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Robust Design for Linear Non-Regenerative MIMO
Relays with Imperfect Channel State Information

Yue Rong, Member, IEEE

Abstract—In this paper, we address statistically robust
multiple-input multiple-output (MIMO) relay design problems
under two imperfect channel state information (CSI) scenarios:
(1) All nodes have imperfect CSI; (2) The destination node
knows the exact CSI, while the other nodes have imperfect
CSI. For each scenario, we develop robust source and relay
matrices by considering a broad class of frequently used objective
functions in MIMO system design and the averaged transmission
power constraints. Simulation results demonstrate the improved
robustness of the proposed algorithms against CSI errors.

Index Terms—MIMO relay, channel state information, robust-
ness, MMSE, majorization.

I. INTRODUCTION

Recently, there have been many research efforts on linear
non-regenerative multiple-input multiple-output (MIMO) relay
systems [1]-[4]. The optimal relay amplifying matrix is ob-
tained in [1], [2] to maximize the mutual information between
source and destination. In [3], optimal relay matrices are devel-
oped to minimize the mean-squared error (MSE) of the signal
waveform estimation at the destination. A unified framework
is established for optimizing the source precoding matrix and
the relay amplifying matrix of linear non-regenerative MIMO
relay systems with a broad class of objective functions [4].

For MIMO relay systems, the channel state information
(CSI) knowledge of all hops is required at the destination
node to estimate the source signals. Moreover, in order to
optimize the source and relay matrices in [1]-[4], the CSI
knowledge of all hops is needed at the node which carries
out the optimization procedure. However, in practical relay
communication systems, the exact CSI is unknown, and there-
fore, has to be estimated. There is always mismatch between
the true and the estimated CSI due to channel noise, quanti-
zation errors, and outdated channel estimates. Obviously, the
performance of the algorithms in [1]-[4] will degrade due to
such CSI mismatch. In [5]-[7], MMSE-based optimal relay
amplifying and destination receiving matrices for a two-hop
MIMO relay system have been developed taking into account
the CSI mismatch. However, the source precoding matrix is not
optimized in [5]-[7]. The source precoding matrix optimization
under CSI mismatch is investigated in [8], [9] using the MMSE
criterion.

In this paper, we investigate statistically robust two-hop
MIMO relay systems. In contrast to [5]-[9], we develop
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robust source precoding matrix and relay amplifying matrix
by considering a broad class of frequently used objective
functions in MIMO system design [4] (e.g. maximal mutual
information, MMSE). In particular, we consider two imperfect
CSI scenarios: (1) All nodes have imperfect CSI; (2) The
destination node knows the exact CSI, while the source and
relay nodes have imperfect CSI. The true CSI is modelled as a
Gaussian random matrix with the estimated CSI as the mean
value, and the well-known Kronecker model is adopted for
the covariance of the CSI mismatch [5]-[9]. We would like
to point out that in [10], only the imperfect CSI case (1) is
addressed.

For each of the two imperfect CSI scenarios, we show that
the CSI mismatch information is intrinsically embedded in
the structure of the optimal robust source and relay matrices.
Moreover, the available power at the source and the relay
nodes is optimally distributed among all data streams in a
robust fashion against the CSI mismatch. Such robust power
allocation can be implemented with the same computational
complexity as the non-robust power allocation scheme in [4].
Interestingly, when the exact CSI is available (i.e., no CSI
mismatch), the robust source and relay matrices become the
optimal source and relay matrices developed in [4]. Thus, this
paper is an important generalization of [4] to the practical
scenario of imperfect CSI. Simulation results demonstrate the
improved robustness of the proposed approaches against the
CSI mismatch.

The rest of this paper is organized as follows. In Section II,
we introduce the model of a two-hop linear non-regenerative
MIMO relay communication system. The robust source and
relay matrices are developed in Sections III and IV, depending
on whether the destination node has the exact CSI knowledge.
In Section V, we show some numerical examples. Conclusions
are drawn in Section VI.

II. SYSTEM MODEL

We consider a three-node MIMO communication system
where the source node (node 1) transmits information to the
destination node (node 3) with the aid of one relay node (node
2). The ith node is equipped with Ni, i = 1, 2, 3, antennas. We
focus on the case where the direct link between the source and
destination nodes is sufficiently weak to be ignored as in [1]-
[4]. This scenario occurs when the direct link is blocked by an
obstacle such as a mountain. Using the non-regenerative relay
strategy, the received signal vector at the destination node can
be written as

y = H2F2H1F1s + H2F2v2 + v3 , Gs + v̄ (1)



2

where s is the Nb×1 source signal vector, F1 is the N1×Nb

source precoding matrix, H1 is the N2 × N1 MIMO fading
channel matrix between the source and relay nodes, F2 is the
N2×N2 relay amplifying matrix, H2 is the N3×N2 MIMO
fading channel matrix between the relay and destination nodes,
v2 is an N2 × 1 noise vector at the relay node, and v3

is an N3 × 1 noise vector at the destination node. Here
G , H2F2H1F1 is the equivalent source-destination MIMO
channel matrix, and v̄ , H2F2v2 +v3 is the equivalent noise
vector.

