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Glycerol can be biologically converted to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae. In the synthesis pathway of 1,3-PD,
the accumulation of an intermediary metabolite 3-hydroxypropionaldehyde (3-HPA) would cause an irreversible cessation of the
dynamic system. Genetic manipulation on the key enzymes which control the formation rate and consumption rate of 3-HPA
would decrease the accumulation of 3-HPA, resulting in nonlinear regulation on the dynamic system. The interest of this work
is to focus on analyzing the influence of 3-HPA inhibition on the stability of the dynamic system. Due to the lack of intracellular
knowledge, structural kinetic modelling is applied. On the basis of statistical account of the dynamical capabilities of the system in
the parameter space, we conclude that, underweak or no inhibition to the reaction of 3-HPAconsumption, the system ismuch easier
to obtain a stable state, whereas strong inhibition to its formation is in favor of stabilizing the system. In addition, the existence of
Hopf bifurcation in this system is also verified.The obtained results are helpful for deeply understanding the metabolic and genetic
regulations of glycerol fermentation by Klebsiella pneumoniae.

1. Introduction

1,3-Propanediol (1,3-PD) haswide applications for a variety of
markets, especially as a monomer for polyesters, polyethers,
and polyurethanes [1]. Microbial production of 1,3-PD, a
socially beneficial route to obtain chemicals from renewable
resources, has been widely investigated and considered as
a competitor to the traditional petrochemical routes. Over
the past years, some microorganisms such as Klebsiella
pneumoniae, Clostridium butyricum, and Citrobacter freundii
have been used to synthesize 1,3-PD from glycerol [1–3],
among which Klebsiella pneumoniae (K. pneumoniae) was
most popularly investigated due to its high productivity [4].

Over the past years, modelling, stability, and optimal
control of glycerol fermentation have been extensively inves-
tigated. For details, see [5–10] and the references therein.
However, most of the previous researches were based on
explicit models for the extracellular substance concentrations
instead of a consideration of the metabolic process in the
intracellular environment which, in essence, is the origin of
multistationarity and oscillation. Up to 2008, the intracellular
dynamics of this bioprocess was firstly studied by Sun et al.
[11]. Thereafter, we introduced several quantitative measures
of biological robustness to estimate the kinetic parameters
of Sun’s model in the context where the intracellular data
were limited and some of the metabolic mechanisms were
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not completely known [12–14]. The problem is that huge
computing workload will be faced in the evaluation of the
biological robustness index, even though the scale of the
metabolic network is not too large.

In the reductive pathway of glycerol conversion to
1,3-PD, the accumulation of an intermediary metabolite,
3-hydroxypropion-aldehyde (3-HPA), would greatly affect
the productivity of the fermentation. There have been
many researches on the genetic engineering technology
about decreasing 3-HPA accumulation by overexpressing
the related genes of the strains [15–17]. However, some
questions would emerge on the engineered strains: what
kind of changes may happen to the new strains or whether
the new strains can inherit “good” properties from the host
strains after genetic manipulation. Therefore, it is necessary
to reevaluate the dynamics of the engineered strains. In
particular, due to the presence of the negative feedback in
the 3-HPA accumulation, it is worthwhile to analyze the
role of 3-HPA inhibition in the metabolic system of glycerol
fermentation.

Over the past decades, detailed kinetic models have
been widely applied to investigate the dynamic properties
of metabolic system, in which differential equations are
employed to describe the temporal behavior of the system.
Unfortunately, there is a disproportion between the high
number of parameters contained in the kinetic models and
the relatively incomplete data available [18]. To address these
problems, researchers have devoted great effort to exploit
other methods to quantitatively evaluate dynamic properties
of metabolic processes in the recent years [19–24]. It is worth
mentioning that Steuer et al. [19] proposed a structural kinetic
modelling approach, which has an advantage in drawing
quantitative conclusions about the possible dynamics of
the system without assuming detailed knowledge of the
underlying enzyme-kinetic rate equations and parameters.
One other advantage of this approach is that the classical
Michaelis-Menten kinetic model can be transformed to this
model scheme with saturation parameters well defined [19].

In this paper, our interest is to focus on investigating how
3-HPA inhibition would influence the stability of the glycerol
metabolic system of the engineered K. pneumoniae, in which
the genes encoding two key enzymes glycerol dehydratase
(GDHt) and 1,3-PD oxydoreductase (PDOR) are overex-
pressed. A structural kinetic model (SKM) is developed,
which is presented in a parametric formwith the ranges of all
associated parameters well defined. A statistical exploration
on the proposed model is performed on the comprehensive
parameter space to investigate the system’s capability to
obtain a stable state. Additionally, by varying the strength
of 3-HPA inhibitions upon its upstream and downstream
reactions, we verify the existence of Hopf bifurcation. Finally,
we analyze how the ratio of GDHt activity to PDOR activity
may influence the stability of the system.

