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Abstract Integer carrier phase ambiguity resolution is
the key to fast and high-precision global navigation
satellite system (GNSS) positioning and application.
Although considerable progress has been made over
the years in developing a proper theory for ambiguity
resolution, the necessary theory is far from complete.

In this contribution we address three topics for
which further developments are needed. They are:
(1) Ambiguity acceptance testing; (2) Ambiguity
subset selection; and (3) Integer-based GNSS model
validation. We will address the shortcommings of the
present theory and practices, and discuss directions for
possible solutions.

Keywords Ambiguity acceptance tests · Ambigu-
ity subset selection · Integer based GNSS model
validation

1 Introduction

Integer carrier phase ambiguity resolution is the key
to fast and high-precision GNSS positioning and nav-
igation. It is the process of resolving the unknown cy-
cle ambiguities of the double-differenced carrier phase
data as integers. Once this has been done successfully,
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the very precise carrier phase data will act as pseudo
range data, thus making very precise positioning and
navigation possible.

GNSS ambiguity resolution (AR) applies to a great
variety of current and future models of GPS, mod-
ernized GPS and Galileo, with applications in survey-
ing, navigation, geodesy and geophysics. These mod-
els may differ greatly in complexity and diversity. They
range from single-baseline models used for kinematic
positioning to multi-baseline models used as a tool
for studying geodynamic phenomena. The models may
or may not have the relative receiver-satellite geom-
etry included. They may also be discriminated as to
whether the slave receiver(s) is stationary or in mo-
tion, or whether or not the differential atmospheric de-
lays (ionosphere and troposphere) are included as un-
knowns. An overview of these models can be found in
textbooks like (Strang and Borre, 1997; Teunissen and
Kleusberg, 1998; Hofmann-Wellenhoff et al., 2001;
Leick, 2003; Misra and Enge, 2001).

Despite the key role that is played by GNSS AR in
the various high-precision applications, the necessary
theory is far from completed. Consider the conceptual
steps that can be recognised in GNSS AR:

1. In the first step, one discards the integer na-
ture of the ambiguities and performs a standard
least-squares adjustment. As a result one obtains
the so-called float solution of all the parameters (i.e.
ambiguities, baseline components, and possibly
additional parameters such as atmospheric delays),
together with their variance-covariance matrix.
In this first step, one usually also tests the data
and the assumed GNSS model for possible model
misspecifications, e.g. outliers, cycle slips, or
other modeling errors. This can be done with the
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standard theory of hypothesis testing, (Koch, 1999;
Teunissen, 2006).

2. In the second step, the real-valued float solution of
the ambiguities is further adjusted, so as to take the
integer constraints into account. As a result one ob-
tains an integer solution for the ambiguities. The in-
teger estimators mostly used in practice are:

� Integer least squares (ILS): ILS is the optimal
method for integer estimation as it can be
shown to maximize the probability of correct
integer estimation (Teunissen et al., 1999).
ILS requires a search which can be done very
efficiently with the LAMBDA method. The
evaluation of the ILS success rate requires sim-
ulation, (Teunissen, 1998a; Verhagen, 2005a;
Joosten and Tiberius, 2000), the use of ad-
equate approximations such as based on the
ADOP (Teunissen, 1997a; Ji et al., 2007; Lee
et al., 2005; Vollath et al., 2003), or the use of
upper- and lower bounds, (Teunissen, 1998a;
Verhagen, 2005a).

� Integer Bootstrapping (IB): The advantage of IB
over ILS is that no search is needed. Although
suboptimal, the performance of IB can come
close to that of ILS if the appropriate decorrelat-
ing Z -transformation is used. An advantage of
IB is that its success rate can be computed very
easily, (Teunissen, 1998b).

� Integer Rounding (IR): This method is the sim-
plest of all, but it also has the lowest success
rate of all. Still, it can be a useful method if the
strength of the underlying GNSS model is such
that the IR success rate is large. Often, as in case
with IB, this first requires the application of a
decorrelating Z -transformation.

3. Once the integer ambiguities are computed, they
are used in the third step as input to decide whether
or not to accept the integer solution. Several such
tests have been proposed in the literature and
are currently in use in practice, (Abidin, 1993;
Chen, 1997). Examples are the ratio-test, the
distance-test and the projector-test. A review
and evaluation of these tests can be found in
(Verhagen, 2005b).

