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Abstract 

α-Lactose monohydrate crystals have been reported to exhibit growth rate dispersion 

(GRD). Variation in surface dislocations has been suggested as the cause of GRD, but this has 

not been further investigated to date. In this study, growth rate dispersion and the change in 

morphology were investigated in situ and via bottle roller experiments. The surfaces of the 

(010) faces of crystals were examined with Atomic Force Microscopy. Smaller, slow growing 

crystals tend to have smaller (010) faces with narrow bases and displayed a single double 

spiral in the centre of the crystal with 2 nm high steps. Additional double spirals in other 

crystals resulted in faster growth rates.  Large, fast growing crystals were observed to have 

larger (010) faces with fast growth in both the a and b directions (giving a broader crystal 

base) with macro steps parallel to the (c direction).   The number and location of spirals or 

existence of macro steps appears to influence the crystal morphology, growth rates and 

growth rate dispersion in lactose crystals. 
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1. Introduction 

White and Wright [1] first reported a spread of an initially narrow sized crystal 

population in sucrose, which could not be explained by size dependent growth. They used the 

term growth rate dispersion (GRD) to describe the variation in growth rate among crystals of 

the same size while they grow under constant macroscopic conditions and it is still not 

understood well [2]. This causes widening of the crystal size distribution and is a significant 

factor in the control of the crystal size distribution (CSD) in batch crystallisers. GRD has a 

significant influence on particle size distribution of the crystalline product in industrial 

crystallisers especially in the low size range. The consequence of GRD is an increase in the 

numbers of small slow growing crystals and therefore a reduction of the mean particle size in 

both batch and continuous crystallisers [3].  Since then, many other crystals have been 

reported to exhibit growth rate dispersion, for example potash alum [3] , citric acid [4], 

fructose [5], sodium chloride [6] and others [7]. It has been reported for crystals generated by 

both primary and secondary nucleation [8]. 

Possible causes of GRD are the specific surface structure of the growing crystal [9], 

varying degrees of strain in the crystal lattice [3, 10, 11], random surface adsorption [12] or 

physical incorporation of impurities, and fluctuation in supersaturation [13] . The nuclei 

growth rates were reported to be strain controlled at high growing supersaturation and 

dislocation controlled at low growing supersaturation [14, 15]. The surface integration step 

for crystal growth is thought to be the primary factor in mechanisms of growth rate 

distribution, and the Burton-Cabrera-Frank (BCF) [16] growth theory is often used to provide 

qualitative explanation of the growth rate dispersion phenomena. From the BCF theory, the 

growth rate of a crystal face is dependent on the number, sign and location of screw 

dislocations emerging at the surface of a growing crystal. A distribution of growth rates is a 

result of the varying dislocation networks and densities among nuclei and seed crystals [17]. 



3 

 

Bennema stated that occasionally the growth rate of a certain face may vary by a factor of 1 to 

5 for 1 to 5 collaborating spirals or may become zero below a certain supersaturation for the 

case of spirals of opposite sign or where dislocations are absent [18]. Secondary nuclei of 

sodium chloride crystals were reported to exhibit higher dispersion at smaller size together 

with zero growth rates [19]. This was explained to be the consequence of stress induced 

reduction of growth rates being dominant at smaller size. Gradual increase of size reduces the 

strain and contribution of dislocation becomes dominant. Recently, Pantaraks et al [20] 

reported that GRD is a result of the difference in microscopic surface roughness caused by 

surface nuclei generated on the surface of crystals. The growth history of crystals was found 

to have a significant effect on the future crystal growth rate. For example, a crystal grown in a 

high supersaturation environment was found to grow at a slower rate when moved to a lower 

supersaturation environment compared to crystals grown at low supersaturation over the same 

time.  

The presence of GRD in lactose crystallisation was first reported by Visser [21] and he 

recommended further research, for instance in a growth cell. There have been three published 

works on the GRD in lactose crystallisation. Shi et al [22] reported that each crystal grows at 

its inherent constant rate but different crystals have different growth rates (CCG Model) in 

contact nucleation experiments. Liang et al [23] studied the effect of growth rate dispersion 

on lactose crystal size distribution from a continuous cooling crystalliser. A larger number of 

particles of smaller sizes than predicted by the standard population balance model were 

present and the semi-logarithmic population density versus crystal size plot showed a 

curvature at small sizes (less than 40 µm). They determined that the linear extrapolation 

technique used to calculate the growth rate in the cooling crystalliser overestimates actual 

growth rates by neglecting the high number of slow growing crystals. The crystal size 

distribution was successfully modelled using a two-component rate distribution indicating the 

existence of two distinct types of nuclei. These were classed as fast growers (product crystals) 
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and slow growers (fines). The average ratio of fast growers to slow growers was found to be 

2.2 for lactose and 3 for sucrose by Liang and Hartel  [24]. Dincer et al reported GRD in a 

seeded system and found that the four main faces of lactose crystal displayed GRD and it 

increased with increasing supersaturation and temperature [25]. 

