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Abstract

Sparse subspace representation is an emerging and powerful ap-
proach for clustering of data, whose generative model is a union
of subspaces. Existing sparse subspace representation methods
are restricted to the single-task setting, which consequently leads
to inefficient computation and sub-optimal performance. To ad-
dress the current limitation, we propose a novel method that regu-
larizes sparse subspace representation by exploiting the structural
sharing between tasks and data points. The first regularizer aims
at group level where we seek sparsity between groups but dense
within group. The second regularizer models the interactions down
to data point level via the well-known graph regularization tech-
nique. We also derive simple, provably convergent, and extremely
computationally efficient algorithms for solving the proposed group
formulations. We evaluate the proposed methods over a wide range
of large-scale clustering problems: from challenging health care to
image and text clustering benchmarks datasets and show that they
outperform state-of-the-art considerably.

1 Introduction

Subspace clustering refers to the problem in which the data
is modeled by a union of subspaces [21]]. Such a model is
a natural extension of the single subspace approach, which
was used widely in previous works [3, 4]. Its applica-
tions range from image processing, compression [16| 311,
to motion segmentation problems that infer the structures
and movements of 3D objects from tracked points in video
LS [29) 6L [19) 125, 9]. This problem has a close connection
to the well-known compressed sensing (CS) theory [3 [7],
and thus its theoretical treatments have been recently made
in [8| 22| [23]].The previous approaches to subspace cluster-
ing include mixture of Gaussian[27]], factorization [6} [19],
and algebraic [28| 29], with known algorithms such as k-
subspaces [[15], mixture of probabilistic principal compo-
nent analysis (MPPCA) [27], multi-stage learning [12], and
RANSAC [10]. These methods have several major limi-
tations, including prior knowledge of the number of sub-
spaces and their dimensions, expensive computation expo-
nential with the number of subspaces and the dimensions
[26], and lack of robustness with respect to noise, outliers,
and modeling errors [9].

Inspired by the success of compressed sensing [5. (7], a
recent approach to subspace clustering using sparse [18] or
low rank [21] representation as the general guiding principle
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has received tremendous attention. The essence of this
approach is to represent each data point as a sparse linear
combination of other data point via a convex formulation
with ¢; regularization. Such a convex problem is easily
solved with an increasing availability of computationally
efficient ¢;-regularization algorithms whose complexity is
at most polynomial. Under sparse subspace assumptions,
such a representation would allow one to automatically
discover the number of subspaces and their dimensions. In
computer vision, Elhamifar and Vidal first introduced sparse
subspace clustering (SSC) to solve the motion segmentation
problem [9]. SSC can discover the number of subspaces
and their dimensions automatically by analyzing an affinity
graph constructed out of the sparse representation for all data
points. The low-rank representation method (LRR) [21]],
which seeks sparsity of singular values in the representation,
uses the trace-norm instead to compute the representation
and claims advantage over SSC. However, extension of
SSC with weighted formulation [24] shows that SSC can
be significantly improved by exploiting geometric relations
between data points as constraints.

Nevertheless, the above SSC variants are still restricted
to a single-task framework wherein the representation for
each data point is found independently. Whilst this simplifies
the formulation, it lacks optimality due to the existence of
inherent joint structure between the representations of data
points. As all data points use the same ‘dictionary’, some
of the words in that dictionary might be outstanding and
most point would refer to. This indicates that the sparse
coefficients of these exemplar data points are likely to be
seen significant across different representations for many
data points. But on the other hand, the representation for
each data point still needs to respect the sparse subspace
assumption. Such a desirable goal is best captured by a
concept known as joint sparse model in compressed sensing
[L] or group sparse in statistics [17]] and has been proved to
improve the basic sparsity modeling. We note that though
LRR is formulated for all data points at a time using the low-
rank principle, there is no actual explicit group concept and
thus the definition of tasks is vague and exploiting shared
structure is impossible. Thus, extending SSC modeling to
incorporate the joint sparsity concept is desirable.