4. Knowing that the ambiguities are integer, strength-
ens the model and allows one, in principle, to re-
evaluate the validation of the GNSS model. In prac-
tice this is done by applying the standard theory of

hypothesis testing, thereby assuming the ambigui-
ties as known.

5. Once the GNSS model and integer solution are ac-
cepted, the last step consists of correcting the float
solution of all other parameters by virtue of their
correlation with the ambiguities. As a result one ob-
tains the so-called fixed solution. Provided a correct
decision has been made in the third and fourth step,
the fixed solution will have a precision that is in ac-
cordance with the high precision of the phase data.

In this contribution we address and discuss three
topics for which the theory and/or numerical imple-
mentation need further improvements. The three topics
are: (1) Ambiguity Acceptance Tests: one of the most
popular such test is the ratio-test. We will discuss its
relevance and performance, and show that its current
usage is not optimal. (2) Ambiguity Subset Selection:
since full AR may not always be possible, partial AR
provides an alternative. We will discuss some of the
issues of partial AR. (3) Integer-Based Model Valida-
tion: we will argue that the standard theory of linear
model hypothesis testing is not quite applicable to this
case. A first approach to perform integer-based model
validation will be given.

2 Ambiguity Acceptance Tests

2.1 Ratio-Test

One of the most popular ambiguity acceptance tests is
the so-called ratio-test. The ratio-test is defined as fol-
lows. Let the float ambiguity vector and its variance
matrix be given as â and Qââ , respectively. Further-
more, let â be the ILS solution, i.e. the integer mini-
mizer of q(a) = (â −a)T Q−1

ââ (â −a), and let ǎ′ be the
integer vector that returns the second smallest value of
the quadratic form q(a). Then the ratio-test reads as:

Accept ǎ iff :
q(ǎ′)
q(ǎ)

≥ c (1)

where c is a tolerance value, to be selected by the user.
Thus only if q(ǎ′) is sufficiently larger than q(ǎ′), will
the decision be made to accept the ILS solution. Oth-
erwise, the ILS solution is rejected in favor of the float
solution.
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Questions that need to be addressed when using the
above test are: (1) What does the ratio-test actually
test? (2) What errors can be made with the ratio-test?
(3) What value for c should be chosen? Answers to
these questions are needed, in order to have a proper
understanding of the ratio-test.

Let us first see how the test is executed in practice.
With reference to the theory of hypothesis testing, the
ratio of the two quadratic forms, q(ǎ) and q(ǎ′), is of-
ten assumed to have a Fisher-distribution, from which
c can be computed, once the level of significance has
been set. The problem with this approach is, however,
that the ratio of the two quadratic forms is not Fisher-
distributed. Even if one was allowed to assume that
q(ǎ) and q(ǎ′) are Chi-square distributed (which is not
true, since also the uncertainty of the integer vectors
needs to be taken into account), then their ratio would
still not be Fisher-distributed. The two quadratic forms
are namely not independent.

Also, in many of the existing software packages,
a fixed value for c is chosen, no matter the varying
strength of the underlying GNSS model. Examples
of proposed c-values are given in e.g. (Wei and
Schwarz, 1995; Han and Rizos, 1996; Euler and
Schaffrin, 1991). It is however strange to base the
testing on a fixed c-value, since one would expect that
with a varying strength of the GNSS model, the use
of different measurement scenarios or with varying
degrees of freedom, one also would use varying values
for c. The incorrect assumption of the distributional
properties of the ratio-test and the often used fixed
c-value approach, can be explained by the lack of a
proper theory (Teunissen and Verhagen, 2007b).

What does the ratio-test actually test? One motiva-
tion that is often given for the use of the ratio-test, is
that it tests the correctness of the ILS solution. This is,
however, incorrect, since one can add an arbitrary in-
teger vector to the float solution, without altering the
outcome of the ratio-test. Hence, biases of arbitrary
size (provided they are integer) can be present in the
float solution, without them ever being noticed by the
ratio-test.

2.2 Relevance of the Ratio-Test

To understand what the ratio-test tests, we need to get
a better insight into its acceptance region and rejection

region. We already remarked that the outcome of the
ratio-test remains unchanged when an arbitrary integer
vector, say z, is added to the float solution. This implies
that its acceptance region, denoted as �, must be a re-
gion which is z-translational invariant. That is, if the
acceptance region is translated over an arbitrary integer
vector, then the same acceptance region is recovered
again. Since the rejection region is complementary to
the acceptance region, also the rejection region of the
ratio-test is z-translational invariant.