This paper is organized as follows. In Section 2, we
briefly introduce the metabolic process of glycerol in K.
pneumoniae and present the explicit rate equations for the
considered metabolites. In Section 3, a SKM is developed
for the reductive pathway of this process. In Section 4, the
physiologically feasible ranges of the associated parameters in

the SKM are specified. In Section 5, the stability of the system
is statistically investigated on the comprehensive parameter
space. Conclusions and discussions of the computational
results are presented at the end of this paper.

2. Glycerol Metabolism in K. pneumoniae and
Its Explicit Mathematical Model

During glycerol metabolism by K. pneumoniae under anaer-
obic condition, glycerol is first transported across cell mem-
brane from the extracellular environment to the intracellular
environment. In the intracellular environment, glycerol is
dissimilated through coupled oxidative and reductive path-
ways as shown in Figure 1. The goal product 1,3-PD is pro-
duced by the reductive branch in two successive enzymatic
reactions [25]: glycerol is first dehydrated to 3-HPA by the
enzyme GDHt; 3-HPA is then converted to 1,3-PD by the
enzyme PDOR. In the oxidative pathway, glycerol oxidation
is catalyzed by the enzyme glycerol dehydrogenase (GDH),
leading to the formation of dihydroxyacetone (DHA);DHA is
further phosphorylated by two dihydroxyacetone kinases and
is channelled into glycolysis, yielding the same fermentation
products as in glucose fermentation (acetate, ethanol) and
to the generation of energy and reducing power. Finally,
the products are transported across cell membrane from the
intracellular environment to the extracellular environment.

The flux through the reductive pathway (i.e., 1,3-PD
synthesis pathway) is largely controlled by the synthesis of
the enzymes GDHt and PDOR, because the accumulation of
3-HPA represses the expression of the genes of the enzymes
GDHt and PDOR as well as that of the enzyme GDH [26].
In addition, the accumulation of 3-HPA also has inhibitory
effects on the activities of the above three enzymes [25, 27,
28]. Therefore, there appears a negative feedback in 3-HPA
accumulation.

The accumulation of 3-HPA in the reductive pathway can
be decreased by overexpressing the genes of the two enzymes
in this branch (i.e., the enzymes GDHt and PDOR) [15].
According to the genetic manipulation on the two enzymes,
the strains discussed in this paper can be divided into four
cases.

Case 1. The original strain (no genetic manipulation).

Case 2. In the constructed strain, both GDHt and PDOR are
overexpressed.

Case 3. In the constructed strain, only GDHt is overex-
pressed.

Case 4. In the constructed strain, only PDOR is overex-
pressed.

As we mentioned above, the goal product 1,3-PD is
synthesized in the reductive pathway and the accumulation
of 3-HPA in this branch would greatly affect the productivity
of the fermentation and the stability of the system. Our main
concern in this work is therefore focused on the reductive
pathway. In addition, the oxidative reaction of glycerol (i.e.,
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Figure 1: Pathway of anaerobic glycerol metabolism in K. pneu-
moniae. Solid line: metabolic reaction; dashed line: catalytic action
or inhibitory regulation; dashed-dot line: the omitted intermediary
metabolic reactions; ⊕: positive regulation; ⊖: inhibitory regulation.

𝑟
5
in Figure 1) is also considered. One reason for introducing

this reaction is to guarantee the material balance. Another
reason is that the accumulation of 3-HPA also inhibits this
reaction, which would affect the stability of the system.

Let 𝑆 := (𝑆
1
, 𝑆
2
, 𝑆
3
)
𝑇 denote the intracellular concentra-

tions of glycerol, 3-HPAand 1,3-PD.According to Figure 1, we
can obtain the stoichiometric matrix covering the formations
and consumptions of glycerol, 3-HPA and 1,3-PD as follows:

𝑁 = (

1 −1 0 0 −1

0 1 −1 0 0

0 0 1 −1 0

) . (1)

Then the temporal behavior of the three substances can be
described by a set of differential equations:

d𝑆
d𝑡

= 𝑁 ⋅ 𝑉, (2)

where 𝑉 = (𝑉
1
, 𝑉
2
, 𝑉
3
, 𝑉
4
, 𝑉
5
)
𝑇 is a five-dimensional vec-

tor function describing the reaction rates of the reactions
𝑟
1
, 𝑟
2
, 𝑟
3
, 𝑟
4
, and 𝑟

