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A Framework for Low Complexity Least-Squares
Localization With High Accuracy

Junlin Yan, Christian C. J. M. Tiberius, Peter J. G. Teunissen, Giovanni Bellusci, and Gerard J. M. Janssen

Abstract—In this paper, a new framework is proposed for
least-squares localization based on estimated ranges, covering
time-difference-of-arrival (TDoA), time-of-arrival (ToA), and
received signal strength (RSS) cases. The multidimensional non-
linear localization problem is first transformed to a lower dimen-
sion and then solved iteratively. Within the proposed transformed
least-squares (TLS) framework, we introduce a method in which
the localization problem is transformed to one dimension (1-D). In
this way, compared to the classical nonlinear least-squares (NLS)
type of methods, the amount of computations in each iteration is
greatly reduced; a reduction of 67% for a 3-D positioning system
is shown. Hence, the introduced 1-D iterative (1DI) method is
fairly light on the computational load. The way to choose the
1-D parameter is proposed, and theoretical expressions for the
convergence rate and the root- mean-squared error (RMSE) of the
1DI estimator are derived. Validation is performed mainly based
on actual ultra-wideband (UWB) radio measurements, collected in
typical office environments, with signal bandwidths varying from
0.5 to 7.5 GHz. Supplementary simulations are also included for
validation. Results show that, in terms of RMSE, the 1DI method
performs better than the linear least-squares (LLS) method, where
the solution is obtained noniteratively, and performs similarly as
NLS, especially in TDoA cases.

Index Terms—Least-squares localization, low complexity, ultra-
wideband (UWB).

I. INTRODUCTION

N recent years, position information has attracted in-
I creasing attention with the success of GPS satellite
navigation. Besides the value in transport and military events,
positioning services find their applications in a variety of areas,
such as industry, commerce, science, sports, and personal
everyday life. These applications are being developed at an
astonishing rate.
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The majority of positioning systems estimate the unknown
position based on (pseudo)range measurements, which can
be obtained by extracting the information contained in the re-
ceived signal, such as time-difference-of-arrival/time-of-arrival
(TDoA/ToA) and received signal strength (RSS). In TDoA
systems, a common offset b.. in all the estimated pesudoranges,
caused by the clock misalignment between the user receiver
clock and the synchronized transmitter clocks, needs to be
estimated, in addition to the unknown user position. For fully
synchronized (ToA) or nontiming based systems (like RSS), no
offset exists.

The unknown position coordinates are nonlinearly involved
in the range equations and the estimation is usually done using
iterative descent (ID) algorithms [1], which solve the nonlinear
least-squares (NLS) problem iteratively by means of linear in-
ference.

The NLS estimator and the maximum likelihood estimator
(MLE) are equivalent, when range errors are Gaussian dis-
tributed and proper weight matrices are used. However, the
NLS estimator is obtained with quite demanding computations
in each iteration and the total computational load is especially
heavy when a large number of iterations is required for the ID
algorithms to converge. This happens when the range errors
and/or the normal curvatures of the manifold, formed by the
range equations, are large [1].

The localization problem can also be formulated using
squared-range (SR) equations, where the unknown z is in-
volved in a linear term and a quadratic term \ = 7 Lz, with L
a known matrix. Direct noniterative solutions can be obtained
by means of least-squares [2]-[10] or simply by averaging
[11]. In [2] and [3], the constraint A = zT Lz is partially
exploited while in [4]-[10], A is treated as an additional un-
known, independent on x. The final estimate is either obtained
by directly using the SRs, or by using the squared-range dif-
ferences (SRD), where A, common for all SRs, is canceled.
The direct least-squares (DLS) estimators are simple to com-
pute, but none of them is the strict least-squares solution to
the SR equations. Improvements on the accuracy of the DLS
estimator can be found in [12] (for TDoA) and [13] (for ToA
and RSS), where a Lagrange Multiplier is used in the objective
function to fully account for the constraint A = 7 Lz. The
final solution is obtained iteratively by searching the roots of
a high order polynomial. Although the estimator is obtained
with only 1-dimensional (1-D) iterations in root searching,
the required eigenvalue decomposition in the earlier stage is
also a nonlinear problem, which needs to be solved iteratively.
Another low-complexity iterative solution can be found in [14],
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where the authors use only one range measurement in each
iteration to update the user position.

In this paper, a novel 2-step transformed least-squares (TLS)
framework is proposed, for TDoA, ToA and RSS cases. The idea
is to keep the required computations low by transforming the po-
sitioning problem to lower dimensions in Step 1 and solve the re-
maining parameters iteratively in Step 2. Within the TLS frame-
work, we introduce a one dimensional iterative (1DI) method
where the linear least-squares (LLS) method [4], [5] is used to
transform the problem to one dimension (1-D) in Step 1 and
the Gauss-Newton (GN) method is used to estimate the 1-D un-
known in Step 2. The issue of parameter choice in Step 1 is
discussed; the theoretical expression for the convergence rate
and the root mean squared error (RMSE) for the 1DI estimator
are derived; the numbers of required computations for the 1DI
solution and the NLS solution in each iteration are calculated.
Compared to the NLS estimator obtained using the GN method,
the 1DI method saves up to 67% of the computations in each
iteration. Validation is performed mainly based on actual ultra-
wideband (UWB) range measurements, together with some sup-
plementary simulations. Results show that the RMSE of the 1DI
estimator is smaller than that of the DLS estimator, and is close
to the RMSE of the NLS estimator, especially in TDoA cases.
Please note that our work differs from [14] in the sense that, in
each iteration, we reduce the number of unknowns, while [14]
reduces the number of measurements involved.

The paper is organized as follows. Section II introduces
the positioning models. In Section III, the details about the
TLS framework are given. The validation setup is described in
Section IV, and in Section V the obtained results are shown.
Finally, in Section VI, concluding remarks are given.