The crystal structure of a-lactose monohydrate crystals has been reported [26]. The unit 

cell contains two lactose and two water molecules. The unit cell dimensions are a=7.982 Ǻ, 

b=21.562 Ǻ, c=4.824 Ǻ and β=109.57˚ (Monoclinic, P21). An important characteristic of α-

lactose monohydrate crystals grown from aqueous solutions is an unequal development of 

opposing faces (i.e. the (hkl) and (h k l )  faces); in particular, the (110), )101(  and (010) 

faces are significantly larger than the )011( , )011( and the )010(  faces, respectively, with 

the last face missing in many crystals. The crystal morphology is dominated by the (011) , 

)110(  and (010) faces. Large (100) and )001( faces are also present. The resulting crystal is 

tomahawk-shaped as shown in Figure 1. Crystals of α-lactose monohydrate grow mainly in 

the +b direction. Van Krevald and Michaels [27] and later Visser [28] stated that the 

tomahawk shaped morphology of α-lactose monohydrate is caused by selective blocking of 

the (010) , (011)  and )110( faces by β-lactose molecules in the solution. Because both α 

and β lactose have the same galactosyl moiety, the α-lactose molecules of the crystal might 

form bonds as easily with the galactose moiety of a β molecule as that of an α molecule. In 

the tomahawk, the α molecules are orientated along the b axis, with all the glucose moieties 

pointing in the –b direction.  Once integrated, a β molecule would inhibit further growth of α-

lactose at that growth site. This was proved by Raghavan et al by analysing the β−lactose 

content of different sections of large lactose crystals [29]. The β-lactose content of the 

sections on the { 110 } faces of the crystal were found to be higher than other sections which 

resulted in higher strain on these faces as shown by X-Ray tomography.  
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In the absence of impurities, the size of the face is inversely related to the growth rate of 

the face. Fast growing faces are usually the smallest or grow out of existence. The 

morphology of crystals is determined by the slowest growing faces.  

We have previously reported in situ growth rates of single α-lactose monohydrate 

crystals [25]. In these experiments, growth was followed for 3-4 hours and no change in 

morphology was observed over this time. Following this publication, longer in situ runs were 

investigated and in one of the experiments in which crystals were grown for four days (30 °C 

and 40g lactose /100g water concentration), the crystals with broader base (a direction) grew 

faster than all the other crystals with narrower bases and the none of the crystals with narrow 

bases developed broader bases (Figure 2). This observation prompted further investigation on 

morphological differences between slow and fast growing lactose crystals using atomic force 

microscopy (AFM), in an effort to understand what the differences between slow and fast 

growing crystals are.  

In this research, the growth rate dispersion of lactose crystals and changes in crystal 

morphology were investigated in an in situ cell (stagnant) and in bottle roller (dynamic) 

conditions. For AFM investigation, measuring the growth rate of individual crystals and 

investigating the (010) face of the same crystals proved to be impractical. Instead crystals 

were grown in conditions which minimise secondary nucleation, breakage or agglomeration 

for 10 days to reach sizes which allows manual manipulation of crystals for imaging. The 

(010) faces of lactose crystals with different sizes were imaged and the relationship between 

surface structure, morphology and the growth rates were investigated. 

2. Experimental Method 

α−Lactose monohydrate powder (L-8783) was purchased from Sigma Chemicals. All 

seed preparations and growth experiments were performed at 30 °C, and lactose concentration 
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of 40 g α-lactose monohydrate in 100 g DI water. The supersaturation ratio of α-lactose, s, is 

calculated using equation given by Visser  [30]: 

 

 

C is total lactose concentration and Cs is final solubility of lactose in g anhydrous lactose/100 

g water, F, a temperature dependent factor for depression of solubility of α-lactose by 

β-lactose and KM, β/α ratio of lactose in mutarotation equilibrium at the relevant temperature. 

At this concentration, the relative lactose supersaturation (s-1) was calculated to be 0.55. 