The z-translational invariance of the acceptance
region, implies that it must equal the union of
z-translated copies of a smaller region �0. Thus

� =
⋃

z∈Zn

�z where �z = �0 + z (2)

The region �z is called the aperture pull-in region of
the integer z (Teunissen, 2003). The aperture pull-in
regions �z of the ratio-test are given in (Teunissen and
Verhagen, 2004; Verhagen and Teunissen, 2006). For
the test, we have

â = z if â ∈ �z (3)

Thus if the float solution resides in �z , the ratio-test
leads to acceptance and the ILS solution is equal to z.
Hence, the ratio-test does not test the correctness of the
ILS-solution. Instead, the ratio-test tests the closeness
of the float solution to its nearest integer vector. If it
is close enough, the test leads to acceptance of â. If
it is not close enough, then the test leads to rejection
in favor of the float solution â. The size or aperture of
the pull-in region provides the largest distance one is
willing to accept. The value for c can be used to tune
this aperture.

To understand in what way the ratio-test helps us in
getting confidence in the outcome of ambiguity reso-
lution, we have to realize that acceptance of the ILS
solution by the ratio-test can be correct or incorrect.
We therefore have to distinguish between the follow-
ing three cases:

â ∈ �a success: correct integer estimation
â ∈ � {�a} failure: incorrect integer estimation
â /∈ � undecided: ambiguity not fixed to an

integer

where �\�a means that �a is deleted from the set �,
with a being the unknown integer ambiguity vector.



788 P.J.G. Teunissen and S. Verhagen

The corresponding probabilities are denoted as: Ps

(success-rate), Pf (failure-rate) and Pu (probability of
undecidedness). The probability Ps + Pf is the proba-
bility of acceptance of the ratio-test and Pu is its proba-
bility of rejection. The probability of having successful
fixes, denoted as Ps f , is given by the ratio of the suc-
cess rate and the probability of acceptance,

Ps f = Ps

Ps + Pf
(4)

The above probabilities all depend on the shape and
size of �0 and on the PDF of â. Thus by changing �0

and/or the PDF of â, one can influence the above prob-
abilities. Changing the PDF will not be possible, once
the measurement scenario is given (this will be differ-
ent in case one is designing a measurement scenario).
Changing the shape of �0 is also not possible, since
the shape is determined by the ratio-test. This leaves us
with the size of �0, which is determined by c. Hence,
by changing c one can influence the above probabili-
ties. Thus through the choice of c, the user is able to
have control over the failure rate and the probability
of successful fixing. This is important, because it gives
the user the necessary flexibility over what he/she finds
an acceptable risk to take with integer ambiguity res-
olution. This is the relevance of having the ratio-test
included in GNSS AR.

The above discussion makes clear that the common
practice of using a fixed value for c is therefore not
the way to go. By using a fixed value for c, the user
is deprived from any control over the failure rate. The
failure rate will then be different for different measure-
ment scenarios. Already in a kinematic or navigation
scenario where data are collected on an epoch by epoch
basis, the failure rate can change from epoch to epoch
if a fixed value for c is used.

To use the fixed failure-rate approach, one has to
be able to compute c from the failure-rate Pf as set
by the user. This is a nontrivial numerical task for
which a practical approach has been devised in (Verha-
gen, 2005b; Teunissen and Verhagen, 2007a). A chal-
lenge remains however to make this approach numeri-
cally efficient for real-time applications.

2.3 Is the Ratio-Test Optimal?

The answer is no, even if the ratio-test would be used
with a fixed failure rate instead of with a fixed value for

c. It can be shown that the ratio-test is a member of the
class of tests as given by the theory of integer aperture
estimation developed by (Teunissen, 2003). Members
from this class differ in the way the shape of the aper-
ture pull-in region �0 is defined. Hence, within this
class, one can, by fixing the failure rate, solve for the
aperture pull-in region that maximizes the success rate
(Fig. 1 gives a two-dimensional example of the optimal
aperture pull-in regions). The optimal test so obtained
differs from the ratio-test. For a discussion of the op-
timal test and its relation to the ratio-test, we refer to
(Teunissen, 2003; Verhagen and Teunissen, 2006). As
with the ratio-test, efficient computation of the toler-
ance value from the user-defined failure-rate remains a
challenge.