5
in Figure 1. The components 𝑉

𝑗
, 𝑗 =

1, 2, 3, 4, 5 are defined as follows [11, 29]:

𝑉
1
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1

𝑉
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𝑒

1

𝑆
𝑒
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𝑚
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1

𝐴
𝑠

(𝑆
𝑒
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1
)) , (3)

𝑉
2
= 𝑏𝐶protein𝐾GDHt𝑈GDHt

𝑆
1

𝐾
GDHt
𝑚

(1 + 𝑆
2
/𝐾

GDHt
𝑖

) + 𝑆
1

, (4)

𝑉
3
= 𝑏𝐶protein𝐾PDOR𝑈PDOR

𝑆
2

𝐾
PDOR
𝑚

+ 𝑆
2
(1 + 𝑆

2
/𝐾

PDOR
𝑖

)

,

(5)

𝑉
4
= 𝐾PD (𝑆3 − 𝑆

𝑒

3
) , (6)

𝑉
5
= 𝑏𝐶protein𝑈GDH

𝑆
1

(1 + 𝑆
2
/𝐾

GDH
𝑖

) (𝐾
GDH
𝑚

+ 𝑆
1
)

. (7)

The mechanism of (3)–(6) and (7) can be referred to in
[11] and [29], respectively. The notations 𝑆

1
, 𝑆
2
, 𝑆
3
in this

work corresponds to 𝐶
𝑠𝑖
, 𝐶3-HPA, 𝐶PD𝑖 in [11]. The physical

meanings of the parameters in (3)–(7) are listed as follows:

𝑉
𝑠
: specific intracellular volume of biomass (L⋅g−1),

𝐽max: maximum specific transport rate of glycerol
(mmol⋅g−1⋅h−1),
𝐾
𝑚
: Michaelis-Menten constant of permease

(mmol⋅L−1),
𝑆
𝑒

1
: extracellular concentration of glycerol

(mmol⋅L−1),
𝐴
𝑠
: 𝐴
𝑠
:= 𝛿/(𝐵 ⋅ 𝐷

𝑓
) with 𝐵 the surface area per

biomass (mm2⋅g−1), 𝐷
𝑓
the diffusion coefficient of

glycerol (L⋅mm−1⋅h−1), and 𝛿 the thickness of cell
membrane (mm),
𝑏: conversion coefficient for enzyme activity from
𝜇mol⋅mL−1⋅min−1 to mmol⋅L−1⋅h−1,
𝐶protein: average concentration of the enzymes GDHt,
PDOR, and GDH in vitro (mg⋅mL−1),
𝐾GDHt, 𝐾PDOR, 𝐾GDH: the ratio of in vivo and in vitro
activities of GDHt, PDOR, and GDH,
𝑈GDHt, 𝑈PDOR, 𝑈GDH: specific enzyme activities of
GDHt, PDOR, and GDH in vitro (U⋅mg−1),
𝐾

GDHt
𝑚

, 𝐾
PDOR
𝑚

, 𝐾
GDH
𝑚

: Michaelis-Menten constants of
the enzymes GDHt, PDOR, and GDH (mmol⋅L−1),
𝐾

GDHt
𝑖

, 𝐾
PDOR
𝑖

, 𝐾
GDH
𝑖

: inhibitor constants for 3-HPA
to the activities of enzymes GDHt, PDOR and GDH
(mmol⋅L−1),
𝐾PD: 𝐾PD := (𝐵 ⋅ 𝐷



𝑓
)/(𝑉
𝑠
⋅ 𝛿) with 𝐷

𝑓
the diffusion

coefficient of 1,3-PD (L⋅mm−1⋅h−1),
𝑆
𝑒

3
: extracellular concentration of 1,3-PD (mmol⋅L−1).

The values of the above parameters are roughly estimated
in [11, 29], which are listed in Table 1.

The specific enzyme activities 𝑈GDHt, 𝑈PDOR, and 𝑈GDH,
are expressed as

𝑈
𝑖
= 𝑈
𝑖0
+ 𝑎
𝑖
𝜇 + Δ𝑈

𝑖𝑚

𝑆
𝑒

1

𝑆
𝑒

1
+ 𝐾
𝑆

𝑖

, 𝑖 = GDHt,PDOR,GDH,

(8)

where 𝜇 is the specific cellular growth rate, and the values of
the parameters are listed in Table 2 according to [11, 29].

In [11], Sun et al. used the average concentration of the
enzymes GDHt, PDOR, and GDH (𝐶protein) to approximate
their actual concentrations. In consideration of the inhibitory
effects of 3-HPA accumulation onto the DNA synthesis of the
three enzymes [15], we take the concentration of each enzyme
as a function of 3-HPA, which is given as follows [26]:

𝐶
𝑖

protein =
𝐶
𝑖

max

1 + 𝑆
2
/𝐾
𝑝,𝑖

𝑚

, 𝑖 = GDHt,PDOR,GDH. (9)
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Table 1: The values of parameters in (3)–(7).