II. POSITIONING MODELS

From now on, we will use the term TDoA for the cases where
the user receiver clock is asynchronous to the transmitter clocks
and the term ToA/RSS for the cases where all the clocks are syn-
chronized or no timing information is required for ranging. Note
that, in TDoA cases, with the additional unknown b.., one extra
measurement is needed for estimation, as compared to ToA/RSS
cases.

A. Original Model

With unsquared range measurements, the (general) model can
be written as

y=A(z) +e 1)

where ( - ) indicates a random variable, y € R™ is the measure-
ment vector, z is the unknown vector, A_( -) is a nonlinear map-
ping, and ¢ € R™ is the measurement error vector. In TDoA,
z = [zT,b.]" where z, € R" is the unknown position, b,. is
the offset. In TOA/RSS, x = z,, and b. = 0 (left out).

For one single measurement y , containing the error ¢;, the
equation reads

Y, = ||vu — @il +be +e; i=1...m (2)
= N—_——

d;
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where x; is the position vector of ith transmitter, d; = ||z, — ;]|
is the true distance between the +th transmitter-receiver pair, and
-1l = V()T()-

Estimating ,, and b, from a measurement set y, can be done
based on the NLS theory by searching the minimum of the ob-

jective function

& = argmin F(z) = arg min ||g - A(x)”?v 3)

where || - |lw = /(-)TW(-) denotes a weighted norm, with

the weight matrix W. Generally, W is chosen as the inverse of
the measurement variance matrix, i.e., W = Q;,' = Q.'. Due
to the nonlinear nature of the model (2), solution (3) is usually

obtained by the ID methods.

B. Squared-Range Difference Model

The SRD model reviewed in this section is a linear model,
based on which the unknown vector x can be estimated using
standard LLS theory. The SRD model is obtained as follows.

First, a squaring operation is taken on both sides of (2) to get
rid of the square root, forz = 1,...,m

?l? =aly, -0 — 2272, + 2y.be + o] @i+ 2die; + 2. (4)

The term J;Zwu — bg, common in all m SRs, can be canceled
by taking differences between SRs. Without loss of generality,
it is assumed that the mth SR is picked as the reference. Sub-
tracting the reference SR from all other m — 1 SRs, it holds after
arranging

2 T T T
g,,, —X; T + Ly Ly = —2($L - xr) an

+2(y, — y )be + 2die; — 2dye, + € — 2 (5)

y2

Zi

where ¢ # 7 and r = m. Considering all m — 1 SRD measure-
ments, the matrix form of (5) is

Yy, =Apz+eg (6)

. . _ 2 2
where y is an (m — 1) x 1 vector with Y = Y — Y.~
2Tz, + 2Tz, and e is an (m — 1) x 1 vector with e; ; =

2d;e; — 2dre, + Q? — g,%. The expression for the matrix A4 is

(@1 —z)" oy, -y,
A, TR 2 : : @)
("I;m—l o xT)T gr o gm—l
(w1 — )"
AL ToAéRSS _9 . (8)

($m—1 - xr)T

Please note that in ToA/RSS, A does not contain any random
variables.

In the end, since (6) is linear in x,, and b.., the estimation can
be done directly without any iterations using the LL.S method [4]
(for TDoA) [5] (for ToA/RSS), and the estimator can be given
as i = (ALWLA) ' AT WLy, .

The nonlinear squaring operation generally makes the sta-
tistics of e different from e. This, however, does not intro-
duce too much trouble for (rigorous) weighted least-squares es-
timation, where only the first two moments of e; are required,
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rather than the full distribution, to calculate the weight ma-
trix W, = ;}EL. The variance matrix ()., ., can be derived
based on the statistics of e, e.g., in [10] under the assumption
e ~ N(0,Qee). Moreover, the presence of d; in ey, ; propagates
into the expression of Wi, = ELE,L Due to the fact that the in-
formation on d; is not available in practice, one has to replace it
with y; to evaluate the weight matrix. As long as Wy, = ;,413 .
is chosen, the choice of the reference in (5) does not affect the

final results, which is partially verified in [10].

III. TLS FRAMEWORK

In this section, the new TLS framework is introduced. Al-
though the default dimension of the user position is n = 3, the
following derivations are valid for general cases with n dimen-
sions.

A. Basic Idea

The idea consists of two steps. In Step 1, the key point is to
reformulate or re-parametrize the positioning problem to reduce
the number of unknown parameters. It is assumed that one can
transform the unknown vector z to another unknown vector z
of less dimensions, i.e., z = L(z). We will come back to the
point of how to obtain z = L(z), shortly. A new model is then
formed based on (1)

y= A@) +e = A(L(z) + ©)

In Step 2, the least-squares solution to (9) is obtained as

Iis:)
which can be done using the ID methods.

If the mapping @ = L(z) is error-free, the estimator (10)
is better than (3), in both the senses of accuracy and compu-
tational complexity, since the objective function in (10) con-
tains less unknowns than (3) due to the additional information
x = L(z). Note that the computational complexity is reduced
the most when z is a scalar (1-D vector).

Now the unsolved issue is how to find the mapping L(z) in
Step 1. In practice, an error-free mapping is usually not avail-
able and one has to estimate it using the data at hand. Hence, the
mapping in Step 1 becomes L(z,y). Since y contains measure-
ment error ¢ in (1), the mapping can also be written as L(z, ¢),
and (10) becomes

2
Q) ’g) '

(1)

z=Lz)=L (arg min Hy A(L (10)

i=L(%,e) = L (argmin [y — A(L(z,e))]

The estimation of L(z,e) depends on the formulated non-
linear problem to solve. Fortunately, for positioning problems,
L(z,e) can be obtained, e.g., based on direct methods. This
point will be clearer with the aid of an example in the next
section, where, as a realization of the TLS framework, the 1DI
method is introduced. In the 1DI method, z is a scalar, L(z, ¢)
is estimated based on the LLS method, and the objective func-
tion in (11) is minimized using the GN method. We should note
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that the TLS framework provides a general way to solve the po-
sitioning problem, and the ways to obtain L(z,¢) and the final
solution are not limited to the LLS method and the GN method,
respectively.