We propose in this work a novel extension of SSC that
aims at exploiting the shared structure between individual
clustering tasks. Our first contribution is the new formu-



lation that capture joint sparsity via a ¢5/¢; regularization
on the coefficient matrix when we solve all the tasks simul-
taneously. Such a regularization has been shown effective
in multi-task learning, also known as group Lasso in statis-
tics [30,132], where it couples the individual tasks via group
structure of constraint terms on the assumption that multi-
ple tasks share a common sparsity structure. Though the
new formulation can be transformed to a group Lasso-type
format and can be naively solved with vector-based group
Lasso algorithms, such an approach is extremely inefficient
in large-scale clustering as the group Lasso matrix is ex-
tremely large. Here, we derive a specialized matrix-based
algorithm that is extremely efficient and fast to solve the new
formulation. Furthermore, we also move beyond joint spar-
sity modeling by extending the formulation to cater for in-
teractions down to data point level. This is motivated from
[24] which shows that the geometry between data point can
be useful side information. Thus, our second contribution
is the inclusion of a graph regularization that allows detail
modeling of data points. We propose several choices for the
construction of the graph Laplacian, including proximity of
points in a k-neighborhood radial basis function (RBF), co-
sine, and 0/1 matrix. From the theory of elastic-net in statis-
tics [32], the inclusion of the second-order to the existing
first-order regularization will further improve stability, es-
pecially when dealing with realistic data. Our proposal can
also be viewed as a much more general multi-task (matrix)
version of the single-task (vector) elastic-net.

We apply the model across three real-world datasets
comprising of: 1) a cohort of 1580 diabetes patients with
551 disease codes; 2) NUS-WIDE image dataset with 3411
animal images; and 3) 20-Newsgroup text dataset with 8000
documents. The diabetes data is collected over a period of
5 years, over which each code is assigned upon a hospital
visit of a patient. Evaluation of such algorithms on real-
world data, such as the health data is notoriously hard
and thus we propose to use a special p-measure method.
This allows ground-truth to be allocated based on degree of
similarity between two points. Using this measure, we can
compute the Rand-index and F'-measure for a given p. We
show how the same method can be adapted if groundtruth
is present, as in the case of NUS wide and Reuters data.
We show that our methods outperform the previous SSC
variants and many competitive clustering methods, such as
affinity propagation (AP) [[L1], locality-preserving projection
(LPP)[14], k-means [20]. We also show tag clouds for
clusters in the diabetes cohort and demonstrate how the sub-
groups discovered are qualitatively meaningful.

2 Proposed Framework

Assume that the data is collected in a matrix X =
[X1,...,%xn]. In sparse coding, we seek to represent each
data point x; as a sparse linear combination of all data points.

Denote as S; the index set of the subspace (cluster) that x;
belongs to, then we can write the linear representation as

X; = XCi = E CinZ‘ = E Cini + E Cini.

J#i 1€8;,j7#1 JES:

In ideal scenarios, the coefficients in the second summation
of the right term would be zero and thus giving rise to
sparse coefficient vector c¢;. According to CS theory, such
a sparse coefficient vector c; can be found by minimizing its
{1-norm, and thus the original SSC formulation solves the
following noisy formulation independently for all data points
i1=1,...,N:

1
2.1 H(l:ln §||Xi—XCiH%—‘y—)\HCiHl,C”‘:0

We now extend this to a multi-task setting. Denote as
C = [cy,...,cn] the coefficient matrix, then the solutions
of all SSC’s individual tasks can be conveniently written in
a matrix form as

1
m(i:niHX — XCJ||% + A|Cl|1, ,Cyu = 0.

Here, |C||; = Zivzl el = 32, ;1Cijl, and intutively this
formulation seeks C such that X ~ X C and that C is sparse.
However, note that the tasks are still independent.

Next, we seek to exploit the shared structure between
the tasks. To do so, we introduce two regularizers to control
the coefficient matrix C.

2.1 Block /5/¢; Regularizer As indicated in Fig.
each column of C denotes a task, and thus each row of C
indicates the common coefficient position between all tasks
and corresponds to a word in the dictionary, which is the data
matrix itself in this case. Based on numerical experience,
our hypothesis is that exemplar words in the dictionary are
likely to be selected for many representations, and thus the
corresponding rows are likely dense. Note that all columns
of C must still be sparse to respect the sparse modeling,
which is fundamental for subspace clustering.

Such a desired property of C is best captured R}/ the use
of the block regularization norm: ||Cllg, /¢, = D ;24 [Irill2s
where r; ’s are the row vectors of C. Such a block regular-
ization has been shown effective in multi-task learning, also
known as group Lasso in statistics [30,[32]], where it couples
the individual tasks via group structure of constraint terms on
the assumption that multiple tasks share a common sparsity
structure.