𝑉
𝑠

𝐽max 𝐾
𝑚

𝐴
𝑠

𝑏 𝐶protein

0.151 54.664 1.34 1.896 × 10
−4 60 1.7

𝐾GDHt 𝐾PDOR 𝐾GDH 𝐾
GDHt
𝑚

𝐾
PDOR
𝑚

𝐾
GDH
𝑚

0.171 0.217 0.274 0.53 0.14 1.27

𝐾
GDHt
𝑖

𝐾
PDOR
𝑖

𝐾
GDH
𝑖

𝐾PD — —
220.319 0.418 986.251 25.137 — —

Table 2: The values of parameters in (8).

𝑖 𝑈
𝑖0

𝑎
𝑖

Δ𝑈
𝑖𝑚

𝐾
𝑆

𝑖

GDHt 2.8 −3.53 −0.87 2.41
PDOR 2.32 −1.87 −1.38 1.35
GDH 14.05 −3.94 −9.76 2.40

Here, 𝐶𝑖max is the maximum concentration of the enzyme 𝑖,
𝑖 = GDHt,PDOR,GDH and𝐾𝑝,𝑖

𝑚
is the inhibitor constant for

3-HPA to the concentration of the corresponding enzyme.

3. Structural Kinetic Modelling

Let 𝐾 denote the parameters involved in (3)–(7). The vari-
ables 𝑆𝑒

1
and 𝑆𝑒
3
are also regarded as parameters and absorbed

into 𝐾 due to the characteristic features of the structural
kinetic modelling, which will be shown in the next section.

Observing the right-hand side of (3)–(7), we can find that
the reaction rates are represented by rational functions of 𝑆
and 𝐾. In what follows, we will rewrite the vector function
𝑉 by 𝑉(𝑆,𝐾). The stability of a steady state 𝑆0 is determined
by the Jacobian matrix of the right hand of (2) with 𝑆 = 𝑆

0,
denoted by 𝐽(𝑆

0
, 𝐾). More precisely, the steady state 𝑆

0 is
stable if the largest real part of the eigenvalues of 𝐽(𝑆0, 𝐾)
is negative, whereas an eigenvalue with a positive real part
implies the instability of 𝑆0.

Traditionally, the precise values of the kinetic parameters
are required for evaluating the Jacobian 𝐽(𝑆

0
, 𝐾). Although

the parameters involved in (3)–(7) have been estimated based
on 58 groups of steady-state experimental data [11], it is hard
to verify the reliability of these parameter values due to the
lack of process data of the intracellular substances. In fact,
the process data of the intracellular substances cannot be
measured using the existing technology. Furthermore, the
parameters valuesmay depend onmany factors such as strain
types or experimental and physiological conditions. In other
words, the obtained parameter values from the literature may
be invalid for the new strains. To overcome this problem,
we will use the method of structural kinetic modelling
proposed by Steuer et al. [19] to investigate the stability of
the metabolic system, because this method can be used to
draw qualitative conclusions about the possible dynamics of
the systemwithout very detailed knowledge of the underlying
enzyme-kinetic rate equations and parameters.

We make the following assumption.

(H1) All partial derivatives of the components 𝑉
𝑗
of the

vector𝑉 of orders ≤ 𝐿+2 (𝐿 is an integer no less than
2) exist and are continuous in 𝑆 and𝐾.

Similarly to [19], taking the following transformation:

𝑥
𝑖
:=

𝑆
𝑖

𝑆
0

𝑖

, Λ
𝑖𝑗
= 𝑁
𝑖𝑗

𝑉
𝑗
(𝑆
0
, 𝐾)

𝑆
0

𝑖

,

𝜇
𝑗
(x) :=

𝑉
𝑗
(𝑆, 𝐾)

𝑉
𝑗
(𝑆
0
, 𝐾)

