
Copyright © 2014 IEEE. Personal use of this material is permitted. 

Permission from IEEE must be obtained for all other uses, in any 

current or future media, including reprinting/republishing this 

material for advertising or promotional purposes, creating new 

collective works, for resale or redistribution to servers or lists, or 

reuse of any copyrighted component of this work in other works. 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195647551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Robust arbitrary pole placement with the extended
Kautsky-Nichols-van Dooren parametric form

Robert Schmid, Thang Nguyen and Lorenzo Ntogramatzidis

Abstract— We consider the classic problem of pole placement by
state feedback. Our recent work [1] offered an eigenstructure
assignment algorithm to obtain a novel parametric form for the
pole-placing gain matrix to deliver any set of desired closed-loop
eigenvalues, with any desired multiplicities. The method was
adapted from the classic eigenstructure assignment algorithm
of Kautsky, Nichols and van Dooren [2]. In this paper we
employ this parametric formula to introduce an unconstrained
nonlinear optimisation algorithm to obtain a gain matrix that
delivers any desired pole placement with optimal robustness.

I. INTRODUCTION

We consider the classic problem of repeated pole placement
for linear time-invariant (LTI) systems in state space form

ẋ(t) = Ax(t)+Bu(t), (1)

where, for all t ∈ R, x(t) ∈ Rn is the state and u(t) ∈ Rm is
the control input, and A and B are appropriate dimensional
constant matrices. We assume that B has full column-rank,
and that the pair (A,B) is reachable. We let L = {λ1, . . . ,λν}
be a self-conjugate set of ν ≤ n complex numbers, with
associated algebraic multiplicities M = {m1, . . . ,mν} satis-
fying m1+ · · ·+mν = n. The problem of arbitrary exact pole
placement (EPP) by state feedback is that of finding a real
gain matrix F such that the closed-loop matrix A+BF has
eigenvalues given by the set L with multiplicities given by
M , i.e., F satisfies the equation

(A+BF)X = X Λ, (2)

where Λ is a n× n Jordan matrix obtained from the eigen-
values of L , including multiplicities, and X is a matrix
of closed-loop eigenvectors (or generalised eigenvectors) of
unit length. The matrix Λ can be expressed in the Jordan
(complex) canonical form

Λ = blkdiag{J(λ1),J(λ2), · · · ,J(λν)} (3)

where each J(λi) is a Jordan matrix for λi of order mi, and
may be composed of up to gi mini-blocks

J(λi) = blkdiag{J1(λi),J2(λi), · · · ,Jgi(λi)} (4)

where gi ≤m. We use P
def
= {pi,k |1≤ i≤ ν ,1≤ k ≤ gi} to de-

note the orders of the Jordan mini-blocks Jk(λi) that comprise
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J(λi). It is well-known that when (A,B) is a reachable pair,
arbitrary multiplicities of the closed-loop eigenvalues can be
assigned by state feedback, but the possible orders of the
associated Jordan structures are constrained by the system
controllability indices (or Kronecker invariants) [3]. If L ,
M and P satisfy the conditions of the Rosenbrock theorem,
we say that the triple (L ,M ,P) defines an admissible
Jordan structure for (A,B).
Numerous parametric formulae for the set of gain matrices
that deliver the desired pole placement have appeared in
the literature in the past three decades. In [2], a method
for obtaining suitable F was introduced involving a QR-
factorisation for B and a Sylvester equation for X , which
requires Λ in (2) to be a diagonal matrix. In particular this
means that the desired multiplicities must satisfy mi ≤ m for
all i ∈ {1, . . . ,ν}. Both the widely-used MATLAB R⃝ routine
place.m and the MATHEMATICA R⃝ routine KNVD are
based on the algorithm proposed in [2]. In [4] this method
was used to develop a parametric formula for X and F , in
terms of a suitable parameter matrix.
Other parameterisations have been presented in the literature
that do not impose a constraint on the multiplicity of the
eigenvalues to be assigned. In [5] a procedure was given for
obtaining the gain matrix by solving a Sylvester equation in
terms of an n×m parameter matrix, provided the closed-loop
eigenvalues do not coincide with the open-loop ones. In [6]
a parametric formula was presented in terms of the inverses
of the matrices A−λi In (where In denotes the n×n identity
matrix), which also requires that the closed-loop eigenvalues
are be distinct from the open-loop ones.
More recently, in [7] the parametric formula of [2] was
revisited for the case where Λ was any admissible Jordan
matrix, and a parameterisations was obtained for the pole
placing matrix F by using the eigenvector matrix X as a
parameter. The case where L contains any desired closed-
loop eigenvalues and multiplicities is also considered in [8],
where a parametric form for F is presented in terms of the
solution to a Sylvester equation, also using the eigenvector
matrix X as a parameter. However, maximum generality in
these parametric formulae has been achieved at the expense
of efficiency. Where methods [2], [5], [6] all employ parame-
ter matrices of dimension m×n, the parameter matrices used
in [7]-[8] have dimension n×n.
In the recent paper [9], two of the present authors gave a
novel parametric form for X and F based on the famous
pole placement algorithm of Moore [10]. This parameter-
isation employed parameter matrices of dimension m × n,
but required Λ to be diagonal, and hence also assumed the