B. An Example: 1DI Method

Actually there exists an unlimited number of choices for z
in L(z,e), and how to choose the parameter is discussed in
Section III-C. In the following derivations, it is assumed that
for TDoA, the chosen parameter is z = b. while for TOA/RSS,
the chosen parameter is one of the unknowns, e.g., z = g, the
kth element of x.

1) TDoA: Based on (6), it follows

,(be) = argmin||y, — Bz
Ly -

E27) u 6_y,,,b0||%V1_,
= By, + Eby b.

12)

where B is an (m — 1) x n matrix that contains all columns
of A;, except the last column —6_yr, with 6_yr = 2y L
Yooy —y T and E = (BTWB) ' BTWy. The key

term L(b., ) in Step 1 can then be written as

L(be, ) = [ (be) ", be] ™ (13)
Further denote, fori = 1,...,m,
Pi(be,e) = Ai(L(be,©) = || By, + Eby be — wi + b
(14)
then, based on (2), a new model can be given as
y=P(b.,c) +ep (15)

where ep = A(x) — P(be, e) + e. The effect of ep on the final
estimator is addressed in Section III-D.
In Step 2, the parameter b, can be estimated based on (11) as

b, (16)

l; _argmln“y P(b.,e HW

where W = QyJ , see (11).

Equation (16) is a nonlinear problem, which can be solved by
means of ID algorithms, e.g., the Steepest Descent method, the
Newton method, the GN method and the Trust Region method.
Concerning estimation quality, these methods provide equiv-
alent solutions when they successfully converge. In the 1DI
method, the GN method is chosen to solve (16), since it is widely
used in positioning systems, e.g., in GPS [15]. Furthermore, the
GN method does not have the zigzag problem of the Steepest
Descent method, and it is of lower complexity without requiring
the evaluation of second order derivatives of A(x), as compared
to the Newton method.

First, (15) is linearized as

P (b2e) + . P (blse) (be =) +ep (D)
where b is the initial guess for b., which can be obtained using
a direct method.
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Based on (17), the parameter b, can be estimated iteratively
and in the (j + 1)th iteration, the estimate is updated based on
the approximation of (16)

~j+1 . . . . 2
b, = argminly — P (5.¢) = 0. P (bl.e) (be — 1)y,

(18)

The mechanics can be summarized as follows.
Step 1) Estimate L(b., e);

la. choose b, as the parameter to refine;

1b. calculate F, 5yr in (12);

lc. define the new model y = P(b.,¢) + ep;
Step 2) Calculate z based on the refinement of b, ;

2a. choose an initial guess b%;

2b. calculate J;, P(b°, e) based on (14);

2c. calculate

) PT (b — P (b
b, = 8b(‘ (bm 6) w (y (b(" 6)) + b(CJ (19)
O P (40, &) Wy, P (0, )

and terminate the iteration if

R 2
b — 80| < ¢ (20)

otherwise, choose bg = I;C, and go to Step 2b.
2d. finally, calculate z,, based on (13).
Note that the norm in (20) should be taken w.r.t. the inverse of
the variance of b. to make the it insensitive to scale changes
[1]. However, in this paper, we keep the norm unweighted for
simplicity.

2) ToA/RSS: Here, the offset b. does not exist, which makes it
abit simpler than TDoA. The derivations for TDoA can be easily
adopted for ToA/RSS and only minor changes are required.

For ToA/RSS, it is assumed that the kth element of x is
chosen, the other elements of = can be estimated as functions
of x;, as

[Z1(zk), . - »ik—1($k)7ik+1($k)v e 7@n+1($k)]T
= (B"WiB)'B"Wy(y, + Cax) (1)

where B is an (m—1) x (n—1) matrix that contains all columns
of A;, except the kth column —C.
Further denote ngn—l)x(m—l) = (BTWyB)"'BTWy,

Enx(m—l) = [Dl 7...7DZ:_17071)£_’_17....,1)1,1;71]71, and
Fox1=10,...,0, 1 ,0...,0]T, with D; stands for the first
~—
k—th

row of D. Note that F here is different from the one in (12).
The key expressions can be given as

(22)
(23)

L(zk,e) = &,(2x) = By, + (EC + F)zy,
Pi(ax,e) = HEQL + (EC + F)ay —

(EQL 4 (BC+ F)ay — x)T (EC + F)

8szi(-Tk~,Q> =
HEEL + (EO + F)LL’k —T;

(24)
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P OW P he) |,
» 02, PT (20, e) WO, P (20, ) ke
(25)

The mechanics of the 1DI method in the ToA/RSS case can be
derived in a very similar way as for TDoA, and is therefore not
repeated here.

C. Parameter Choice

In Step 1, z can be chosen as a linear combination of the el-
ements of z or even a nonlinear combination, e.g., 7 Lx. The
best parameter to iterate on should be chosen based on the re-
quirements of the application, e.g., minimum RMSE or max-
imum likelihood. However, finding the parameter is in general
a nonlinear problem and can be computationally involved. This
can jeopardize the low complexity nature of the 1DI method,
which is a favorable property compared with the NLS estimator.
Simplifications are therefore desirable.

Based on the fact that the major reduction of RMSE of the
1DI estimator, compared to the LLS estimator, comes from the
refinement of the parameter chosen in Step 1, we propose to
choose a single element in x, which has worst precision.