 In situ crystal growth experiments were performed to measure the growth rates of 

individual crystals using an apparatus developed by Reyhani and Parkinson [31] that consists 

of a Transmission type Optical Microscope, an in situ cell, a Grant W14 (Grant Instruments 

Ltd.) circulating water bath, Pulnix TM-9701 Camera (Progressive Scanning Full Frame 

Shutter Camera), and a Pentium II Computer. The in situ cell has two compartments: sample 

(upper) and circulating water for temperature control (lower) separated by circular thin glass 

cover slips. The volume of the sample compartment is 5ml. This set up allows in situ 

observation of crystal growth rates and morphology at constant temperature and 

supersaturation. Lactose seed crystals were prepared by dissolving (with heating) 40 g α-

lactose monohydrate in DI 100 g water to 70 °C. After cooling to room temperature, the 

solution was filtered through a 0.45 µm filter membrane and placed in an ultrasonic water 

bath (Elma Transsonic T570 20 kHz) for three minutes to initiate nucleation at the same time.  

The quiescent solution was then covered and kept in a water bath at 30 °C for 24 hours, 

allowing seed crystals to grow. Fresh lactose solution along with a few drops of seed stock 

suspension were transferred into the cell and images of crystals were ecorded over time, for 

durations between 3-6 hours. The length of crystals in the b direction from the tip of the 

)( sMs CCFKC
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crystal (L) and the width of the base of the in the a direction (W) were measured using the 

OPTIMAS Software (Adept Electronic Solutions). The growth rate of the (010) face was 

measured by calculating the slope of the length versus time plot. As the ( )010  face does not 

grow in aqueous solution [27] (the length was measured from the tip of the crystal, the growth 

of adjacent faces is not measured), the calculated rate of increase in length by time is the 

growth rate of the (010) face. A total of 227 crystals were investigated in five experiments. 

Initial crystal size is the crystal size at the beginning of experiments which is after 24 hours 

after initiation of nucleation. Average values with standard deviation were calculated. 

To follow the growth for longer duration of growth,  seed crystals were grown in 

dynamic conditions.  Nalgene bottles (100 ml) were filled with lactose solution and 1 ml of 

seed stock solution  prepared using the same method. Bottles were placed in a bottle roller  

gently (3 rpm) rotating at 30 °C and  were removed after 1, 2, 3, 6 and 7 days ( filtered 

through 0.45µm filter membrane). For each sample, the length (L) in the b direction and 

width (W) of the base of the crystal in the a direction of lactose crystals were measured and 

the crystal size distribution was calculated (100-200 crystals).  The average growth rate of the 

(010) face was calculated by dividing the crystal dimension (L) with duration of growth.  The 

β-lactose content of crystals from day 1-7 and also small and large crystals in the day 7 batch 

were measured by GC [32]. GC samples were prepared and were derivatized in pyridine with 

TMSIM (N-trimethylsilylimidazole) [32] A Hewlett Packard 5890A Gas Chromatograph with 

a non-polar capillary column (BP 5) and a FID detector was used [33].  

To investigate the surface of the (010) faces by AFM, crystals large enough to be 

handled needed to be grown. Crystals were grown in static condition for 10 days at the same 

supersaturation and temperature. The solution was filtered, crystals were washed with 

saturated water and water-ethanol mixtures (90, 50, 20 % water and finally saturated ethanol) 

and dried in an oven at 60 °C overnight. The crystal size in the b (L) and the a (W) directions 
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were measured. Growth rate was estimated by dividing the crystal dimension with the 

duration of growth. A total of 11 crystals corresponding to 0.1, 0.2 and 0.3 µm/min growth 

rates were handpicked and mounted on to a removable adhesive (Bostic, Blu tack) to image 

the (010) face of the crystal. Images were obtained using a Digital Instrument Nanoscope E 

AFM, operated in the contact mode, in air, using Si3N4 200µ triangular tip cantilevers with a 

spring constant of 0.12 N/m. All the images were collected in the height mode. Locations of 

spirals were marked on the optical images taken of the same crystal. 

 

3. Results and Discussion 

The secondary nucleation threshold (SNT) at 30 °C is 35.87g anhydrous lactose/100g 

water which is equivalent to 38.50g α-lactose monohydrate/100 g water [34]. Lactose 

concentration used in this work was 40 g α-lactose monohydrate/100g water which is 1.4 

g/100 g above the SNT, therefore the formation of secondary nuclei is possible. In relative 

supersaturation terms, this exceeds the metastable limit by a modest 0.06 and hence by  

growing crystals in a stagnant environment or with a slow rotation, the effect of secondary 

nucleation was minimized, but a small amount of secondary nucleation was expected.  