, 𝑖 = 1, 2, 3, 𝑗 = 1, 2, 3, 4, 5

(10)

we can rewrite the system (2) in terms of variables x := (𝑥
1
,

𝑥
2
, 𝑥
3
)
𝑇 and rates u(x) = (𝜇

1
(x), 𝜇
2
(x), 𝜇
3
(x), 𝜇
4
(x), 𝜇
5
(x))𝑇

as follows:

dx
d𝑡

= Λu (x) , (11)

where Λ = (Λ
𝑖𝑗
) is a 3 × 5matrix. The Jacobian of the system

(11) at the normalized steady state x = x0 := (1, 1, 1)
𝑇 (corre-

sponding to 𝑆 = 𝑆
0) is

𝐽x = Λ
𝜕u(x)
𝜕x








x=x0

:= ΛΘ
u
x , (12)

where the elements of the matrix Θu
x specify the normalized

saturation degrees of the reactions with respect to their
substrates or products, defined as saturation parameters
[20]. According to the metabolic network in Figure 1, the
parametric presentation of the matrix Θu

x can be expressed
as

Θ
u
x =

(
(

(

𝜃
𝜇1

𝑥1
0 0

𝜃
𝜇2

𝑥1
𝜃
𝜇2

𝑥2
0

0 𝜃
𝜇3

𝑥2
𝜃
𝜇3

𝑥3

0 0 𝜃
𝜇4

𝑥3

𝜃
𝜇5

𝑥1
𝜃
𝜇5

𝑥2
0

)
)

)

. (13)

Remark 1. The elements of the matrix Θ
u
x specify the nor-

malized degree of saturation of each reaction with respect to
each of the reactants, defined in closed analogy to the scaled
elasticity coefficients of metabolic control analysis. In other
words, each of them describes the degree of the influence
of the substrate concentration on the specified reaction rate.
Therefore, if the substrate has strong regulation onto the
specified reaction, the absolute value of the corresponding
saturation parameter should be large; if the substrate hasweak
regulation onto the specified reaction, the absolute value of
the corresponding parameter should be small.

At steady state, none of the state variables changes in
value, even though material is flowing through the system.
Mathematically, this situation requires that all derivatives are
zero:

d𝑆
d𝑡

= 𝑁 ⋅ 𝑉 = 0. (14)

There are only two independent steady-state reaction rates
from the analysis of the stoichiometric matrix 𝑁. Here,
we specify 𝑉

1
and 𝑉

2
as the two independent steady-state



Mathematical Problems in Engineering 5

reaction rates. Let 𝛼 ∈ (0, 1) denote the percentage of glycerol
consumed in the reductive pathway; that is, 𝛼 := 𝑉

2
/𝑉
1
. It

then follows from the relationship

𝑉
2
+ 𝑉
5
= 𝑉
1 (15)

that

𝑉
5
= (1 − 𝛼)𝑉

1
. (16)

Finally, setting 𝑉
1
= V, we can obtain the construction of the

matrix Λ as follows:

Λ =

(
(
(

(

V
𝑆
0

1

−
𝛼V
𝑆
0

1

0 0 −
(1 − 𝛼) V

𝑆
0

1

0
𝛼V
𝑆
0

2

−
𝛼V
𝑆
0

2

0 0

0 0
𝛼V
𝑆
0

3

−
𝛼V
𝑆
0

3

0

)
)
)

)

. (17)

So far, we have provided the parametric presentation of the
Jacobian 𝐽x.

4. Specification of the Admissible Space of
the Associated Parameters

To evaluate the possible dynamics of the metabolic system on
the basis of the Jacobian 𝐽x in (12), we should firstly specify
the feasible ranges of the associated parameters. According
to the practical experiments, the critical concentration of
glycerol, 3-HPA and 1,3-PD are 2039, 30, and 939.5mmol/L
[2, 30], respectively. As for the lower bound of 𝑆0, it is
obvious that each component of 𝑆0 should be no smaller
than zero. In addition, (17) requires that each component
of 𝑆0 cannot be equal to zero. This limitation condition is
also reasonable from a biological viewpoint since 𝑆

0 is a
steady state. Conservatively, we set the lower extreme for each
component of 𝑆0 to be a rather low bound, say, 0.001. As a
result, 𝑆0 is restricted in

𝑊
𝑎𝑑
:= [0.001, 2039] × [0.001, 30] × [0.001, 939.5] . (18)

Besides, the admissible range of 𝛼 is defined as 𝐼 :=

[0.55, 0.65] based on previous research [31]. Furthermore, it
is clear that the value of V (a positive number) would not
influence the sign of the eigenvalues of 𝐽x; that is, it is irrelative
to the stability of the system. So we assign its value to be
100mmol⋅L−1⋅h−1 in the remaining of this paper.

The ranges of saturation parameters in (13) can be spec-
ified by the rule proposed by Steuer et al. [19]. In particular,
𝜃
𝜇𝑗

𝑥𝑖
∈ [0, 1] if 𝑥

𝑖
is only the substrate of the reaction 𝑟

𝑗
and

has no inhibition onto this reaction, and 𝜃
𝜇𝑗

𝑥𝑖
∈ [−1, 0] for

the product 𝑥
𝑖
of the reaction 𝑟

𝑗
in the absence of inhibitory

feedback from 𝑥
𝑖
. Based on this rule, the ranges of the

saturation parameters 𝜃𝜇1
𝑥1
, 𝜃𝜇2
𝑥1
, 𝜃𝜇5
𝑥1
, 𝜃𝜇3
𝑥3
, 𝜃𝜇4
𝑥3

can be given,
which are shown in Table 3.