1) TDoA: In this case, the design matrix A; in (8) is usually
badly-conditioned, due to the last column —2[% —Yprees Y,
Y (m_l)], corresponding to the unknown b.. If the parameter is
chosen as z;,k = 1,...,n, the matrix B in (12) remains bad-
conditioned, and the estimation (13) is of very bad accuracy.
Thus, in TDoA cases, we propose to choose b, as the parameter
to be refined in Step 2. The resulting design matrix B is in a
much better condition and is free of random variables.

2) ToA/RSS: Here, the situation is different, since the de-
sign matrix Ay, is usually in a reasonable to good condition.
The parameter x; can be chosen such that the RMSE can be
minimized, based on the expressions given in Section III-D.
However, to calculate the RMSE value for n different parameter
choices can be computationally heavy. Fortunately, in most of
the indoor situations, one can simply choose the height (z-coor-
dinate) as the parameter to refine. The reason is that most of the
indoor rooms have smaller heights than lengths and widths, and
the transmitters are usually installed in the corners of a room
or even all on the ceiling above the user (to avoid blockage).
This type of system geometry makes the confidence region in
the local height direction much more elongated than in the hor-
izontal plane. This can be easily verified with the theoretical
error analysis in [16], for NLSE estimators. As a result, the esti-
mated height is usually of worst precision. This point is verified
in Section V, by comparing the outcomes of two different ways
of choosing .

D. Error Analysis

In this section, the RMSE of the 1DI estimator is derived, and
we assume that the elements in ¢ are independent and E{e} = 0.
Assume that the unknown parameter z in (9) can be related to y
with a nonlinear mapping M( - ), i.e., 2 = M(y), and we define
2 = M(y). Taylorizing M(y) aty = E{y}, withe = y — v,
gives

N 1
£=M(y)+9,M(y) e+ e’ O Mylet---.  (26)
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Define the bias in 2 as By = %z — z, which is given, together with

the variance of Z, as

1
pe =B} = 5 trace {02, M(n)Quc}  @D)
Q=2 = Quup = B{(, — ), — )"
= 0y M(y)" Qec0y M (y) (28)

where the terms with order higher than 2 are ignored.

1) TDoA: 1In this case, z = b., and based on (13), one ob-
tains 2,(b,) = L(b., ¢) = Gy, + Gé_yréc + Fb,, where
G(n+1)><(m—1) = [ET7 O]T, F(n+1)><1 = [0, ey 0, 1]T. De-
noting the error term p, = & — x and be, = 5_yT — by, =
—2[e; =€y -+ em_1 —¢€,)T, the bias and variance of Z can be
given based on (27) and (28) as,

pi =E{Z —z} = Gu., + GKI,M(y)
1
—I—(GéyT—I—F)E trace { o M(y )Qee}

Qiz =B{(@ -2 — pa)(@—2—pa)"}
=GE{erer ) GT + T+ T — papg
+ (Goy, + F)OyM (y)" Qec0y M (y)(Goy, + F)T
(30)

(29)

where J = E{GeLu (G&/T + F)T}, and the fact that
Gey + (Goy, + F)ub = p, has been used. The details of the

terms 9, M (y), 8§y M(y), K, E{eyer}, and J are derived in
Appendix A.
Based on (29) and (30), the RMSE can be written as

RMSE;
= trace {Qsz}
+ %TM trace {GE {ngf} Gl +J+JT
+(G8y, + F)0,M(y)" Qeedy M(y)(Goy, + F)}.
3D

The first term GE{e; e }GT comes from the error in the esti-
mation of L(z,¢) in Step 1, J + J7T represent the cross terms
of the estimation errors in Step 1 and Step 2, and the last term
comes from the estimation errors in Step 2. Equation (31) re-
quires knowledge of the true value z, which is not available
in practice. Therefore, the estimate z can be used instead. If
one wants to use the theoretical RMSE expression for parameter
choice in Step 1, before z is estimated, the initial guess obtained
using a direct method can be used instead.

2) ToA/RSS: Here, one has z = xj, and it can be shown in a
similar way that

s = Epe, + (EC—{—F)% trace { o TM( )Qpe}
(32)
Qiz = EE{erel } E" + T+ J" — papl
+ (EC + F)o,M(y)" Qecdy M (y)(EC + F)T
(33)

and
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RMSE; = trace {EE{e;ef }ET +J + J*
+ (EC + F)9yM ()" Qeedy M (y)(EC + F)T}.
(34)

The terms 9, M (y), 8;7 M(y) and J in ToA/RSS cases are

commented on, in Appendix A.

E. Convergence Rate

Recall from (19) and (25), the chosen parameter is updated in
the 5 + 1th iteration as

0.PT (29, e)W(y — P(27,¢))

2T = .
0, PT(23,e)W0,P(z7,e)

+27. (35)

Taylorizing (35) at the final solution 2,

0:PT(2,e)W(y — P(2,¢e)) = 0, gives

832PT(73> e)W(y B P(év 6))
0.PT(2,e)W0.P(%,e)

together with

Z]+1 _

z =

(=7 — 2)
+o(z7 —2). (36)

With 27 close to 2, the term o(z’ — 2) can be ignored, and the
1DI method has a linear rate of convergence. Note that (36) is a
special case of the general expression in [1].

F. Flop Count

A flop is defined as a floating point operation, e.g., an add,
a multiplication or a square root. The number of required flops
to calculate the 1DI estimator (11) and the NLS estimator (3)
obtained using the GN method, are compared in this section, for
both TDoA and ToA/RSS, based on the number of flops required
in each iteration, as derived in Appendix B.

1) TDoA:
flops;p; = 2m? + 3mn + 9m + 2n + 2 (37)
flopsy = n3/3 + 2m*n + 2mn? + 2n?

+ Tmn + 4m + 6n + 4/3. (38)

2) ToA/RSS:
flops,p; = 2m? + 3mn + Tm + 2n + 2, (39)
flopsgy = n3/3 + 2m*n + 2mn? + n?