We assume that E[ssH ] = INb
, where E[·] stands for the

statistical expectation, (·)H denotes the Hermitian transpose,
and In is an n × n identity matrix. In order to avoid
any transmission power loss at each node, there should be
Nb ≤ min(N1, N2, N3). We also assume that all noises are
independent and identically distributed (i.i.d.) additive white
Gaussian noise (AWGN) with zero mean and unit variance.

Using a linear receiver at the destination node, the estimated
signal vector can be written as ŝ = WHy, where W is
the N3 × Nb weight matrix. The MSE matrix of the signal
waveform estimation E , E

[
(ŝ− s)(ŝ− s)H

]
can be written

as

E = (WHG− INb
)(WHG− INb

)H + WHCv̄W (2)

where Cv̄ , E[v̄v̄H ] = H2F2FH
2 HH

2 + IN3 is the noise
covariance matrix. It has been shown in [4] that a broad class
of frequently used MIMO relay system design objectives such
as the source-destination mutual information can be written as
a function of the main diagonal elements of the MSE matrix
E.

With mismatch between the true and the estimated CSI,
the true channel Hi can be represented by the well-known
Gaussian-Kronecker model [5]-[9], where Hi is a complex-
valued Gaussian random matrix

Hi ∼ CN (H̄i,Θi ⊗Φi), i = 1, 2. (3)

Here the mean value is the estimated channel matrix H̄i, Θi

denotes the Ni ×Ni covariance matrix of channel estimation
error at the transmitter side, while Φi is the Ni+1 × Ni+1

covariance matrix of channel estimation error seen from the
receiver side, and ⊗ stands for the matrix Kronecker product.
In other words, we have Hi = H̄i + AΦiHwiA

H
Θi

, i = 1, 2,
where AΦiA

H
Φi

= Φi, AΘiA
H
Θi

= ΘT
i , and Hwi is an Ni+1×

Ni Gaussian random matrix with i.i.d. zero mean and unit
variance entries, and is the unknown part in the CSI mismatch.

LEMMA 1 [12]: For H ∼ CN (H̄,Θ ⊗ Φ), there is
EH[HAHH ] = H̄AH̄H + tr(AΘT )Φ, and EH[HHAH] =
H̄HAH̄ + tr(ΦA)ΘT , where tr(·) denotes the matrix trace,
and (·)T stands for the matrix transpose.

III. ROBUST MIMO RELAY DESIGN WITH IMPERFECT
CSI AT ALL NODES

In this section, we consider the scenario where all nodes
have imperfect CSI. It can be seen from (2) that if the exact
H1 and H2 are unavailable at the destination node, it is
impossible to design W that optimizes E in (2). If we design
W, F1, and F2 based only on H̄1 and H̄2, there can be a

great performance degradation due to the mismatch between
Hi and H̄i, i = 1, 2. Instead of optimizing E, we design
W to minimize EH1,H2 [E], where the statistical expectation
is carried out with respect to H1 and H2, with the distribution
given in (3).

The statistical expectation of E is given by [10]

EH1,H2 [E] = WHAW −WHH̄2F2H̄1F1

−FH
1 H̄H

1 FH
2 H̄H

2 W + INb
(4)

where

A , H̄2F2

(
H̄1F1FH

1 H̄H
1 + α1Φ1 + IN2

)
FH

2 H̄H
2

+α2Φ2 + IN3 (5)
α1 , tr(F1FH

1 ΘT
1 ) (6)

α2 , tr
(
F2(H̄1F1FH

1 H̄H
1 + α1Φ1 + IN2)F

H
2 ΘT

2

)
. (7)

Now the weight matrix W which minimizes (4) is the
famous Wiener filter given by

W = A−1H̄2F2H̄1F1 (8)

where (·)−1 denotes the matrix inversion. Substituting (8) back
into (4), we have