3 Ambiguity Subset Selection

3.1 Motivation

There are two reasons why we address the topic of
ambiguity subset selection. The first reason has to do
with ones ability to resolve all ambiguities. Full AR,
i.e. the successful resolution of all ambiguities, may
not always be possible. This will occur when the un-
derlying GNSS model lacks sufficient strength. When
one aims at resolving all, say n, ambiguities, one re-
quires that the simultaneous event

⋂n
i=1{ǎi = ai } has

a probability close to 1. This probability has the gen-
eral tendency, however, to get smaller as n gets larger.
One can speak of a dimensional curse. A way out of
this dilemma, when it occurs, is to aim at resolving
only an ambiguity subset, thus keeping the dimension
bounded.

The second reason has to do with the necessity of
full AR. Full AR may, in fact, not always be needed.
As an extreme example consider the case where the
float ambiguities are not correlated with the other float
parameters. Ambiguity resolution would then be use-
less, since it will then not allow for an improvement
of these other parameters. This indicates that resolv-
ing a subset of ambiguities (in the extreme example, an
empty subset) may lead to the same, or almost same,
performance improvement of the other parameters. The
observation that the resolution of different ambigu-
ity subsets, has different impacts on the performance
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Fig. 1 Two-dimensional
example of optimal aperture
pull-in regions (gray areas),
together with the ILS pull-in
regions (hexagons)
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improvements, brings the question to the fore which
subset to choice. This problem of identifying the op-
timal ambiguity subset, in relation to the performance
improvement it brings, has not yet been addressed in
the literature.

3.2 Partial Ambiguity Resolution

Let us now continue with the case for which it turns out
that full AR is impossible (i.e. the success rate is too
low). Partial AR may then be a good alternative. This
idea of partial ambiguity resolution was introduced in
(Teunissen et al., 1999), where it was applied to long
baselines using the current GPS, see also the review
(Teunissen, 2001). The goal of partial AR is to identify
the ambiguity subset which gives the largest possible
success rate. Partial AR based on integer bootstrapping
goes as follows. It will be clear that the subset selection
should be based on the precision of the ‘float’ ambigu-
ities. The more precise the ambiguities, the larger the
ambiguity success rate. Therefore, first the decorrela-
tion step of the LAMBDA method is used, followed by

an application of the bootstrapping principle. Once the
transformed and decorrelated ambiguity variance ma-
trix is obtained, the construction of the subset proceeds
in a sequential fashion. One first starts with the most
precise ambiguity, say ẑ1, and computes its success rate
P(ž1 = z1). If this success rate is large enough, one
continues and determines the most precise pair of am-
biguities, say (ẑ1, ẑ2). If their success rate is still large
enough, one continues again by trying to extend the
set. This procedure continues until one reaches a point
where the corresponding success rate becomes unac-
ceptably small. When this point is reached, one can ex-
pect that the previously identified ambiguities can be
resolved successfully.

This method of ambiguity subset selection has been
shown to work very well in practice. The method is
applicable to any GNSS model and it is superior to
‘widelaning’ methods (Teunissen, 1997b; Teunissen
et al., 1999). However, the identified problem of op-
timal ambiguity subset selection has not yet been com-
pletely solved with the above approach. The above ap-
proach, which is based on bootstrapping, identifies the
optimal subset for sequential AR and not necessarily
for batch AR. This latter problem is not yet solved.
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4 Integer-Based GNSS Model Validation

4.1 Problem Statement

Consider the following null- and alternative hypothesis

H0 : y ∼ N(Aa + Bb, Qyy), a ∈ Z
n, b ∈ R

p

Ha : y ∼ N(Aa + Bb + Cc, Qyy), a ∈ Z
n,

(bT, cT )T ∈ R
p × R

q (5)

This is the situation one will have when testing the
validity of a phase-based GNSS model in which the
ambiguities are considered to be integer. The additional
term Cc, with matrix C known and vector c unknown,
models under the alternative hypothesis the supposed
modeling errors (e.g. outliers, slips, instrumental bi-
ases, etc). The standard theory of hypothesis testing
would be applicable in case the vector a is real val-
ued. However, this theory is not applicable in our case,
since a is known to be integer valued (NB: stating that
a is known to be integer valued, is of course not the
same as stating that a is known).