+ 6mn +m + 2n — 1. 40)

Note that with a fixed n, if m is very large, the terms 2m?2 and
2m?n dominate (37) —(40). The ratio flops; p;/flopsgy gets
close to 1/n. With n = 3 for 3-D positioning, the largest amount
of reduction is about 67%.

One may argue that if the number of flops, required to obtain
the initial guess, is dominating the total computational load, then
the saved computations by using the 1DI method may be negli-
gible. Fortunately, the major computations involved in this ini-
tialization stage are no more than the major computations in one
iteration of the GN method with full dimension. Suppose that
the initial guess is obtained with the LLS method, the number
of rows in Ay, is m — 1, and the dominant term in the flop count
becomes 2(m — 1)?n, smaller than the one for the GN method.
Note that the estimation of L(z, ¢) required by the 1DI method
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can also be done based on the same direct method, and no extra
computations are involved.

IV. VALIDATION SETUP

Validation work is done mainly based on actual UWB range
measurements, together with some complementary simulations.

A. Actual UWB Range Measurements

The validation using actual data can be described with the

following steps:

1. Collect range measurements using actual UWB radio sig-
nals, together with the corresponding true ranges (ground
truth), physically measured with a laser disto tool.

The measurement campaign is carried out in the EE-MCS
building of Delft University of Technology using vertically
polarized, omnidirectional biconical antennas placed 1.5 m
above the floor. The distances between the transmitter and
the receiver are between 2 and 15 m with LOS propagation.
A total of 400 range measurements, each corresponding to
different transmitter and receiver positions, were collected.
The system is capable of covering the bandwidth between
3.1 and 10.6 GHz allowed by the FCC for UWB radio
transmissions [17], and the details can be found in [18].
The Channel Impulse Response (CIR) h(t) is estimated
by deconvolving the received signal in the frequency do-
main using the inverse filtering technique. The spectrum
of the received signal is divided by the one of the refer-
ence signal, measured at a distance of one meter, in the
absence of reflections. In this way, it is possible to take
into account the transmit and receive antenna transfer func-
tions and the characteristics of the other system compo-
nents. The division is done only for the frequency band
of interest, the bandwidth ranging from 0.5 to 7.5 GHz;
the rest of the spectrum is filled with zeros. To reduce the
leakage problem when transforming the signal back to the
time domain, a Hamming window is used, which provides
sidelobes less than —43 dB.

The distance is estimated by multiplying the speed of light
in air by the ToA of the first path, defined here as the first
local maximum of the envelope of the estimated channel,
with amplitude within 20 dB from the strongest peak. In
our system, the receiver and the transmitter are actually
synchronized, and therefore no clock offset exists. How-
ever, to mimic a TDoA system, we simply assume the pres-
ence of a clock offset (with true value b, = 0), and treat it
as an additional unknown. The RSS measurements are not
included in this paper, due to limited space.

2. Determine bias and variance of the range measurements,

based on the model introduced in [18].
Under LoS condition, the range errors are usually modeled
as independent Gaussian variables [19]. It has also been re-
ported that the mean vector and variance matrix of the error
¢ are dependent on the distance vector d and the used band-
width B [18],i.e.,e ~ Ny, (u(B,d), Qee(B,d)), where

wi(B,d;) = 0.0148 exp(—B/0.48)d; [m] 41)
0i(B,di) = /[Qee(B, d)]i;  [m] (42)
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=0.016 (0.64 exp(—B/0.6)d} ®> + 1),
Qee(B7 d)]L] =0, 1 7é J- (43)

with d in meter and B in GHz. In our validation, the model
in [18] is used, and the bias u(B, d) is corrected for, i.e.,
e~ Nm(ov Qes(37 d))

We should note that although the true ranges are collected
during the measurement campaign, they are not known in
practice. Therefore, to make the validation more realistic,
the true distance d; in (41) and (43) is replaced by d;, which
can be calculated using the initial guess in TDoA cases and
can be directly chosen as range measurements in ToA/RSS
cases.

. Construct the system geometry.

As the actual UWB radio measurements are restricted to
a single link (1 Tx, 1 Rx), a 3D positioning system is cre-
ated virtually by choosing sets of 5 range measurements.
Without loss of generality, the user is placed at the origin.
For the ¢th transmitter, ¢ = 1,...5, spherical coordinates
(d;, 8;, ¢;) are assigned, see Fig. 1, where d; is the true dis-
tance, obtained in Step 1, #; and ¢; are randomly chosen
from the intervals shown in Table I. Problematic geome-
tries that make the positioning unsolvable, e.g., with all
transmitters on a line, are avoided.

. Perform positioning using the LLS method, the 1DI

method, and the GN method [solving (3)], in weighted
cases. The weight matrices are evaluated based on the
results obtained in Step 2.
For ToA, with 1DI, two different setups of choosing the pa-
rameter to iterate are tested, as suggested in Section III.C.
In Setup 1, the coordinate on the z axis (the height) is
chosen, while in Setup 2, the parameter is chosen out of
the k elements of x as the one that minimizes (34), which
is evaluated using the initial guess.
For ToA, the initial guess is obtained using the LLS
method. For TDoA, to avoid the numerical problem with
the original LLS method, we adapt it based on the idea of
[2]:
a) Obtain the mapping (13).
b) Plugging L(b.,e) into the smallest (pseudo)range
measurement in (1), ending up with a quadratic equa-
tion in b...
¢) Solving the equation gives us two candidates for b,
and therefore two candidates for . The initial guess
is picked as: & = argming, o, |ly — A(a:)||é,1.
Furthermore, the threshold € in (20) is chosen asyy10*24,
and the algorithms will be intentionally terminated if the
number of spent iterations hits 50. The same rules hold for
the GN method.
With a fixed signal bandwidth, a total number of 50
000 tests are performed. The performance of the po-
sitioning algorithms is evaluated based on the RMSE
of the corresponding position estimates, which quan-
tifies how far the estimates are from the true position.
The RMSE of the estimator is obtained empirically as

RMSE = (/1/(N - 1) "N, &, - @12, with 2, the
true position, N = 50000, and iL the estimates obtained




4842

TABLE 1
THE INTERVALS OF ZENITH ANGLE § AND AZIMUTH ANGLE ¢

il e | ¢ ]
T &% |z
2 | I&F | I
3 | (% Lo | [z o7
4 || [£8x 18] | 3z Ix)
5 [0 7] [0 27]

A
*(d.0.9)
0
x ¢ Y

Fig. 1. Spherical coordinates of a single measurement. The receiver is at the
origin and the transmitter at (d, 6, ¢).