closed-loop eigenvalues have multiplicities of at most m.
Very recently the papers [11],[12] generalized this parametric
form to accommodate arbitrary multiplicities; the method
was based on the pole placement method of Klein and Moore
[13]. The method avoids the need for matrix inversions, or
the solution of Sylvester matrix equations. The principal
merit of this approach was to obtain a parameterisation that
combines the generality of [7] and [8] with the computational
efficiency that comes from an m×n dimensional parameter
matrix.
In [1] the present authors revisited the pole-placing feed-
back method of Kautsky, Nichols and van Dooren [2] and
generalised it to obtain a parametric formula that can also
accommodate arbitrary pole-placement, in terms an m× n
dimensional parameter matrix. For a given real m×n param-
eter matrix K, we obtain the eigenvector matrix X(K) and
gain matrix F(K) by building the Jordan chains of closed-
loop generalised eigenvectors; the chains commence with the
selection of eigenvectors from the kernel of certain matrix
pencils. Thus the results of [1] neatly parallel the achieve-
ments of [11]-[12] in providing another novel parametric
form to achieve pole placement with arbitrary multiplicities,
while employing an m×n-dimensional parameter matrix.
The virtue of having a comprehensive parametric formula for
the matrices X and F that solve (2) is that they invite the con-
sideration of optimal pole placement problems, in which one
seeks a gain matrix that will deliver the desired closed-loop
eigenstructure and also provide some other desirable features.
One important such problem is the minimum gain exact pole
placement problem (MGEPP), which involves solving the
EPP problem and also obtaining the feedback matrix F that
has the smallest gain, which is desirable in order reduce the
control amplitude or energy used in achieving any desired
closed-loop response. In the robust exact pole placement
problem (REPP), we seek an F that solves the EPP problem
and also renders the eigenvalues of A+BF as insensitive to
perturbations in A, B and F as possible. Numerous results
[14] have appeared linking the sensitivity of the eigenvalues
to various measures of the conditioning of X , the matrix of
closed loop eigenvectors. A commonly used measure is the
Frobenius condition number of X . For the case of diagonal
Λ, there has been considerable literature on this problem.
Papers addressing the REPP problem include [2], [4], [8],
[9], [15], and [16].
Papers [11] and [17] employed a parametric formula based
on the Klein-Moore method to consider the MGEPP and
REPP problems, respectively. In [1] the present authors
employed the parametric formula based on the Kautsky-
Nichols-van Dooren method to consider the MGEPP prob-
lem. In this paper we complete this quartet of results by using
the Kautsky-Nichols-van Dooren method to consider the
REPP problem. Adopting a similar approach to these recent
works, we introduce an unconstrained nonlinear optimisation
problem that seeks the parameter matrix K that minimises the
condition number of X with respect to the Frobenius norm.
This optimisation problem is then addressed via gradient
search methods.

As mentioned earlier, a novel feature of these two parametric
forms is that they can accommodate arbitrary pole placement,
including a possibly defective eigenstructure. To demonstrate
the performance of our algorithm, we consider an example
involving the assignment of deadbeat modes, and compare
the performance against the methods of [8] and [17]. We see
that the methods introduced in this paper are able to deliver
the desired eigenstructure with superior robust conditioning
to that of [8], and equivalent to that of [17].
We begin with some definitions and notation. We say that
L is σ -conformably ordered if there exists an integer σ
such that the first 2σ values of L are complex while the re-
maining are real, and for all odd k ≤ 2σ we have λk+1 = λ k.
For example, the set L = {10 j,−10 j,2+2 j,2−2 j,7} is 2-
conformably ordered. Notice that, since L is symmetric, we
have mi = mi+1 for odd i ≤ σ . In the following we implicitly
assume that an admissible Jordan structure (L ,M ,P) is σ -
conformably ordered, for some integer σ . For any matrix X
we use X(l) to denote the l-th column of X . The symbol
0n represents the zero vector of length n, and In is the n-
dimensional identity matrix.
Let X denote any complex matrix partitioned into subma-
trices X = [X1 . . .Xν ] ordered such that any complex sub-
matrices occur consecutively in complex conjugate pairs,
and so that, for some integer s, the first 2s submatrices are
complex while the remaining are real. We define a real matrix
Re{X} of the same dimension as X thus: if Xi and Xi+1 are
consecutive complex conjugate submatrices of X , then the
corresponding submatrices of Re{X} are 1

2 (Xi +Xi+1) and
1
2 j (Xi −Xi+1).