When a substance is not only a substrate or product for
a reaction, but also has a positive or inhibitory regulation

Table 3: The ranges of parameters that have common ranges in the
four cases.

𝜃
𝜇1

𝑥1
𝜃
𝜇2

𝑥1
𝜃
𝜇3

𝑥3
𝜃
𝜇4

𝑥3
𝜃
𝜇5

𝑥1
𝜃
𝜇5

𝑥2

[−1, 0] [0, 1] [−1, 0] [0, 1] [0, 1] [−2, 0]

Table 4: The ranges of parameters that have different ranges in the
four cases.

Case 1 Case 2 Case 3 Case 4
𝜃
𝜇2

𝑥2
[−2, 0] [−1, 0] [−1, 0] [−2, 0]

𝜃
𝜇3

𝑥2
[−2, 1] [0, 1] [−2, 1] [0, 1]

on that reaction, the range of the corresponding saturation
parameter needs to be determined by the explicit expression
of the rate equation for that reaction. We take the parameter
𝜃
𝜇2

𝑥2
as an example to illustrate how to define the range of the

saturation parameter of this type. The required knowledge is
only the degree of the numerator of 𝑉

2
with respect to the

state variable 𝑆
2
and that of the denominator (note that𝑉

2
is a

rational function of the state vector 𝑆). For the strain without
genetic manipulation on the gene of GDHt (including Cases
1 and 4), the reaction rate is given by

𝑉
2
= 𝑏𝐶

GDHt
protein𝐾GDHt𝑈GDHt

𝑆
1

𝐾
GDHt
𝑚

(1 + 𝑆
2
/𝐾

GDHt
𝑖

) + 𝑆
1

(19)

with

𝐶
GDHt
protein =

𝐶
GDHt
max

1 + 𝑆
2
/𝐾
𝑝,GDHt
𝑚

. (20)

So the degree of the numerator of 𝑉
2
with respect to 𝑆

2
,

denoted by 𝑛
𝑉2
, equals 0 and that of the denominator, denoted

by𝑚
𝑉2
, equals to 2. According to the rule proposed by Steuer

et al. [19], we have

𝜃
𝜇2

𝑥2
:= 𝑛
𝑉2
− 𝛾𝑚
𝑉2
, 𝛾 ∈ [0, 1] , (21)

where 𝛾 corresponds to the notation 𝛼 that appeared in (8)
of the supporting appendix of [19]. It was proved in this
supporting appendix that 𝛾 ∈ [0, 1]. Thus, the range of 𝜃𝜇2

𝑥2
is

[−2, 0]. Alternatively, for the strainwith geneticmanipulation
on the gene of GDHt (including Cases 2 and 3), the inhibitory
effect of 3-HPA accumulation onto the synthesis of GDHt is
eliminated. In other words, 3-HPA is only the product of the
reaction 𝑟

2
without product inhibition. So the range of 𝜃𝜇2

𝑥2

should be [−1, 0] in this context.
Similarly, we can specify the ranges of 𝜃𝜇3

𝑥2
, which, together

with that of 𝜃𝜇2
𝑥2
, is given inTable 4.The range of 𝜃𝜇5

𝑥2
is the same

for all the cases, which is given in Table 3.

5. Dynamics Analysis and Prediction in the
Parameter Space

To assess the possible dynamic properties of the system
in Case 1, the parameters in (17) and the saturation
parameters in (13) are uniformly sampled from the
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Table 5: Statistical results of the stability of the structural kinetic
model.

Stability Case 1 Case 2 Case 3 Case 4
Stable 56.2% 85.2% 38.8% 91.5%
Unstable 43.8% 14.8% 61.2% 8.5%

corresponding intervals for 1 × 10
6 times. For each tuple

(𝑆
0

1,𝑘
, 𝑆
0

2,𝑘
, 𝑆
0

3,𝑘
, 𝛼
𝑘
, 𝜃
𝜇1

𝑥1 ,𝑘
, 𝜃
𝜇2

𝑥1 ,𝑘
, 𝜃
𝜇2

𝑥2 ,𝑘
, 𝜃
𝜇3

𝑥2 ,𝑘
, 𝜃
𝜇3

𝑥3 ,𝑘
, 𝜃
𝜇4

𝑥3 ,𝑘
, 𝜃
𝜇5

𝑥1 ,𝑘
, 𝜃
𝜇5

𝑥2 ,𝑘
)

(called random realization), 𝑘 = 1, 2, . . . , 100000, the
Jacobian 𝐽x is evaluated and the largest real part of its
eigenvalues, 𝜆max

𝐽x
, is recorded. Consequently, the stability

of the system can be obtained for each random realization
based on the classical theory of dynamical systems. The
percentage of stable models among the 1 × 10

6 random
realizations is then accounted. Likewise, we statistically
evaluate the percentage of stable models for the other three
cases and the results are listed in Table 5.