TABLE II
SIGNAL BANDWIDTH AND RANGING ERROR STD

[ Bandwidth [GHz] [[ 05 [ 1.5 [ 35 [ 7.5 ]
| sTDleml [ 110[35] 18] 15]

3% X User \ *
% Transmitters|
25
2
E 15
N
14
0.5
g —
By et e 6
4 o i» — —-»2’"_‘ 4
o*o
y [m] x[m]

Fig. 2. Geometry setup used in simulations, with five transmitters.

in the [th test. Note that EC is not included in the RMSE in
TDoA.

B. Simulation

For simulations, the procedure becomes:

1. Determine the system geometry as in Fig. 2, where 5 trans-
mitters are installed in the corners of a 6 x 6 x 3 m® room,
and the user positions are uniformly distributed in a space
of 4 x 4 x 1 m3, in the room center.

Calculate the true ranges between the 5 transmitters and
the user, i.e., d; = ||z, — z;]|, fori =1,...,5.
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-+ 1Dl TDoA
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Root Mean Squared Error [cm]

i I i i i i

10

Measurement error standard deviation [cm]

Fig. 3. RMSE of the estimates obtained using the actual UWB data, for dif-
ferent methods.

3. Generate range measurements by adding error, i.e., y.
d; +b. +e;, withe ~ N,,,(0,Q..(B,d)). The expression
of Qe.(B, d) can be found in (42). In this step, Q..(B, d)
is calculated using true ranges, while in the next step when
calculating weight matrices, d is replaced by the estimated
distances obtained with a initial guess in TDoA cases, and
by range measurements in ToA/RSS cases.
Perform positioning using simulated ranges, in a similar
way as described previously for the validation using actual
data.

V. RESULTS

Results are plotted in Figs. 3 to 7. On the horizontal axis, the
range error standard deviation (STD), calculated as

400

1 ~
@Z lldi — dil|?

=1

STD = (44)

considering all 400 measurements obtained with a fixed band-
width B, is given, cf. the values in Table II.

A. RMSE

The empirical RMSE curves of the tested methods obtained
with actual data are plotted in Fig. 3. The GN estimator has the
lowest RMSE. The performance of the 1DI estimator is better
than the LLS estimator, and is very close to the GN estimator,
especially in the TDoA case. Due to numerical problems, the
RMSE of the LLS estimator in the TDoA case is of more than
hundreds of meters, and is not shown in the figure.

B. Setup I versus Setup 2

For ToA/RSS cases, the 1DI method is tested with two setups
with different parameter choices. In general, Setup 2 is always
equal to, or better than Setup 1. This point is supported by the
results in Fig. 3. We should note that Setup 1 is worse than Setup
2 because the system geometry in Fig. 3 is generated in a ran-
domly uniform way. In a typical indoor room, e.g., Fig. 2, the
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—4—1DI Setup 1 ToA
11 | | —6—1DI Setup 2 ToA |

Root Mean Squared Error [cm]
~

1.5 2 25 3 35 4 45 5 55 6 65

Measurement error standard deviation [cm]

Fig. 4. Simulated RMSE curves of the estimates obtained with two setups of

the 1DI method.
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Fig. 5. The theoretical RMSE curve v.s. the empirical curve obtained using
actual UWB data, for the 1DI method with Setup 1.

precision of the local height is usually the worst, and the corre-
sponding coordinate can be directly chosen in Step 1. This point
is verified by simulation, where Setup 1 and Setup 2 behave very
similarly, see Fig. 4.

C. Empirical vs Theoretical

In Fig. 5, the empirical RMSE curves obtained using the ac-
tual data are compared to the theoretical RMSE curves (31) and
(34). The empirical and theoretical curves are close but still de-
viate. This may be caused by the imperfectness of the model
(42), where the parameters are estimated using only 400 mea-
surements. In Fig. 6, we show the empirical and theoretical
curves obtained with the simulation, and the results show that
the empirical and theoretical curves match perfectly with each
other for both TDoA and ToA/RSS cases.

D. Convergence Rate

In general, it is difficult to claim which one of the 1DI and
the GN method converges faster, since the convergence rate is
dependent on both geometry and the error e, see (36) and [1].
In the current test with actual data, the mean numbers of the
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- mpirical TDoA
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Fig. 6. The theoretical RMSE curve v.s. the empirical curve obtained using
simulation, for the 1DI method with Setup 1.

1Dl TDOA
+0--GN TDoA
45 | |=*—1DI ToA

GNTaA |

35

Mean Numbers of Iterations
T

25

error [em]

Fig. 7. Mean of the required number of iterations by the 1DI and the GN
methods, obtained using the actual UWB data.

required iterations of the two methods are shown in Fig. 7, where
the 1DI method requires less iterations to converge, especially
in TDoA cases.

E. Flop Count

The calculations of the flop count for our test, with m = 5
and n = 3, can be done based on (60), (65), (67), and (69).
Note that these equations are chosen since the weight matrix W
is diagonal, see (43). The results show that the proposed 1DI
method, as compared to the GN method, saves 63% and 59%
flops in TDoA and ToA/RSS cases, respectively.