II. POLE PLACEMENT METHODS

Since our pole-placing method employs the algorithm of [2]
for the gain matrix F that solves the exact pole placement
problem (2), for the case where Λ is a diagonal matrix, we
first briefly review this classical earlier result.
Theorem 2.1: ([2, Theorem 3]) Given Λ =
diag{λ1,λ2, . . . ,λn} and X non-singular, then there exists F ,
a solution to (2) if and only if

U⊤
1 (AX −X Λ) = 0, (5)

where

B = [U0 U1 ]

[
Z
0

]
(6)

with U = [U0 U1 ] orthogonal and Z nonsingular. Then F is
given by

F = Z−1 U⊤
0 (X ΛX−1 −A) (7)

We note that (6) uses a QR factorisation for B; Byers and
Nash [4] pointed out that F may also be obtained from the
singular value decomposition for B. Given B = U SG⊤, we
let U = [U0 U1 ] and SG⊤ =

[
Z
0

]
.

Corollary 2.1: ([2], Corollary 1) The eigenvector xi of A+
BF corresponding to the assigned eigenvalue λi ∈ L must
belong to the space

Si
def
= ker[U⊤

1 (A−λi In)], (8)



the null-space of U⊤
1 (A−λi In).

Byers and Nash used Corollary 2.1 to obtain a parametric
form for the matrix of eigenvectors X satisfying (2), and then
employed it to consider the REPP problem for the case of a
diagonal Λ matrix. In [1] we adapted Corollary 2.1 to obtain
a parametric form for X and F that can accommodate any
admissible Jordan structure (L ,M ,P) for (A,B), and we
now briefly summarise this method.
We begin by noting that for each i ∈ {1, . . . ,ν}, each Si in
(8) has n rows and n+m columns, and as the pair (A,B)
is reachable, the dimension of Si is equal to m. For each
i ∈ {1,2, ...,ν}, we compute maximal rank matrices Ni and
Mi satisfying

U⊤
1 (A−λi In)Ni = 0, U⊤

1 (A−λi In)Mi = In−m. (9)

Then Ni is a basis matrix for Si. It follows that, for each
odd i ≤ 2σ , we have Ni+1 = Ni because if λi+1 = λ i.
For any σ -conformably ordered admissible Jordan structure
(L ,M ,P), we say that a m × n parameter matrix K def

=
diag{K1, . . . ,Kν} is compatible with (L ,M ,P) if: (i) for
each 1 ≤ i ≤ ν , Ki is a matrix of dimension m×mi; (ii) for
all 1 ≤ i ≤ 2σ , Ki is a complex matrix such that Ki = Ki+1,
for all odd i ≤ 2σ , and Ki is a real matrix for each i ≥ 2σ ;
and (iii) each Ki matrix can be partitioned as

Ki =
[

Ki,1 Ki,2 . . . Ki,gi

]
, (10)

where, for 1 ≤ k ≤ gi, each Ki,k has dimension m× pi,k.
In this section we develop our parametric form for the
eigenvector matrix X and pole-placing gain matrix F that
solve (2) for any admissible eigenstructure (L ,M ,P). Our
first task is to build a suitable eigenvector matrix. Given a
compatible parameter matrix K for (L ,M ,P), we build
eigenvector chains as follows. For each pair i ∈ {1, . . . ,ν}
and k ∈ {1, . . . ,gi}, build vector chains of length pi,k as
follows:

xi,k(1) = Ni Ki,k(1), (11)

xi,k(2) = MiU⊤
1 xi,k(1)+Ni Ki,k(2), (12)

...
xi,k(pi,k) = MiU⊤

1 xi,k(pi,k −1)+Ni Ki,k(pi,k). (13)

From these column vectors we construct the matrices

Xi,k
def
= [xi,k(1)|xi,k(2)| . . . |xi,k(pi,k)] (14)