Inspired by the weighting scheme in [24f], we also
introduce additional weights between the shared structures,
i.e. in between the rows of C to aid in the recovery of correct
sparse pattern. Denote as w = [wy,...,wy] the weight
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Figure 1: Proposed method

vector, then the weighted block regularizer is

N
Rahared (C) = Allw © C" |4, ¢, = )\Z l|wirs 2.

i=1

Here, ® denotes the elementwise product.

2.2 Graph Regularizer The above block regularizer ef-
fective seeks sparsity at group level and promotes dense
within the group. However, it cannot precisely model deep
to the coefficients of C. In many cases, such modeling can
be potentially exploited to improve stability and consistency.
Recall that each coefficient C;; denotes the interaction be-
tween data point x; and x; and thus if x; is ‘similar’ to x;
then it is likely to be picked in the linear representation of
x;. To achieve this desirable goal, we propose to use the
powerful graph regularization in machine learning.

Consider a graph G on X with IV nodes corresponding
to IV data points in X. The edges of the graph encode the
similarities between the nodes, and is best captured in a
similarity matrix K. This matrix can be best obtained if there
is side information. If such side information is not available,
we propose to exploit within the data geometry itself. We
consider the construction of the graph based on the locality
of the data geometry. Denotes as /(x;) the nearest neighbor
of x; (or node j) and as I the indicator (0/1) function. We
consider three choices for K:

lIxc; —x;113
202

e RBF: K;; = Iy, en(x;) X €xp

e 0-1: Kij = ]IxiEN(xj)

X

: . — < i,X‘>
o COSlne. Klj == ]Ixie/\/'(xj) X m

To effectively regularize C, the weights for inter-cluster
coefficients must be large whilst intra-cluster coefficients
must be small. In graph regularization theory, such a goal

is capture in the Laplacian matrix of the graph, denoted as
L = D — K, where D is a diagonal matrix with diagonal
entries D;; = 5 ; Kij. The graph regularization term is then
a quadratic function

Ryraph = %tr(CTLC).

2.3 Proposed Formulation and Algorithms Thus, com-
bining the regularization terms, we propose a new multi-task
formulation, which is termed graph regularized group sub-
space clustering (GR-SSC).

1
min <X — XC[[f + Mjw © Cle, ¢, + 5tr(CTLO).

Remarks:

e Unlike the single-task case, we do not need to enforce
C;; = 0. This is due to the effectiveness of the block
and graph regularizer. In principle, one can also impose
such constraints, but the benefit is almost negligible at
the cost of making the maths more complex.

e For w = 1 and A = 0, the above formulation leads to
an ordinary ridge-regression type of problem, where the
solution is exact and generally dense.

e For 4 = 0 and w 1, the above formulation leads
to a group sparse version of SSC, which we call it
group SSC (G-SSC), which is also a matrix version of
group Lasso. This can be realized by vectorizing the
matrix variable C and the quadratic loss term can be
shown to be (1/2)[|(X ® I)vec(C) — vec(X)||3, which
is the familiar vector form of group Lasso. Here, ®
denotes the Kronecker product, and vec denotes the
vectorization operator. However, converting to vector
form and using existing solvers for group Lasso would
be extremely efficient, due to the matrix (X ® I) being
extremely large.



e As there are both first-order and second-order regular-
izers in the formulation, our proposed method can be
mathematically viewed as a matrix (multi-task) version
of the well-known elastic-net [32]] in the statistics liter-
ature, if one generalizes each vector entry in elastic-net
to a row vector. However, the interpretation of our pro-
posed method is far more generalized than elastic-net
and treats it as a very extremely special case. Due to
the general form of the Laplacian in the regularization
term, it is not possible to convert the proposed formula-
tion to a group Lasso form as in the way elastic-net can
be converted to Lasso.

Next, we derive a computationally efficient algorithm to
solve the proposed formulation using a powerful theory in
convex optimization, known as alternative directions method
of multipliers (ADMM). It is a framework that can effec-
tively solve complex regularization problems by decoupling
the complex regularization constraints from the main loss
function, which is typically not group-wise or element-wise
decomposable. For a background on ADMM, please see [2].