Results of the in situ growth experiments in which growth rate of individual crystals 

were measured show that lactose crystals exhibit growth rate dispersion (Figure 3(a)). For 

example, considering ~50 µm sized lactose crystals, growth rates ranged between 0.01 to 0.04 

µm/min. The average growth rate was (0.021 ±0.007) µm/min. No indication of size 

dependent growth was observed in the size range investigated. Under comparable 

experimental condition, crystal growth was reported to be integration controlled [35].  The 

growth rate was calculated to be (0.015 ±0.004) µm/min for the bottle roller experiments from 

the slope of time versus size plot and (0.016 ±0.007) µm/min for stagnant growth experiments 
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by dividing the average crystal size by the duration of growth. The crystal growth rates 

calculated after 1 day for both the in situ and bottle roller experiments are identical and after 

which the growth rates slightly decrease which is a possible indication of secondary 

nucleation (Figure 3(b)). This is also indicated by the increase in standard deviation.  Due to 

the low driving force, the extent of nucleation is small and hence does not result in a 

significant reduction of average crystal size. At 30 °C and (s-1) of 0.55, the average growth 

rate of the (010) face of lactose crystals is (0.017 ±0.003) µm/min, approximately 1µm per 

hour.  

During experiments, crystals grew at a constant rate and no reduction in growth rate was 

observed. However, as seed crystals were grown for 24 hours before growth rates were 

measured, it is not possible to comment if growth rates reduced gradually during earlier stages 

of growth as suggested by Zekic et al [36]. 

The change in crystal morphology can be quantified by the ratio of the length in the b 

(L) direction to that in the a (W) direction. It was observed that the L/W decreases with 

crystal size, especially above 300 µm, where it approaches approximately 1.5 (Figure 4(a)). 

When the L/W is plotted against the crystal growth rate of individual crystals, it was observed 

that high L/W ratios are not observed above growth rates of 0.03 µm/min. A low L/W ratio 

indicates a broader base, larger (010) face. This is an interesting observation as large crystals 

which are fast growing crystals displayed fast growth rates not only on the (010) face but also 

on the (110) and )101( faces. Optical imaging of smaller crystals shows that the (010) face 

seems to be narrow in the a direction with small W, which indicates that the growth rate of 

the (010) face is faster than the (110) and )101(  faces. Volume diffusion has been reported to 

be influential only above growth rates of 0.4 µm/min [25] and 0.6 µm/min [37] therefore the 

changes in morphology cannot be attributed to volume diffusion.  
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The β-lactose content of crystals grown was found to (2.6 ± 0.6) % and there was no 

significant difference in β-lactose content of crystals grown for different times or between 

small and large crystals grown for 10 days.   

AFM investigation of the (010) faces of lactose crystals was carried out using crystals 

grown in static conditions for 10 days. The average crystal size was 260 µm with an average 

growth rate of (0.016 ± 0.007) µm/min. It was not possible to manually handle crystals less 

than 150 µm in size. The minimum crystal size in the sample was 50 µm and 20% of crystals 

were less than 150 µm in size. Crystals were divided into three groups: small: less than 200 

µm, medium 300-380 µm and large: larger than 380 µm. This usually corresponded to high, 

medium and low L/W ratios, respectively, with approximate growth rates of 0.01, 0.02 and 

0.03 µm/min which were labelled as slow, average and fast growers. 50% of crystals were in 

the medium size range while only 10% of the crystals were in the large crystal group. While a 

small amount of secondary nucleation was observed, the small crystals imaged by AFM were 

unlikely to be secondary nuclei as the smallest AFM-imaged crystal was 150µm. 

  The details of AFM imaged crystals are given in Table 1. The average growth rates of 

the AFM imaged crystals was inversely correlated with the L/W ratios and directly correlated 

with the surface area of the (010) face. AFM investigation of these crystals uncovered 

significant differences in the surface characteristics.  Slow growing crystals tended to have 

only one double spiral in the crystal centre of the (010) face (two spirals on one crystal 

imaged, S5), where the step height is 2 nm which corresponds to one unit cell height in the b 

direction (two lactose molecules) (Figure 5). The double spiral is not polygonised and has a 

steeper slope (smaller step spacing) for the steps parallel to the (110) face than the ones 

parallel to the (01� 1�) face. Step spacing on each side of the spirals were found to be different. 