Xi
def
= [Xi,1|Xi,2| . . . |Xi,gi ] (15)

XK
def
= [X1|X2| . . . |Xν ] (16)

of dimensions n× pi,k, n×mi, and n×n, respectively. Finally
we obtain the feedback gain matrix

FK
def
= Z−1 U⊤

0 (XK ΛX−1
K −A) (17)

Given its origins in the classic paper [2], we refer to
the parametric formulae (16) and (17) as the extended
Kautsky-Nichols-van Dooren parametric form for X and F .
The main result of [1] was the following:

Theorem 2.2: [1] Let (L ,M ,P) be an admissible Jordan
structure for (A,B) and K be a compatible parameter matrix.
Then for almost all choices of K, the matrix XK in (16)
is invertible, i.e., XK is invertible for every choice of K
except those laying in a set of measure zero. The set of all
real feedback matrices FK such that the closed-loop matrix
A+BFK has Jordan structure described by (L ,M ,P) is
parameterised in K by (17), where XK is obtained with a
parameter matrix K such that XK is invertible.

III. ROBUST OPTIMAL POLE PLACEMENT WITH THE
KAUTSKY-NICHOLS-VAN DOOREN PARAMETRIC FORM

We firstly note some classic results on eigenvalue sensitivity.
Theorem 3.1: [14, Theorem 4.4.2]
Let A and X be such that A = XJX−1, where J is the Jordan
form of A, and let A′ = A+H. Then for each eigenvalue of
A′, there exists an eigenvalue λ of A such that

|λ −λ ′|
(1+ |λ −λ ′|)l−1 ≤ κ2(X)∥H∥2 (18)

where κ2(X) := ∥X∥2∥X−1∥2 is the spectral condition num-
ber of X , and l is the size of the largest Jordan mini-block
associated with λ .
The result indicates that the spectral condition number κ2(X)
of the matrix X may be used a measure of the eigenvalue sen-
sitivity of the matrix A. Since κ2(X) is non-differentiable, it
is not amenable to optimisation via gradient search methods.
The Frobenius condition number κ f ro(X) = ∥X∥ f ro∥X−1∥ f ro
is differentiable, and since κ2(X) ≤ κ f ro(X), many authors,
including [4], [8], [16], have used this as their robustness
measure.
We utilise the parametric form introduced in the previous
section to consider the problem of minimising the Frobenius
condition number of X . More precisely, we consider the
unconstrained optimisation problem

(P1) : min
K

∥XK∥ f ro∥X−1
K ∥ f ro (19)

where XK in (16) arises from any compatible parameter
matrix K. As pointed out in [4], to minimise κ f ro(X), for
efficient computation we may instead consider the alternative
objective function

(P2) : min
K

∥VK∥2
f ro +∥V−1

K ∥2
f ro, (20)

with VK =Re{XK}. In order to determine the optimal input
parameter matrix K that solves problem (P2), we will
exploit a gradient search employing the first and second order
derivatives of ∥VK∥2

f ro and ∥V−1
K ∥2

f ro. From these expressions,
the gradient and Hessian matrices are easily obtained, and
unconstrained nonlinear optimisation methods can then be
used to seek local minima. The details are given in the
Appendix.

IV. PERFORMANCE COMPARISON

In this section, we compare the algorithm presented in this
paper with the methods given in [8] and [17].
Example 4.1: We consider the Example 2 in the Byers and
Nash [4] collection of benchmark systems that have been



investigated over the years by many authors [15], [16], [7],
[8]. We use the state matrices A and B from that system,
with n = 5 states and m = 2 inputs. Differing from [4], we
seek to assign all the closed-loop eigenvalues to zero to
obtain a deadbeat response, and thus we have L = {0} and
M = {5}. The controllability indices are {3,2} and so we
see that this can be achieved with two Jordan mini-blocks
of dimensions three and two. Using the method of [8] to
minimise the Frobenius condition number of the matrix of
generalised eigenvectors X , we obtain

F1 =

[
−46.83 201.32 −430.03 357.41 −102.63
−20.79 85.14 −163.61 123.70 −31.79

]
yielding closed-loop generalized eigenvector matrix X1 with
κ f ro(X1) = 54.4272 and ∥F1∥ f ro = 645.5096.
Using the Method of [17], we obtain

F2 =

[
−39.46 148.92 −299.30 244.73 −70.27
−15.12 44.86 −63.10 37.07 −6.92

]
yielding closed-loop generalized eigenvector matrix X2 with
κ f ro(X2) = 49.2575, and ∥F2∥ f ro = 430.5015. Using the
method given in this paper we obtained

F3 =

[
−39.48 149.08 −299.69 245.07 −70.37
−15.14 44.98 −63.40 37.33 −6.99

]
yielding closed-loop generalized eigenvector matrix X3 with
κ f ro(X3) = 49.2575 and ∥F3∥ f ro = 431.1126.
The results indicate that the robust pole placement methods
given here obtained with the Kautsky-Nichols-van Dooren
parametric formula can match the results given in [17]
using the Klein-Moore parametric formula. Both methods
were able to improve on the Frobenius conditioning of the
generalised eigenvector matrix achieved by [8], and did so
with considerably less gain.