Under the ADMM framework, we introduce an ad-
ditional variable Z, derivable from C through constraints
C — Z = 0. We then consider the Lagrangian

1
LICZY) = $|XC=X[}+NwoZ ey,
+(A,C-2) + L|C — 2z}
2.2) +%tr(CLCT).

Here, A is the dual variable corresponding to the equality
constraint C — Z = 0, (C, A) denotes inner product, i.e.,
(C,A) = tr(CTA) = >_i; CijYij, and p is a parameter to
improve the numerical stability of the algorithm.

We note that if we are only interested in only one
variable C or Z then we can always write

A
(a.Cc-z)+Ljlc-2)} = Ljc+ 2+ const.

This suggests that we can normalize the dual variable U =
A/p. Then, under the ADMM framework, we solve the
problem by using the following update [2, p.15]:

. argngn%HXC—XH%

2.3) +51C +U* —2¥} + Ser(CLCT)
ZHY = argminAlw © Z 1, e,

Q2.4) +LlCH L Uk - Zh 3,

(2.5) UM = Uk ChH—zb

We next show that the update steps for C and Z are exact.
Indeed, for the update step of C, the objective function is
convex, and thus making matrix derivative equal zero yields

XTXC - XX + p(C+ U* — Z*) + yuLC =0

Here, we have exploited the fact that L is symmetric. This
yields the analytical solution

CH = (XTX + pI + L) H(XTX

(2.6) +p(Z" - UY))

We note that both (X7 X + pI + pL)~! and X7 X are inde-
pendent of the iterations, and thus they can be computed and
cached in the memory to improve computational efficiency.

Next, we derive the update step for Z by solving (2.4).
To simplify the notation, denote as V- = C**1 4 U* then it
is equivalent to solving

2t = ming \|w© Z" g, /e, + 51V — Z[3.

With a slightly abuse of notation, denote as z. ’s and v} s

the row vectors of Z and V respectively. Then, it is easily
recognized that the problem is row-wise decomposable as
follows

zH1 = ngn{ZAwnziuﬁgnvizin%}.
K3

Thus, each row of Z*t! is the solution of the following
problem (we drop the subscript for generalization)

@7 2 = argmin {Mwlz] + Z|v - 2)3} .

LEMMA 2.1. Let e = W be the direction of v, and let

t = ||v|l2. Then the solution of (2.7) has the form z = ne
where n) > 0 is the minimizer of

(k—n)?+ (2Aw/p)n,

which is known as the soft-thresholding shrinkage operator,
i.e., n = max(k — Aw/p,0).

(2.8)

The significance of this result is that it converts a multidi-
mensional optimization problem to an univariate opti-
mization problem (2.8). This result can be proved by simple
geometrical arguments. Indeed, denote z* as the solution of
([2.7), then we consider all points z such that [|[v — z; =
|lv — z*|| = R. It turns out that these points are lying on the
ball with center at v and radius R. Among these points, only
the point that satisfies z = ne, i.e. intersection of the ball and
the vector v, will have minimum #5 norm, which minimizes
the second term in (2.7), then (2.8) follows immediately.

In summary, to solve the proposed formulation, we
iterate through for C, then for each row of Z,



and finally for U. The initial values of C and U can
be set to O and the stopping criterion is when the primal
residual matrix R* = C* — ZF and the dual residual matrix
Sk+l = p(ZF+1 — ZF+1) are sufficiently small. Algorithm
[T] presents the overall steps in proposed framework.

Final spectral clustering: Once the coefficient matrix
C is obtained, the next step is to do final clustering. This
step involves constructing a balanced affinity graph C where
C = (C + C7)/2, followed by computing the Laplacian
of Cas Lc = I — D~Y/2CD~'/2 where I is an identity
matrix of appropriate dimension. D is a diagonal matrix
where D;; = Z;Y:I ¢;; The smallest eigenvalues of L is
used to estimate number of subspaces and the corresponding
data points are obtained using k-means[20] algorithm. For
detail see [24, 9]].

Algorithm 1 Graph Regularized Group Sparse Subspace
Clustering(GR-SSC)

Input: Data matrix X € RP>*¥ and p and e.
Output: /D =K Cluster Index.
Initialize: k = 0, set U* = 0, C* = 0 and Z* = 0.

e Compute B = X7X.
e Compute A = (B + pI + pL)~ L.

1. Sparse Recovery:
Do until stopping criteria is met
e Compute C: C**1= A(B + p(ZF — UF)).
Compute V: V = CF+1 4 UF |
Compute Z: {z; = n;e;} Vi € [N].
Compute U: UFt! = UF 4 CF+1 — ZF+1,

Stopping criteria: |[RETY| |2, ||S**1]2. < e

end

2. Spectral Clustering:

e Compute I D gfollowing Final spectral clustering.