VI. CONCLUSION

In this paper, the TLS framework, consisting of 2 steps, is
proposed to realize low-complexity positioning with high preci-
sion estimators, covering both TDoA and ToA/RSS cases. The
low-complexity nature of the framework comes from Step 1,
where the positioning problem is transformed from (n + 1)- or
n-dimension to a lower dimension. In Step 2, the high preci-
sion estimator is obtained by iteratively refining the unknowns
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with all of the original range measurements. Within the TLS
framework, the 1DI method is introduced, which applies the
LLS method in Step 1 to reduce the number of unknowns to
one and the Gauss-Newton (GN) method to estimate the single
unknown in Step 2. The way of choosing the parameter in Step
1 of the 1DI method has been discussed. The theoretical perfor-
mance of the 1DI method is also analyzed, including the expres-
sion for RMSE, the convergence rate and the required number
of flops in each iteration. It has been shown that in each itera-
tion, the 1DI method can save up to 67% of the computations,
compared to the GN method.

Validation of the work is done mainly based on actual UWB
radio measurements, together with some supplementary simu-
lations. Results show that the 1DI method is better than the LLS
method, and its performance is close to the GN method, espe-
cially in the TDoA case. The derived theoretical RMSE per-
fectly matches the empirical value in simulations, and small
deviations exist with actual data, which can be caused by the
limited number of available data. Although the validation is
done with Line-of-Sight range measurements, some techniques
dealing with Non-Line-of-Sight conditions may also be appli-
cable in this framework; for example, the compensation ap-
proach proposed in [20].

The TLS framework was introduced and applied here to the
indoor self positioning scenario using UWB signals, but it also
works for tracking systems in which the user sends signals to the
base stations where signal processing and position estimation
are accomplished.

APPENDIX A
ERROR ANALYSIS

As discussed in Section III-D

1 T a2
+ 5" 9y M(y)e + (45)
1
pe =g trace {nyTM(y)QeE} (46)
Q22 = 0, M (y)" QccdyM(y) (47)

where the expression of the mapping M ( - ) needs to be derived,
which is related to the least-squares objective function to mini-
mize [16].

A. TDoA

In TDoA cases, z = b, and the objective function to minimize
is
2
Fip(be) = [ly = P(be,e)|y;, (48)

where P;(b.,¢e) = HEQL + Eé_yrbc — ;|| + b, and the problem
is equivalent to solving

3y, P(be,e)"Wly — P(b,,e)] = 0.

(49)
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The terms 9, M (y) and ainM (y) can be calculated by first
Taylorizing (49) with respect to éc at the true value b,

abpp(émg)TW[y - P(émg)]

= 0y, P(be.) "Wy — P(be, )]
+ [08. P(be, &)Wy = Plbe )
—0y, P(be, €)Wy, P(be,€)] (b — be)
+ L3P0 Wiy — Plbeo)]
02, P(be,e)" Wy, P(be, e)
0B Pber &)W, P(berc)
) (b, —be)?

Zc

L. =0. (50)

Then Taylorize P(b., ¢) with respect to ¢ at E{e} = 0, which
gives

Pi(be,e) = Pi(b.,0) + 9. Pi(b.,0)Te

1
+ € O Pi(be, O)e + - (51)
1
= A;i(be) + Ri(bo)e + §QTSi(bc)Q +--- (52)
where we denote
[Rilixm
= 9. Pi(bc,0)"
(EyL + E&yrbc — .Ti)T (E&STyL + EbcaeTéy )
Yy | 2o
||EyL + Eéyrbr - x1||
Oy + bedor b }
[ Yp * 2, (m—1)xm
2dy + 2e, 0 —2d, — 2e,. ]
0 2dy_1+2¢, 1 —2d.—2e, |
[S1]m><m = 83FP1(bp 0)
(EGBTQL + EbcaeT(S_yr)T(EaeTgL + EbcaeT(S_yT) o
a |Eyr + Ebyybe — x|
H
+
I1EyL + Edyrbe — x|
(BEdery, + Eb.derdy )" (Byr + Edy,be — ;)
Yy %Y, =0
”EyL + Eéyrbc - It||3
- (Byr + Ebyrbe — ;)" (Edery, + Ebeder 8y ) .

mem
= (Fyp + Eb.by, — wi)TEage(gL + bcts_yT)

e=0

, ET(Ey + Ebeby, — ;) }
= 2dia n—
g { {_ S0 [(Byr + Ebby, — 2)TE]; |,

for simplicity.
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Since (50) is equal to zero for all e, we can collect terms with
the same order and set them to zero. Plugging (45) and (52) into
(50) and collect all the first-order terms gives

9y M(y)"
= (8,,CA(bC)TW0bCA(bC))_1 O, Ab)TW(I - R) (53)
and collecting the second-order terms gives us

02, M(y) = (b, A(b)TWay, A(b,)) ™"

) {_ Z {[0s. A(be)"W);05,5:}
=1

+20, R"W(I - R)

+2(I = R)YTW R A(be)d, M ()"

—ARTW 0y, A(be)d, M ()"

—0,M(y) [30n, A(be) WOR A(be)] ayM<y>T} .

Furthermore
K =E{sy "}
—20% 0 202
= : (54)
0 =200 1 207 | 1yxm
J=E {GQLH;{C(G(S:UT + F)T}
2d,0? 0 —2d,.02
=G :
0 2dpy 102, —2d.0?
-0y M(y)(Gsy, + F)" (55)
[E {QLQ%}]M = 4djo} + 4d}o}
[E {Qng}]ij = 4djo?,
,j=1,....m—1, i#7j. (56)

Note that the third and higher order terms of e are ignored.

B. ToA/RSS

The derivation of d, M (y), 8§y,,vM (y) and J in ToA/RSS
cases can be done based on the same idea. The obtained results
are very similar as for TDoA, and one can directly use the ex-
pression of 9, M (y) (53), 8§yTM(y) (54), and J (55), and only
needs to change G — FE, 0y, — C and K — 0. Again, we
should note that the expressions for £ and F' in ToOA/RSS cases
are very similar but not identical to the ones in TDoA cases.