To investigate the role of 3-HPA inhibition in more detail
and verify the existence of Hopf bifurcation, we carry out the
following analysis.

Firstly, we, respectively, discuss the roles of 𝜃𝜇2
𝑥2
and 𝜃𝜇3
𝑥2
in

maintaining the stability of the metabolic system. For each
concerning saturation parameter (𝜃𝜇2

𝑥2
or 𝜃𝜇3
𝑥2
), 𝑄 points (𝑄

is set to be 200 in the actual numerical implementation) are
equidistantly selected from its interval with the other param-
eters sampled from a uniform distribution (5000 samples in
total for each selected point of the concerning parameter).
Then the relative fraction of stable models, which is defined
as

𝑝
𝑗

𝑖
=

𝑀
𝑗

𝑖

𝑀

, 𝑖 = 𝜃
𝜇2

𝑥2
, 𝜃
𝜇3

𝑥2
, 𝑗 = 1, 2, . . . , 𝑄, (22)

can be calculated, where 𝑀 = 5000 is the number of the
total samples at each point and 𝑀

𝑗

𝑖
is the number of stable

samples at point 𝑗. Figures 2 and 3 depict the relative fraction
of stable models as functions of 𝜃𝜇2

𝑥2
and 𝜃

𝜇3

𝑥2
, respectively.

The figures illustrate that the probability of obtaining a stable
steady state decreases as 𝜃𝜇2

𝑥2
increased (i.e., as the strength of

3-HPA inhibition to 𝑟
2
weaken) but increases as 𝜃𝜇3

𝑥2
increased.

The averaged relative fraction of stablemodels for the selected
𝑄 points of 𝜃𝜇2

𝑥2
and 𝜃𝜇3
𝑥2
, which are defined as

𝑢
𝑖
=

∑
𝑄

𝑗=1
𝑝
𝑗

𝑖

𝑄

, 𝑖 = 𝜃
𝜇2

𝑥2
, 𝜃
𝜇3

𝑥2
, (23)

can be computed, being of 55.877% and 55.713%, respectively.
Additionally, the variance of the relative fraction of stable
models for the selected 𝑄 points of 𝜃𝜇2

𝑥2
and 𝜃

𝜇3

𝑥2
, which are

defined as

𝜎
𝑖
=

∑
𝑄

𝑗=1
(𝑝
𝑗

𝑖
− 𝑢
𝑖
)

2

𝑄 − 1

, 𝑖 = 𝜃
𝜇2

𝑥2
, 𝜃
𝜇3

𝑥2
,

(24)

can also be computed, which are 0.041 and 0.108, respectively.
The results indicate that the variance of the relative fraction
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Figure 2: The relative fraction of stable models as a function of 𝜃𝜇2
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Figure 3: The relative fraction of stable models as a function of 𝜃𝜇3
𝑥2
.

of stable models caused by the change of 𝜃𝜇3
𝑥2

is greater than
that of 𝜃𝜇2

𝑥2
, which implies that the stability of the system

is more sensitive to 𝜃
𝜇3

𝑥2
. This conclusion is consistent with

the experimental finding that PDOR is more sensitive to the
higher level of 3-HPA concentration [32].

Secondly, given 𝑆
0
= (400, 20, 200)

𝑇, 𝜃𝜇1
𝑥1

= −0.8, 𝜃𝜇2
𝑥1

=

0.5, 𝜃𝜇3
𝑥3
= −0.8, 𝜃𝜇4

𝑥3
= 0.8, 𝜃𝜇5

𝑥1
= 0.5, 𝜃𝜇5

𝑥2
= −1.0, and 𝛼 = 0.6,

we calculate the largest real parts of the eigenvalues of the
Jacobian 𝐽x by varying 𝜃

𝜇2

𝑥2
with 𝜃𝜇3

𝑥2
= −0.5 and 𝜃𝜇3

𝑥2
= −1.5,

respectively. Similar work is performed on 𝜃𝜇3
𝑥2
with 𝜃𝜇2

𝑥2
fixed.