3 Experiments

3.1 Datasets We validate our approach on three real-
world datasets which are diabetes data, image data in NUS-
WIDE and collection of newsgroup documents in 20 News-
group dataset.

The diabetes data is collected from patients having
diabetes recorded over a period of five years from 2007
to 2011 and has diagnosis records from 9878 patients.

TThis dataset has been obtained from a large regional hospital in Aus-

Codes | Description of Codes

E1172 | Type 2 diabetes mellitus

110 Essential (primary) hypertension
79222 | Long-term use history of other medicament, insulin
R63Z | Chemotherapy

Table 1: Examples of diagnostic codes

Each patient has been diagnosed several times over the
period of five years and assigned unique diagnosis code(s).
An example of a record for a patient over time might be
(E1172, I10, E1172, z9222). Table [I] shows the
description of some diagnostic codes. Patients may be
assigned similar code more than once over time. We remove
records without codes, patients diagonalized less than thrice
and also duplicate codes. This results in 1580 diabetes
patients with 551 unique codes. We construct a code-patient
matrix, where codes are used as features and each patient is
an observation, analogous to word-document matrix for text
data analysis.

NUS—WIDEE] dataset is a large collection of Flicker im-
ages and we have selected a subset of 3411 images involving
13 animals[13] (see Figure . This dataset also provides 6
different low-level features, namely 64-D color histogram,
144-D color correalogram, 73-D edge direction histogram,
128-D wavelet texture, 225-D block wise color moments and
500-D SIFT descriptors along with their groundthruth. In our
experiment we ignore SIFT descriptors and use only other
low-level features. NUS-WIDE is most challenging for

The 20-Newsgroup datasetcontains 20,000 documents
partitioned over 20 groups. We randomly extracted 8 differ-
ent groups form 8 possible permutations of all possible sets
and conducted 10 test on each subset. We construct a word-
document matrix from randomly selected groups where rows
correspond to the vocabulary in the corpus and columns cor-
respond to the documents. The size of the dictionary is
30311 and number of documents is 8000.

3.2 Evaluation Metric As no ground-truth is available
for latent groups, it is impossible to measure the clustering
performance by standard evaluation metrics. Thus, we
evaluate the performance using a novel p-measure method
as follows:

1. Each data point x; € RY is mapped to a binary vector
X; where Tij = Hmiﬁéo.

tralia. Ethics approval obtained through University and regional hospital —
Number 12/82}.
Zhttp://Ims.comp.nus.edu.sg/research/NUS-WIDE.htm
3http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html



Figure 2: NUS-WIDE Animal Datasets

2. Compute relative similarity metric s(X;, X;)

> (% ©%))

S(ii,ij) =

N _ N = - -
D k=1 Xik D1 Xjk — D (X © X;)

3. Construct a ground-truth matrix G, € RV*V with el-
ement g;; = Iyx, %;)>, Note that, if ground-truth is
available and £(i) denotes the true label of i'" observa-
tion, then we compute g;; = I(;)—(j)-

4. Construct a cluster membership matrix V with element
Vij = LDy ())=1D ()-
Next, we compute Precision (P), Recall (R) and F-measure
(F):
3.9

TP TP 2x PxR
p _2xPx

~ TP T TP EN P+R

Here, true positive (TP) is scored when two similar data
points in the ground-truth are grouped together in the ob-
tained results, a true negative (TN) is when two dissimilar
data points are grouped separately, a false positive (FP) is
when two dissimilar data points are grouped together and
a false negative (FN) is when two similar data points are
grouped separately. The rand index (RI) is defined as

B TP+ TN
" TP+ FP+FN+TN

where high RI and F' indicates the better accuracy.

RI

3.3 Results and Comparison In pre-processing, the di-
mension of each data point is reduced by projecting it onto a
lower dimensional subspace. The projection matrix is found
by extracting the basis vectors corresponding to the prin-
cipal singular values of the full data matrix. We compare
our proposed framework against state-of-art sparse subspace
clustering methods SSC [9]], weighted SSC (W-SSC) [24],
low-rank representation (LRR) [21]] and also with bench-
mark methods like affinity propagation (AP) [11]], LPP
and k-means [20]]. Although the original LRR only uses
original dimension, we also examine LRR method on dimen-
sionally reduced data (LRR-RD) as well as full dimensional
data (LRR-FD).