In order to be able to validate the above integer-
based GNSS model, one must be able to answer ques-
tions like:

1. What are the appropriate test statistics for testing
H0 against Ha?

2. How are these test statistics distributed under H0

and Ha?
3. What are the appropriate acceptance- and rejection

regions?

However, no rigorous answers to these questions are
yet available. Here we will introduce a first solution,
albeit restricted to the case of data snooping.

4.2 Data Snooping for the Integer-Based
GNSS Model

Data snooping implies that one screens the observa-
tions one at a time for potential outliers. Now, let y0 be
the observation to be tested and let ě0 be its predicted
residual, i.e. the difference between y0 and the integer-
based prediction of y0 based on all other observa-
tions (thus with y0 excluded). The probability density

function (PDF) of this predicted residual, denoted as
fě0(x), has been derived in (Teunissen, 2007). Hence,
one can now test whether or not it is likely that the ob-
served ě0 is a sample from the distribution fě0(x). If it
is, one accepts the observation; if it is not, one rejects
the observation. But before one can execute the test,
the question of determining the acceptance and rejec-
tion regions should be answered. Answering this ques-
tion is made difficult by the multimodality of fě0(x).
Let � ⊂ R be the acceptance region with coverage
probability P

[
ě0 ∈ �

] = 1−α. Thus the test leads
to rejection if ě0 /∈ �. Since we want the rejection
to be rare when the underlying model is correct, the
false alarm probability α is chosen as a small value.
But since there are an infinite number of subsets that
can produce this false alarm probability, we still need
to determine a way of defining a proper �. It seems rea-
sonable to define the optimal subset as the one which
has the smallest volume. In that case the probability
1−α would be the most concentrated. This acceptance
region is given as

� = {x ∈ R| fě0(x) ≥ λ
}

(6)

where λ is chosen so as to satisfy the given probability
constraint. Note, due to the multimodality of fě0(x),
that the acceptance region will in general consist of a
number of disconnected regions. This is illustrated in
Fig. 2.

Due to the multimodality of the PDF, it is a non-
trivial task to decide for a certain given α whether or
not an observed sample of ě0 leads to rejection. The
complication resides in the direct determination of λ

from α. This complication can be avoided, however, if
we make use of a Monte Carlo based approach. The
computational steps for executing the test are then as
follows. Given the observed sample of the prediction
error, say ě∗

0, one first computes λ∗ = fě0(ě
∗
0). This im-

plies that the sample would lie on the boundary of the
acceptance region if λ would be set equal to λ∗. Hence,
this subset is given as �∗ = {x ∈ R| fě0(x) ≥ λ∗}. The
next step is then to compute the value of α that would
correspond with λ∗ : α∗ = 1−P[ě0 ∈ �∗]. Here the
simulation enters. Let N be the number of times a sam-
ple is generated from fě0(x) and let Ni be the number
of times a generated sample lies in �. Then α∗ can be
approximated as α∗ = 1−Ni/N . The decision to ac-
cept or reject the observed sample is then based on the
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Fig. 2 PDF of the prediction error and corresponding 1 − α acceptance region (grey areas) for σ = 0.31 (left) and σ = 1.00 (right)

difference between α and α∗. If α∗ < α, then the test
leads to rejection, otherwise it leads to acceptance.

5 Summary and Conclusions

In this contribution we addressed three topics for which
the theory and/or numerical implementation need fur-
ther improvements. The three topics are:

1. Ambiguity Acceptance Tests: We have shown that
the fixed failure-rate approach should be used when
applying the popular ratio-test. Also, the ratio-test
can be shown to be suboptimal. For both the opti-
mal test and the fixed failure-rate ratio-test, the nu-
merical difficulty lies, however, in computing the
tolerance value c from the user-defined failure-rate.
Although methods have been devised to solve this
problem, further numerical improvements are re-
quired, in particular for real-time applications.

2. Ambiguity Subset Selection: Being able to find the
optimal ambiguity subset is of importance for par-
tial AR. In the context of integer boot-strapping an
optimal solution is available. This solution, how-
ever, is sequentially oriented and not a batch solu-
tion. For the latter an optimal solution needs yet to
be devised.

3. Integer-Based Model Validation: We have argued
that the standard theory of linear model hypothe-
sis testing is not applicable when validating integer-
based GNSS models. Hence, a proper theory is still
lacking. A first solution, albeit restricted to data
snooping, has been presented.
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