These results are shown in Figures 4–7. Both Figures 4 and
5 illustrate that 𝜆max

𝐽x
is shifted toward positive values as 𝜃𝜇2

𝑥2

increased whereas Figures 6 and 7 obtain the opposite results
for 𝜃𝜇3
𝑥2
. Furthermore, comparing Figure 4 with Figure 5, we

find that the system is stable within a broader interval of
𝜃
𝜇2

𝑥2
while 𝜃

𝜇3

𝑥2
= −0.5, that is, under weak inhibition to

𝑟
3
. The opposite conclusion is obtained for 𝜃𝜇3

𝑥2
based on
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the comparison between Figures 6 and 7. Additionally, in
the numerical computation of Figure 5, we obtain that the
eigenvalues of the Jacobian 𝐽x at 𝜃

𝜇2

𝑥2
= −1.32 and 𝜃𝜇2

𝑥2
= −1.30

are, respectively, {−0.00927539 + 0.776809𝑖, −0.00927539 −

0.776809𝑖, −0.29554} and {0.0183351+0.761386𝑖, 0.0183351−
0.761386𝑖, −0.296216}, which shows that the sign of the
real part of the pair of complex conjugate eigenvalues has
been changed. Under assumption (H1) and applying Hopf
bifurcation theorem [33], we conclude that there exists a
critical value 𝜃

𝜇2

𝑥2
in (−1.32, −1.30) for the appearance of Hopf

bifurcation.
Finally, we investigate the influence of the ratio of 𝜃𝜇2

𝑥2

to 𝜃
𝜇3

𝑥2
on the stability of the system. Let 𝛽 = 𝜃

𝜇2

𝑥2
/𝜃
𝜇3

𝑥2
,

where 𝜃𝜇2
𝑥2

and 𝜃
𝜇3

𝑥2
are both restricted in [−2, −1]. We can

then obtain that 𝛽 ∈ [0.5, 2]. Then we gradually increase
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the value of 𝛽 from 0.5 to 2 with a step size of 0.02 and
equidistantly select 200 values of 𝜃𝜇3

𝑥2
from [−2, −1] for each

point of 𝛽 (𝜃𝜇2
𝑥2

will then be uniquely determined by 𝛽 and
𝜃
𝜇3

𝑥2
). For each pair of (𝛽, 𝜃𝜇3

𝑥2
), randomly generate 5000 values

for all other parameters from the corresponding intervals.
So we now have 106 realizations at each point of 𝛽. After
that, we account the percentage of stable models among
the sampled realizations for each 𝛽. As shown in Figure 8,
the percentage of stable models is monotonously increasing
with respect to 𝛽. Furthermore, the curve shows that the
probability of finding a stable state is markedly increased in
the neighborhood of 𝛽 = 1, that is, the system dramatically
varies in terms of stability under the transition from stronger
inhibition upon 𝑟

2
to stronger inhibition upon 𝑟

3
.
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6. Conclusions and Discussions

In this paper, structural kinetic modelling is applied to
investigate the stability of glycerol metabolic in the possible
engineered K. pneumoniae. On the basis of the numerical
results, we can summarize some essential properties of the
reductive pathway. Firstly, both the results in Table 5 and
Figure 8 reveal that, under stronger 3-HPA inhibition to
its formation than that to its consumption, the system is
much easier to obtain a stable state. Secondly, by varying 𝜃𝜇2

𝑥2

and 𝜃
𝜇3

𝑥2
separately, we find that the stability of the system

is much more sensitive to the latter, which confirms the
previous experimental research that PDOR is more sensitive
to higher level of 3-HPA concentration [11, 32]. Thirdly, our
numerical result shows the existence of Hopf bifurcation,
which is also consistent with the previous theoretical work
of the extracellular reactants [7]. Finally, combining the pre-
vious experimental researches with our theoretical analysis,
we conjecture that overexpression of the genes encoding
GDHt and PDOR such that the activity of GDHt is higher
than that of PDOR is favored for stabilizing the metabolic
system, resulting in increasing the productivity of 1,3-PD.
The contributions of this work would be helpful for deeply
understanding metabolic and genetic regulation of glycerol
metabolism.

This is so far the first trail to investigate the stability of
glycerol metabolic system in the intracellular environment.
Although the present work only considers a relatively simple
part of the whole network of glycerol metabolism, the
obtained results have shown the validity of structural kinetic
modelling in investigating the dynamics of the metabolic
system. Most important of all, the method needs far less
computation cost compared with the techniques in [12, 13].
Therefore, if the temporal changes of the metabolites are
not the primary concern, we believe that structural kinetic
modelling would be much easier to be extended to study
the dynamics of the whole network of glycerol metabolism,
which is also one of the emphases of our future research.
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