Time in seconds

SsC

W-SSC LRR GR-SSC

Figure 3: Computational time for C (NUS-WIDE Dataset)

Initially, we set regularization parameter A to 0.001, and
the penalty parameter /. to 5 and p to 0.9. Table[2]presents the
experimental results obtained for all datasets on which pro-
posed method GR-SSC outperforms all variants of SSC
and state-of-the-arts benchmark methods as well. Inter-
estingly, G-SSC (which is GR-SSC without graph regular-
izer) also performs better than the state-of-art methods. On
diabetes dataset, the F'-measure for GR-SSC improves by
a margin of 88%, 21%, 466% and 13% with respect to
SSC, W-SSC, LRR-FD and LRR-RD respectively. Note that,
there is also a large improvement in performance for LRR-
RD against existing LRR-FD. Similarly, Rand index is also
improved by 53%, 3.5%, 183%, 10% against SSC, W-SSC,
LRR-FD and LRR-RD respectively. Figures show the
sparse representation matrix C of different subspace clus-
tering methods. In ideal case, the nonzero entries at off-
the-block diagonal locations in C must be zero. But due
to noise and numerical properties of the data, this nonzero
entries eventually contributes to the missclassification of the
data points. If we visually compare the sparse representa-
tion matrices SSC (s) and GR-SSC, the number of nonzero
entries at off-the-block diagonal location are lesser for GR-
SSC. Hence, the betterment in performance of GR-SSC is
consistent with F' and rand index measure. F' - measure is
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also improved by 325%, 112%, 466% while rand index is
by 92.5%, 16.7% and 107% against benchmark methods
AP, LPP and k-means respectively. For NUS-WIDE dataset,
F - measure is bettered by 42%, 26%, 20%, 25%,337%
and rand index 12%,10%,7%,6%,65% against SSC, LRR-
RD, AP, LPP and k-means respectively. On 20 Newsgroup
dataset, the performance is improved by 60%, 11%, 95%,
26% ,96% (F - measure) and 41%, 10%, 88%, 19%
,108% (rand index) against SSC, LRR-RD, AP, LPP and k-
means respectively (see Table [2]). Figure [5] shows the tag
clouds of the diagnostic codes where clouds are correspond-
ing to the each cluster in Figure As expected the clouds
are qualitatively different in terms of grouping of similar dis-
ease within diabetes: for example tobacco disorder, tobacco
addiction, cancer treatment, Hypertension etc. Most impor-
tantly, Type 1 and Type 2 diabetes are clearly identified.
Influence of weighting schemes: Table [2c|include the
performance of several weighting schemes and it is observed
that cosine measure has better performance for Diabetics and
NUS-WIDE data, whereas RBF is best for 20 Newsgroups
among other choices. Regardless of which weighting scheme
used, the proposed method always outperforms others.
Selection of Parameters: The two important parame-
ters for model selection are A and p respectively. We inves-
tigate the influence of A and p by fixing one of them while
varying other. Figure gl and [#h| computed on Diabetes data
where we found that the performance of GR-SSC is signif-
icantly better than other algorithms over a wide range of A
and p. We also vary p from 0.1 to 1 and results are presented

in Figure if]. As expected, F' is high for small values of p
and I is low when p is increasing.

Computational cost Fig. [3] shows the computational
cost of the compared sparse subspace methods on NUS-
WIDE data. Our proposed method GR-SSC is approxi-
mately 14 and 57 times faster than the state-of-the-art sparse
subspace methods.

4 Conclusion

We have presented a novel method for clustering of data
modeled as generated from a union of subspaces. The
method is formulated in a sparse subspace representation and
extends previous sparse subspace clustering method consid-
erably in that we frame it in a multi-task setting. Our key
contributions are: 1) the introduction of two regularizers that
control at both group level (block regularization) and coef-
ficient level (graph regularization); and 2) an ADMM algo-
rithm that is computationally efficient and provably conver-
gent. The proposed formulation is general and treats many
existing methods as special cases. On challenging and re-
alistic datasets, we demonstrate that it significantly outper-
forms both SSC variants and other popular and competitive
approaches in data clustering.
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LPP 0.0854 0.7654 0.1507 0.8510 0.7022 0.8122
k-means 0.0325 0.4312 0.0433 0.5449 0.4469 0.4689
GR-SSC 0.1701 0.8934 0.1895 0.8989 0.8816 0.9602
(b) Performance analysis against benchmark methods
Datasets Diabetics Data NUS-WIDE Data 20 Newsgroup
Weighting Schemes | G-SSC | GR-SSC | G-SSC | GR-SSC | G-SSC | GR-SSC