V. CONCLUSION

We have revisited the arbitrary pole placement method of our
recent paper [1] that can assign any desired eigenstructure
with arbitrary multiplicities. The method has been applied
to the problem of robust pole placement, and shown via an
example to be capable of achieving comparable, and in some
respects, superior robustness performance to other arbitrary
pole placement methods from the recent literature. Future
work will involve extensive numerical testing to see whether
either of the two pole placement methods given here and in
[1] enjoys any significant performance advantage over the
other.

VI. APPENDIX

Here we consider the derivatives of VK and V−1
K in (20). We

define

χi
def
=

Re{Ki} i ∈ {1, . . . ,2σ} odd,
Im{Ki−1} i ∈ {1, . . . ,2σ} even,
Ki i ∈ {2σ +1, . . . ,ν}.

Let
VK =Re{XK}. (21)

Define χi,k(l,r) as the r-th entry of χi,k(l). We compute the
derivative of Vp,q with respect to χi,k. We have

∂Vp,q

∂ χi,k(l,r)
= 0

for p ∈ {1, . . . ,2σ} with p ̸= i, p ̸= i+σ , p+σ ̸= i and p ∈
{2σ +1, . . . ,ν} with p ̸= i. Define

P(i, l) def
=

{
{Mi U⊤

1 }l Ni if l ≥ 0,
0 otherwise.

For each i∈{1, . . . ,σ}, k ∈{1, . . . ,gi}, h, l ∈{1, . . . , pi,k} and
r ∈ {1, . . . ,m} we find

∂Vi,k(h)
∂ χi,k(l,r)

=Re{P(i,h− l)}(r),

∂Vi+σ ,k(h)
∂ χi,k(l,r)

= Im{P(i,h− l)}(r),

∂Vi,k(h)
∂ χi+σ ,k(l,r)

=−Im{P(i,h− l)}(r),

∂Vi+σ ,k(h)
∂ χi+σ ,k(l,r)

=Re{P(i,h− l)}(r).

For each i ∈ {2σ + 1, . . . ,ν}, k ∈ {1, . . . ,gi}, h, l ∈
{1, . . . , pi,k} and r ∈ {1, . . . ,m} we have

∂Vi,k(h)
∂ χi,k(l,r)

= P(i,h− l)(r).

Let YK =V−1
K . Then,

f (K) = ∥VK∥2
f ro +∥YK∥2

f ro, (22)

The derivatives of ∥VK∥2
f ro and ∥YK∥2

f ro are given as

∂∥VK∥2
f ro

∂ χi,k(l,r)
= 2trace

(
V⊤

K
∂VK

∂ χi,k(l,r)

)
,

∂ 2∥VK∥2
f ro

∂ χi1,k1(l1,r1)∂ χi2,k2(l2,r2)

= 2trace
(

∂V⊤
K

∂ χi1,k1(l1,r1)

∂VK

∂ χ i2,k2(l2,r2)

)
Using the well-known formula ∂YK

∂ χi,k(l,r)
=−YK

∂VK
∂ χi,k(l,r)

YK , we
compute

∂∥YK∥2
f ro

∂ χi,k(l,r)
= 2trace

(
−Y⊤

K YK
∂VK

∂ χi,k(l,r)
YK

)
and

∂ 2∥YK∥2
f ro

∂ χi1,k1(l1,r1)∂ χi2,k2(l2,r2)

= 2trace
(

Y⊤
K

∂V⊤
K

∂ χi2,k2(l2,r2)
Y⊤

K YK
∂VK

∂ χi1,k1(l1,r1)
YK

+Y⊤
K YK

∂VK

∂ χi2,k2(l2,r2)
YK

∂VK

∂ χi1,k1(l1,r1)
YK

+Y⊤
K YK

∂VK

∂ χi1,k1(l1,r1)
YK

∂VK

∂ χi2,k2(l2,r2)
YK

)
.
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