EH1,H2 [E] = INb
− FH

1 H̄H
1 FH

2 H̄H
2 A−1H̄2F2H̄1F1. (9)

The transmission power consumed by the relay node can be
written as p2 = tr

(
F2

(
H1F1FH

1 HH
1 + IN2

)
FH

2

)
. However,

since the true H1 is unknown, p2 is also unknown. In this
paper, we consider the averaged transmission power at the
relay node, which is given by

EH1 [p2] = tr
(
F2

(
E[H1F1FH

1 HH
1 ] + IN2

)
FH

2

)

= tr
(
F2

(
H̄1F1FH

1 H̄H
1 + α1Φ1 + IN2

)
FH

2

)
(10)

where Lemma 1 is applied to obtain (10). As in [4], we use q
to denote a unified objective function, and d[E] stands for the
main diagonal elements of E. Instead of optimizing q(d[E])
in [4], we minimize the objective function of q(d[EH1,H2 [E]]).
Combining (9) and (10), the robust source and relay matrices
optimization problem can be written as

min
F1,F2

q
(
d
[
INb

− FH
1 H̄H

1 FH
2 H̄H

2 A−1H̄2F2H̄1F1

])
(11)

s.t. tr
(
F2

(
H̄1F1FH

1 H̄H
1 +α1Φ1+IN2

)
FH

2

) ≤P2 (12)

tr
(
F1FH

1

) ≤ P1 (13)

where Pi > 0, i = 1, 2, is the transmission power available at
the ith node, (12) and (13) represent the transmission power
constraint at the relay node and the source node, respectively.
The problem (11)-(13) provides a statistically robust design of
F1 and F2 when all nodes have imperfect CSI.

Let us introduce the following matrix eigenvalue decom-
position (EVD) and singular value decomposition (SVD) for
i = 1, 2

Φi = UΦiΛΦiU
H
Φi

(14)

Λ̃Φi, αiΛΦi + INi+1 (15)

H̃i , Λ̃− 1
2

Φi
UH

Φi
H̄i = ŨiΣ̃iṼH

i (16)
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where UΦi and Ũi are Ni+1×Ni+1 unitary matrices, ΛΦi is
an Ni+1 × Ni+1 diagonal matrix, Ṽi is an Ni × Ni unitary
matrix, and Σ̃i is an Ni+1 × Ni singularvalue matrix. It has
been proven in [10] that for the statistically robust relay design
problem (11)-(13), if q is a Schur-concave function [11] of
d[EH1,H2 [E]], the optimal F1 and F2 are given by

F1 = Ṽ1,1Λ1, F2 = Ṽ2,1Λ2ŨH
1,1Λ̃

− 1
2

Φ1
UH

Φ1
(17)

where for i = 1, 2, Ṽi,1 and Ũi,1 corresponds to Nb columns
in Ṽi and Ũi associated with the largest Nb singularvalues,
respectively, and Λi, i = 1, 2, are Nb×Nb diagonal matrices.
If q is Schur-convex [11] with respect to d[EH1,H2 [E]], the
optimal F2 is given in (17), while the optimal F1 is F1 =
Ṽ1,1Λ1V0, where V0 is an Nb×Nb unitary matrix such that
EH1,H2 [E] in (9) has identical main-diagonal elements.

If the exact CSI is available at all nodes, i.e., Hi = H̄i,
Θi = 0Ni , Φi = 0Ni+1 , i = 1, 2, the problem (11)-(13)
becomes the MIMO relay optimization problem with the exact
CSI in [4]. Therefore, the problem (11)-(13) is more general
than the problem in [4]. From (6) and (7) we find that α1 is
a function of F1, and α2 is a function of both F1 and F2.
Consequently, it can be seen from (14)-(16) that Ṽ1 and Ũ1

depend on F1, and Ṽ2 depends on both F1 and F2. Thus,
from (17) we find that the explicit structure of the optimal F1

and F2 is very difficult to find for general Θi and Φi. In the
following, we show the explicit structure of the optimal F1

and F2 when Θi = τiINi and/or Φi = εiINi+1 , i = 1, 2. This
corresponds to the MIMO channel where the transmit and/or
receiver antennas are uncorrelated as explained in detail in
Remark 1 of [7].