RBF Kernel 0.1589 0.1695 0.1650 0.1850 0.8314 0.8816

0-1 matrix 0.1601 0.1684 0.1601 0.1799 0.8280 0.8684

Cosine measure 0.1620 0.1701 0.1667 0.1895 0.8281 0.8799

(c) F measure analysis using different weighting schemes

Table 2: Experimental results

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.
Foundations and Trends in Machine Learning, volume 3,
chapter Distributed Optimization and Statistical Learning via
the Alternating Direction Method of Multipliers, pages 1-
122. 2011.

E.J. Candes, X. Li, Y. Ma, and J. Wright. Robust principal
component analysis? Journal of the ACM, 58(3), 2011.

E.J. Candes and B. Recht. Exact matrix completion via con-
vex optimization. Foundations of Computational Mathemat-
ics, 9(6):717-772, 2009.

E.J. Candes, J. Romberg, and T. Tao. Robust uncertainty prin-
ciples: Exact signal reconstruction from highly incomplete
frequency information. /EEE TIP, 52(2):489-509, 2006.

J.P. Costeira and T. Kanade. @A multibody factorization
method for independently moving objects. IJCV, 29(3):159—
179, 1998.

D.L. Donoho. Compressed sensing.
Theory, 52(4):1289-1306, 2006.

Y.C. Eldar and M. Mishali. Robust recovery of signals from
a structured union of subspaces. [EEE Trans. Info. Theory,
55(11):5302-5316, 2009.

E. Elhamifar and R. Vidal. Sparse subspace clustering. In
Proc. CVPR, pages 2790-2797, 20009.

M.A. Fischler and R.C. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography. Communications of the ACM,

IEEE Trans. Info.

(1]

[12]

[13]

[14]

[15]

[16]

(7]
(18]

[19]

24(6):381-395, 1981.

B.J. Frey and D. Dueck. Clustering by passing messages
between data points. science, 315(5814):972-976, 2007.

A. Gruber and Y. Weiss. Multibody factorization with un-
certainty and missing data using the EM algorithm. In Proc.
CVPR, 2004.

S Gupta, D Phung, and S Venkatesh. A bayesian nonpara-
metric joint factor model for learning shared and individual
subspaces from multiple data sources. In Proc. SDM, pages
200-211, 2012.

X. He, D. Cai, H. Liu, and W.Y. Ma. Locality preserving
indexing for document representation. In Proc. ACM SIGIR,
pages 96-103, 2004.

J. Ho, M.H. Yang, J. Lim, K.C. Lee, and D. Kriegman.
Clustering appearances of objects under varying illumination
conditions. In Proc. CVPR, 2003.

W. Hong, J. Wright, K. Huang, and Y. Ma. A multiscale
hybrid linear model for lossy image representation. In Proc.
ICCV, pages 764-771, 2005.

J. Huang and T. Zhang. The benefit of group sparsity. The
Annals of Statistics, 38(4):1978-2004, 2010.

J Ye Jun Liu, S Ji. Mining sparse representations: Formula-
tions, algorithms and applications. Tutorial in SDM, 2010.
K. Kanatani. Motion segmentation by subspace separation
and model selection. In Proc. ICCV, volume 2, pages 586—
591, 2001.



mant neaplasm of rectum

= P””“f‘""””m“i"m“’:ﬁm@?@“iﬂmﬁt?éﬁl‘gmTr‘ea tment Sameday, W ECT Tobacco use, Current

denocarcinom, melastei

Cungeslnvehaan|aﬂure PR —
Wienacarivoma S T 3 dietss i withfoairo o nul rosintanco

