 

instrument; ω-scans, 2θmax = 58°; monochromatic Mo Kα radiation, λ = 0.71073 Å, T ca. 153 

K) yielding 80070 reflections, these merging to 22022 unique (Rint = 0.067) after 

'empirical'/multiscan absorption correction, 19145 with F > 4σ(F) being considered 'observed' 

and used in the large block least squares refinement, refining anisotropic displacement 

parameter forms for the non-hydrogen atoms, (x,y,z,Uiso)H being included constrained at 

estimated values.  Conventional residuals R, Rw on |F| at convergence were 0.051, 0.078, 

reflection weights being (σ2(F) + 0.0003 F2)-1).  t-butyl 34 was modelled as rotationally 

disordered over a pair of sites, occupancies refining to 0.691(6) and complement.  Solvent 

residues were modelled as EtOH, one lying within the calyx.  Neutral atom complex 

scattering factors were employed within the Xtal 3.7 program system [24]. Pertinent results 

are given below and in the Tables and Figures, the latter showing 50% probability 

displacement amplitude ellipsoids for the non-hydrogen atoms, hydrogen atoms having 

arbitrary radii of 0.1 Å.  A full cif. deposition, including structure factor amplitudes, is also 

made (CCDC #236949). 

 

2.3 Crystal/refinement data 

[(pic-O)Gd{(L-H)(EtOH)}](pic)•2EtOH ≡ C80H110GdN9O24, M = 1739.1.  Triclinic, space 

group 1P )2No.,( 1
iC , a = 12.739(1), b = 14.454(1), c = 24.346(2) Å, α = 101.757(2), β = 

94.969(2), γ = 105.489(2)°, V = 4182 Å3.  Dc = 1.381 g cm-3.  µMo = 8.7 cm-1; specimen: 0.70 

x 0.15 x 0.09 mm; 'T'min/max = 0.66.   
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3. Discussion 

 The trisamide calixarene L dissolves readily in dichloromethane, combining with a 

solution of gadolinium picrate in ethanol to give an orange solution. Addition of triethylamine 

does not result in any observable change in the colour of the solution (in contrast to the 

observations made of the analogous reaction of the bisamide 2, where addition of 

triethylamine induces a significant colour change consistent with deprotonation of the 

calixarene [16]). This simple observation suggests that the calixarene is deprotonated on 

addition of the metal ion alone, as was observed for the complexation of L with Fe3+. Single 

crystal diffraction studies indicated that the same crystalline product was isolated from the 

two reaction mixtures. It appears therefore, that coordination of a lanthanide cation induces 

deprotonation of the trisamide L, more readily than for the bisamide 2.  

 The results of the 'low'-temperature single crystal structure determination are 

consistent, in terms of stoichiometries and connectivity, with the formulation of the complex 

as [(pic-O)Gd{(L-H)(EtOH)}](pic)•2EtOH, i.e. a complex cation formed between the metal, a 

singly deprotonated anionic ligand (including an ethanol solvent), the deprotonated picrate 

ligand, an uncoordinated picrate counteranion and two lattice ethanol solvent molecules, the 

deprotonation of the coordinated phenolic groups consistent with the evidence of the 

'straighter' associated Gd-O-C angles (Table I).  The three amide pendants of the ligand each 

coordinate through their oxygen atoms forming, with the phenolate oxygens, five-membered 

chelate rings.  The approach of the picrate is as a quasi-bidentate, one of the O-nitro oxygen 

atoms contacting at a distance appreciably longer than those in the remainder of the 

coordination sphere. 

 The cation forms an interesting contrast with its iron(III) counterpart [19], the latter 

devoid of the picrate; both species are shown in Fig. 1 in projection through the plane 

containing O(41) (nearest the viewer), O(21), M, the metal atoms being seven- (M = Fe; three 
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chelates plus O(41)) and eight(-(plus) - (Gd; three chelates plus O(41) plus picrate O(01) (plus 

nitro)) coordinate respectively, with the core geometries presented comparatively in Table I.  

The iron-containing cation is a good approximation to m-symmetry, the approximate mirror 

plane as defined about (M,O(21,41)) normal to the plane of the paper, and the symmetry 

conspicuously broken only by the pendants.  Among the chelates, ring 2 is almost planar, the 

other pair slightly more divergent.  The dihedral angle between chelate planes 1,3 is 3.27(6)°. 

 At first sight, the M = Gd complex cation appears similar, the larger metal atom 

enabling the approach of the picrate oxygen in such a manner as to offer the possibility of 

augmenting the array O(21,202,41) to the status of one of the pair of orthogonal planes of a 

dodecahedron, the other pair of chelates comprising the other plane.  This outcome is 

curiously and interestingly foiled by a twist of chelate 1 brought about by a displacement of 

O(102), the largest divergences in the double entries of Table I concerning this atom; the 

chelate rings are now more decisively non-planar, with similar chiralities (Table II).  In 

consequence of this perturbation, the picrate may approach in quasi-bidentate rather than 

unidentate mode.  Whether a consequence of differences in repulsion parameters, or, more 

likely, the acidity of the metal, considerable differences are found in the relative strengths of 

binding of the two types of chelate oxygen donor for the two metals, the amide O(n02) more 

tightly bound in the iron(III) complex. 