The average of measurements of four crystals showed spacings of 1040 nm and 695 nm for 

steps parallel to the (01� 1�) and 518 nm and 372 nm for steps parallel to the (110) face. 
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Additional spirals on steps parallel to the {01� 1�} face were also observed. The steps parallel to 

the {01� 1�} face are affected by the presence of β-lactose [28] in the solution and hence these 

steps are usually rougher than the steps parallel to the (110) face. In particular, the edges of 

steps closer to the intersection of two steps are affected more.   

Crystals exhibiting average growth rates seemed to have multiple spirals in and around 

the centre of crystals, numbering between 2 and 8 (Figure 6). The step height also starts 

increasing to 4 and 6 nm. Additional spirals seems to increase the growth rate in the a 

direction resulting in larger (010) faces.  

 For the fast growing crystals, the surface is covered by macro-steps parallel to the (110) 

face of the crystals, and the step height is around 4-10 nm high (Figure 7). The linear growth 

rate of a face is given by: GR=Vstep h / y0 where Vstep is the velocity of a step, h is the step 

height and yo is the mean step spacing [38]. The linear growth rate of a face increases with 

increasing step height. Therefore the (010) face will grow faster. The micro-steps on the (010) 

face are parallel to the steps on the (110) and the )101( faces (unpublished data). These micro 

steps may  provide continuous flow of growth steps for the (110) and the )101( faces which 

might increase the growth rate of these two faces. In large crystals, the (110) and )101(  faces 

are smaller, sometimes growing out of existence which indicates faster growth rates. For the 

small and medium size crystals, there appears to be an increase in growth rate with an 

increasing number of spirals. Larger (010) faces covered with macro steps parallel to (110) 

are present in the fastest growing crystals. 

The number and location of dislocations formed during nucleation and early stages of 

growth determines the growth rate of individual crystals and the growth rate stays constant. 
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4. Conclusions 

The specific surface structure and growth rate of individual lactose crystals were found 

to be related, suggesting a link to growth rate dispersion in this system. AFM investigation of 

the (010) face of small lactose crystals revealed single double spirals in the centre of the (010) 

face. The step height is 2 nm high on the spirals observed.  The growth rate of the (110) and 

)101(  faces were lower than that of the (010) face, therefore crystals had smaller (010) faces 

and larger (110) and )101(  faces. Crystals with more dislocations grow faster in the b 

direction. The position of the additional dislocations determines the morphology of the 

crystal. Crystals exhibited faster growth rates when additional spirals form on the steps 

parallel to the c direction, rather than on steps parallel to the a direction.  The highest growth 

rates were observed on crystals which were covered by macrosteps (4-10 nm high) parallel to 

the c direction. Increase in step height greatly increases the growth rate of the (010) face. 

Large crystals had lower L/W ratios indicating broader based crystals. In these crystals the 

(110) and the )101(  faces have high growth rates, and they therefore eventually grow out of 

existence.  The difference in growth rates of small and large crystals could be explained by 

the formation of additional spirals and macro steps in large crystals. No significant difference 

in β-lactose contents of slow and fast crystals was found. 

In this study, only limited numbers of crystals were examined with AFM but the 

changes in morphology with growth rate were tested in stagnant and dynamic systems with 

larger numbers of crystals. While a correlation has been found between surface structures and 

crystal growth rates, more research is needed to uncover the origins of these structural 

variations, and hence GRD, in lactose crystallisation. 
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Table 1 

Crystal 

ID 

L 

(µm) 

W 

(µm) 

D 

(µm) 

# of 

spirals L/W 

Area 

(µm2) 

GR 

(µm/min) 

GRave 

(µm/min) Aave 

S1 166 48 92 1 3.5 4416 0.012 

0.01 

 

 

4107 

 

 

S3 144 48 80 1 3.0 3840 0.010 

S5 207 27.3 98.3 1 7.6 2684 0.014 

S2 200 59 93 2 3.4 5487 0.014 

M1 294 76 141 5 3.9 10716 0.020 

0.02 

 

 

13937 

 

 

M2 272 131 68 8 2.1 8908 0.019 

M3 268 172 129 6 1.6 22188 0.019 

M4 241 52 110 2 4.6 5720 0.017 

L1 460 431 189 0 1.1 81459 0.032 

0.03 

 

104561 

 

L2 510 543 279 0 0.9 151497 0.035 

L3 383 379 213 0 1.0 80727 0.027 
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