(a) Cluster 1: Diabetes with Psychiatric Disorders (b) Cluster 2: Type2 diabetes with Tobacco addiction
e dPerEuntal history uli htnhauuu usle ﬁlliurdetr f | 1 o Porsorel it f LRG0 U5 SOy~
E G UIaDElEs me ItUS With red lIFESU IIIS[I In I‘ESIS dnce —— B [ ]
p LULLPCL (LU AE— —fssential (primary) hypertension
bl tsse"hal lpl"“’“a[‘ul hupe[‘te"smn Persanal history of long term (Gurvent] use of anticoagulants
(c) Cluster 3: Diabetes with Hypertensions and Cancer treatment (d) Cluster 4: Type 2 Diabetes with Hypertension

Persanal fistory of tobacco use disarder

e IupeBt||ahelesmell|tusmth features ufmsulm remstance e R e i
f Personal history of luhaccu use dlsurder
(e) Cluster 5: Type 2 diabetes with vascular complications and mix of other (f) Cluster 6: Tobacco Disorder
disease
- Tobacgouge, curvenl— v 2 S

Tt Diabetes W/0 Catastrophic orS Saiere s Chest pannn. unspecified T
- Al Type etes mellitus atupes of msqu . Ch t P
e £ n@llpnmaml Hupertension = dmhetes mdlvluswrthmulllnlemmmvasc andoler specified nonvassula complicatons il = —__UDESt raln
Tupe 1 diabetes InE||ﬂLIE'MIth|]I]Il“I:I]IﬂI’1I| o110 e see s iy e s HEE“TISEW{GE area Persmwl hlSl u,ge djg(]rd ssential [primary)] hypertension

TR Tyl dibetesmelius vih kelacioss, witoul coma o
Ihumwssmmnmmz\m:\uﬂs E

= Tobacco use. current

(g) Cluster 7: Type 1 diabetes with Ketoacdosis (h) Cluster 8: Type 2 daibetes with Hypertension, Tobacco disorder and Chest
pain

Extracorporeal dialysis

Endfstage renal dlsease
, Health service area

Essential (primary) hypertension

-—~Haemodialysis

(i) Cluster 9: Diabetic Nephropathy

Type » diabet

Figure 5: Diagnosis Cloud

[20] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, two views. IJCV, 88(3):425-446, 2010.

R. Silverman, and A.Y. Wu. An efficient k-means cluster- [27] M.E. Tipping and C.M. Bishop. Mixtures of probabilis-
ing algorithm: Analysis and implementation. IEEE PAMI, tic principal component analyzers. Neural computation,
24(7):881-892, 2002. 11(2):443-482, 1999.

[21] G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by [28] R. Vidal, Y. Ma, and S. Sastry. Generalized principal compo-
low-rank representation. In Proc. ICML, 2010. nent analysis (gpca). IEEE PAMI, 27(12):1945-1959, 2005.

[22] Y.M. Lu and M.N. Do. A theory for sampling signals froma [29] R. Vidal, R. Tron, and R. Hartley. Multiframe motion
union of subspaces. IEEE Trans. Sig. Process., 56(6):2334— segmentation with missing data using power factorization and
2345, 2008. GPCA. IJCV, 79(1):85-105, 2008.

[23] B. Nasihatkon and R. Hartley. Graph connectivity in sparse  [30] J. Vogt and V. Roth. A complete analysis of the I_1, p group-
subspace clustering. In Proc. CVPR, 2011. lasso. arXiv preprint arXiv:1206.4632, 2012.

[24] Duc-Son Pham, B Saha, dinh Phung, and Svetha Venkatesh. [31] A.Y. Yang, J. Wright, Y. Ma, and S.S. Sastry. Unsupervised
Improved subspace clustering via exploitation of spatial con- segmentation of natural images via lossy data compression.
straints. In Proc. CVPR. IEEE, 2012. In proc. CVIU, 110(2):212-225, 2008.

[25] S.R.Rao, R. Tron, R. Vidal, and Y. Ma. Motion segmentation [32] H. Zou and T. Hastie. Regression shrinkage and selection via
via robust subspace separation in the presence of outlying, the elastic net, with applications to microarrays. Journal of
incomplete, or corrupted trajectories. [EEE PAMI, pages the Royal Statistical Society: Series B. v67, pages 301-320,
1832-1845, 2009. 2003.

[26] S.R.Rao, AY. Yang, S.S. Sastry, and Y. Ma. Robust algebraic
segmentation of mixed rigid-body and planar motions from



	Introduction
	Proposed Framework
	Block 2/1 Regularizer
	Graph Regularizer
	Proposed Formulation and Algorithms

	Experiments
	Datasets
	Evaluation Metric
	Results and Comparison

	Conclusion