 It is notable that the cavity defined by the phenyl rings in the Gd complex contains an 

ethanol molecule, whereas the cavity is unoccupied in the Fe complex. The conformation of 

the Fe complex is more “pinched” with rings 1 and 3 closer to parallel (C6 dihedral angles, Fe, 

39.76(8); Gd, 46.4(1)˚), and thus offers less space for a solvent molecule. It is tempting to 

suggest that metal ion binding might therefore be used to ‘tune’ the calixarene cavity as a 

receptor for organic guests, but further investigation will be required to determine if metal ion 
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coordination is the dominant causative factor for conformational changes in these particular 

systems.  
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Table I. The gadolinium environment in the cation 

r Å are the Gd-O distances; other entries in the matrix are the angles subtended at the gadolinium by 

the relevant oxygen atoms at the head of the row and column. Counterpart values for the Fe 

complex are given italicised below those of the Gd complex. 

Atom r O(102) O(21) O(202) O(31) O(302) O(41) O(01) O(021) 

O(11) 2.510(3) 62.36(9) 76.37(8) 125.84(9) 129.42(7) 153.16(9) 75.02(9) 76.58(9) 116.01(8) 

(δr 0.21) 2.300(2) 71.06(6) 74.79(5) 92.40(7) 138.91(6) 150.57(6) 84.09(6)   

          

O(102) 2.414(3)  73.34(8) 73.13(9) 138.49(9) 128.0(1) 137.2(1) 79.31(9) 63.4(1) 

(δr 0.35) 2.064(2)  133.49(6) 82.82(7) 149.21(6) 79.51(7) 98.03(7)   

          

O(21) 2.618(2)   62.02(9) 72.71(7) 128.80(8) 100.90(9) 148.10(8) 116.56(9) 

(δr 0.12) 2.495(2)   67.93(7) 73.60(5) 129.34(6) 108.93(7)   

          

O(202) 2.369(2)    70.22(8) 79.6(1) 142.48(8) 124.70(9) 62.44(9) 

(δr 0.37) 1.999(2)    99.33(7) 84.19(8) 175.88(8)   

          

O(31) 2.576(2)     62.72(8) 72.81(9) 138.77(9) 113.38(9) 

(δr 0.21) 2.365(2)     70.24(6) 82.02(6)   

 

O(302) 2.398(2)      89.3(1) 81.35(9) 64.86(9) 

(δr 0.35) 2.045(2)      99.93(7)   

 

O(41) 2.132(3)       88.1(1) 142.3(1) 

(δr 0.34) 1.792(2) 

 

O(01) 2.371(2)        62.4(1) 

O(021) 2.799(4) 

 

Gd(Fe)-O(n1)-C(n1) (n = 1, 4) are: 111.8(3) (125.4(1)), 136.5(2) (138.6(1)), 131.9(2) (125.5(1)), 163.1(2) (164.2(2)°); 

Gd(Fe) lies 1.490(8) (1.823(4)), 1.575(8) (1.551(5)), 1.549(7) (1.729(4)), 0.537(7) (0.400(5)) Å out of the associated C6 

planes C(n1-n6).  Gd(Fe)-O(n02)-C(n02) (n = 1, 3) are: 119.2(3) (122.8(2)), 121.3(3) (132.4(2)), 123.9(2) (127.4(2)); 

Gd(Fe) lies 1.265(6) (0.622(4)), 1.319(6) (0.169(5)), 0.564(6) (0.168(4)) Å out of the amide planes C(n01, n02), 

O(n02), N(n0) (n = 1-3).  In the picrate, nitro group planes CNO2(2,4,6) make dihedral angles of 21.2(2), 1.1(2), 

32.2(2) with the coordinated picrate C6 plane and 2', 4', 6' 29.8(3), 5.7(3), 37.3(3)° with the uncoordinated.  Gd-O(01)-

C(01) is 144.4(3)°.  The dihedral angles between the amide C.CO.N planes with their parent C6 planes are (n = 1-3): 

85.5(2) (84.74(9)), 81.4(1) (87.4(1)), 84.2(1) (85.1(1))°.  Dihedral angles between the calix C6 planes are (1/2, 3, 4): 
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80.4(1) (80.01(8)), 46.4(1) (39.76(8), 72.5(1) (77.61(8); (2/3, 4) 82.7(1) (81.28(8)), 76.9(1) (83.87(8)); (3/4) 69.8(1) 

(69.89(8))°. 
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Table II.  Chelate ring torsion angles (degrees) 

Values for M = Fe are given italicised below those for M = Gd19 

 

Angle \ n  1 2 3 

M-O(n1)-C(n01)-C(n02) 24.4(3) 21.7(3) 34.3(4) 

  15.6(2) 4.2(2) -12.9(2) 

O(n1)-C(n01)-C(n02)-O(n01) 6.5(5) 8.2(4) -13.5(5) 

 1.7(3) -0.4(3) 5.9(3) 

C(n01)-C(n02)-O(n02)-M -36.9(4) -40.3(3) -17.6(5) 

 -21.9(3) -5.7(4) 6.1(3) 

C(n02)-O(n02)-M-O(n1) 35.3(3) 36.9(2) 26.4(3) 

 22.7(2) 6.1(2) -10.2(2) 

O(n02)-M-O(n1)-C(n01) -30.3(2) -28.9(2) -31.5(2) 

 -19.8(1) -5.1(1) 12.4(2) 

 

The chiralities of the values for the iron compound are presented as the inverses of those previously 

recorded to assist comparison. 

 



 

Macintosh HD:Users:mark:Documents:Research:Papers:Compte Paper:pci040354.doc/ib/20/10/04 

14 

Structures 
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Figure caption 

 

Fig. 1 Projections of (a) the [Fe(L-H)]2+ and (b) the [(pic)Gd{(L-H)(EtOH)}]+ cations. 
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Fig 1(a) 
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Fig 1(b) 

 
 