APPENDIX B
FLop COUNT

The flop counts for the 1DI method and the GN method are
determined in this appendix.
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A. TDoA

In each iteration, the common terms to update for both
methods are d° and A(z°) = P(b2,e). To update a single
element d?

d? = (xg — xi)T (zg — mi)
——
n flops

~ _
~
n+2n—1 flops
N _

Totaln+2n—1+1 flops

(57)

3n flops are required. Therefore, for m-D vector d°, 3mn flops
are required.

The term A(z%) = P(b2, ¢) can be updated based on d° and
b2, which requires m flops.

IDI: The calculations in each iteration of the 1DI method
include updating the vector 0, P(b?, ¢) and (19). For a single
element 9, P;(b2, ¢)

141 flops
PN
- ~

1 flop
—
(EyL — ;)" Eby, + (ESy,)" Eby, b2
0 +1

Total 1414141 flops

O P; (b2, ¢) =

(58)

only 4 flops are required. Note that the calculations for the con-
stant terms (Eyr — ;)T Edy, and (Eéy, )T Eéy, have been
done in the first iteration and do not need to be repeated again.
Therefore, 4m flops are needed to update 9, P (b2, ¢).

Once P(b?, e) and 9y, P(b?, e) are updated, the flops required
in (19) include, (2m — 1)m for 9y, PT (6%, ¢) - W, m for y —
P, e), 2m — 1 for 9, PT (b0, e)W - (y — d°), and 2m — 1
for 9, PT(b2,e)W - 9y, P(b2,¢). Then 1 flop is used to calcu-
late (0, PT (02, e)W 0y P(b°,e))~1, 1 flop to multiply it with
Oy, PT (b9, e)W (y —d), and 1 flop to add b°. The stopping cri-
teria (20) requires the evaluation of ||b, — b2||2, and since b, — b°
has already been evaluated in previous steps, only 1 flop is re-
quired. Finally, the update of 2, = Ey, + E5yrl;c, for the
evaluation of d°, requires 2n flops.

Therefore, in each iteration, the number of required flops for
the 1DI method, including the common terms, read

flops;py = 2m? + 3mn + 9m + 2n + 2. (59)

If W is simply a diagonal matrix with unequal diagonal en-
tries, only m flops are required to evaluate 9, PT (6%, ¢) - W
rather than (2m — 1)m, and the total number of flops becomes

flops|p; = 3mn + 11m + 2n + 2. (60)

GN: 1In each iteration, the calculations for the GN method
include updating part of the m x (n + 1) matrix A and the
equation

(ATWA) (2, — 28) = ATW(y — A(=")).  (61)
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The expression for a single element 4;;,¢ =1,...,mand j =

R LTyj — Tij
1 0
di

A (62)
which requires 2 flops. Note that the last column of A contains
only constants. For the whole matrix A, 2mn flops are needed.
To obtain z from (61), the explicit computation of the in-
version of ATW A is usually avoided by first applying a tri-
angular decomposition: ATWA = LLT, e.g., Cholesky de-
composition, which requires n3/3 flops [21]. Denoting r =
ATW (y — A(z?)), one has
Li=r and LTi=2 (63)
Since L is lower triangular, the first entry of Z can be computed
as 21 = r1/Ly1. This result can be used to compute the second
entry as Zo = (1o — Lo121)/Loo. In this way one continues to
obtain 2. For an + 1-D vector , the required flops is (n + 1)
To obtain Z from Z, the same number of flops is required.
Hence, to calculate &, one needs, n(2m — 1)m for AT - W,
m fory — A(2°), (n + 1)(2m — 1) for ATW - (y — A(z")),
n(2m — 1)(n + 1) for ATW - A, (n + 1)3/3 for Cholesky de-
composition,2(n +1)? for 2 — x° andn + 1 for Z,,. The stopping
criteria requires the evaluation of ||# — 2°||? and since & — 2°
has already been calculated in previous steps, the number of re-
quired flops is 2n + 1.
The total number of flops, including the common term, read

flopsgy = n*/3 + 2m*n + 2mn?
+2n°% 4+ Tmn 4 4m + 6n + 4/3.  (64)

If W is simply a diagonal matrix, with unequal diagonal en-
tries, only nm flops are required to evaluate AT - W rather than
n(2m — 1)m, and the total number of flops becomes

flopsi;y = n2/3 + 2mn®
+2n”% 4+ 9mn 4+ 4m + 6n +4/3.  (65)

B. ToA/RSS

In each iteration, the common term to update is the m-D
vector A(z%) = P(b?, e) = d°, and 3mn flops are required.

1DI: Compared to the TDoA cases, the difference is only the
vector 9y, P(bY, €), which now requires only 3m flops.

Therefore, in each iteration, the number of required flops for
the 1DI method, including the common term, read

flops;p; = 2m? + 3mn + Tm + 2n + 2 (66)
If W is diagonal the total number of flops becomes
flopsip; = 3mn + 9m + 2n + 2. (67)

GN: To update A, 2mn flops are needed, the same as for
TDoA cases. To calculate &,,, n(2m—1)m is needed for AT-W,
m fory —d°, n(2m — 1) for ATW - (y — d°), n(2m — 1)n for
ATW - A, (n)3/3 for Cholesky decomposition, 2n? for  — z°,
and n for 2. The stopping criteria requires 2n — 1.
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The total number of flops, including the common term, read

flopsgy = n*/3 + 2m?n

+2mn? +n24+6mn+m+2n—1. (68)

If W is diagonal the total number of flops becomes

flopsizy = n°/3 + 2mn? + n? + 8mn + m + 2n — 1. (69)
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