For the case of Φi = εiINi+1 , i = 1, 2, the robust relay
optimization problem can be written as

min
F1,F2

q
(
d
[
INb

− FH
1 H̄H

1 FH
2 H̄H

2 B−1H̄2F2H̄1F1

])
(18)

s.t. tr
(
F2

(
H̄1F1FH

1 H̄H
1 + β1IN2

)
FH

2

) ≤ P2 (19)

tr
(
F1FH

1

) ≤ P1 (20)

where

B , H̄2F2

(
H̄1F1FH

1 H̄H
1 + β1IN2

)
FH

2 H̄H
2 + β2IN3(21)

β1 , ε1tr(F1FH
1 ΘT

1 ) + 1 (22)
β2 , ε2tr(F2(H̄1F1FH

1 H̄H
1 + β1IN2)F

H
2 ΘT

2 ) + 1. (23)

Let us introduce the SVDs of H̄i = UiΣiVH
i , i = 1, 2. It

can be easily seen from (14)-(16) that for Φi = εiINi+1 , we
have Ṽi = Vi and Ũi = Ui, i = 1, 2. Consequently, for
Schur-concave q, we have

F1 = V1,1Λ1, F2 = V2,1Λ2UH
1,1 (24)

where Vi,1 and Ui,1 corresponds to Nb columns in Vi and
Ui associated with the largest Nb singularvalues, respectively.
If q is Schur-convex, F2 is given in (24), and the optimal F1

is F1 = V1,1Λ1V0.
Now the task is to find the Nb×Nb diagonal power loading

matrices Λi, i = 1, 2. For Schur-concave q, substituting (24)

back into (18)-(20), we obtain the following problem

min
λ1,λ2

q








(
1 +

σ2
1,kλ2

1,kσ2
2,kλ2

2,k

β1σ2
2,kλ2

2,k + β2

)−1





 (25)

s.t.
Nb∑

k=1

λ2
2,k(λ2

1,kσ2
1,k + β1) ≤ P2 (26)

Nb∑

k=1

λ2
1,k ≤ P1 (27)

λ1,k ≥ 0, λ2,k ≥ 0, k = 1, · · · , Nb (28)

where β1 , ε1

∑Nb

k=1 λ2
1,k[VH

1,1Θ
T
1 V1,1]k,k + 1, β2 ,

ε2

∑Nb

k=1 λ2
2,k(σ2

1,kλ2
1,k + β1)[VH

2,1Θ
T
2 V2,1]k,k + 1. Here for

i = 1, 2, λi,k and σi,k, k = 1, · · · , Nb, are the kth largest
main diagonal elements of Λi and Σi, respectively, λi ,
[λi,1, · · · , λi,Nb

]T , and for a scalar x, {xk} , [x1, · · · , xNb
]T .

By introducing ak , σ2
1,k, xk , λ2

1,k, bk , σ2
2,k, yk ,

λ2
2,k(λ2

1,kσ2
1,k + β1), k = 1, · · · , Nb, the problem (25)-(28)

can be simplified to

min
x,y

q

({
1− akxkbkyk

(akxk + β1)(bkyk + β2)

})
(29)

s.t.
Nb∑

k=1

xk ≤ P1, xk ≥ 0, k = 1, · · · , Nb (30)

Nb∑

k=1

yk ≤ P2, yk ≥ 0, k = 1, · · · , Nb (31)

where x , [x1, · · · , xNb
]T , y , [y1, · · · , yNb

]T ,
β1 = ε1

∑Nb

k=1 xk[VH
1,1Θ

T
1 V1,1]k,k + 1, β2 = ε2

∑Nb

k=1 yk

[VH
2,1Θ

T
2 V2,1]k,k + 1. The optimal x and y in the problem

(29)-(31) can be obtained by an iterative method developed
in [4]. For any Schur-convex objective function q, since the
optimal EH1,H2 [E] has identical main diagonal elements, it can
be shown similar to [4] that the optimal power loading vectors
x and y are obtained by solving the problem (29)-(31) with
q =

∑Nb

k=1

[
1− akxkbkyk

(akxk+β1)(bkyk+β2)

]
.

For the case of Θi = τiINi , i = 1, 2, we have α1 =
τ1tr(F1FH

1 ), and α2 = τ2tr(F2(H̄1F1FH
1 H̄H

1 + α1Φ1 +
IN2)F

H
2 ). Now we show that (9) is decreasing with respect

to α1, i.e., if tr(F̃1F̃H
1 ) ≤ tr(F1FH

1 ), then EH1,H2 [Ẽ] º
EH1,H2 [E], where º denotes matrix positive-semidefiniteness,
and Ẽ is obtained from (9) with F̃1. In fact, by introducing
F̃1 = α

− 1
2

1 F1, (9) can be written as

EH1,H2 [E] = INb
− F̃H

1 H̄H
1 FH

2 H̄H
2 Ā−1H̄2F2H̄1F̃1 (32)

where

Ā , H̄2F2

(
H̄1F̃1F̃H

1 H̄H
1 + Φ1 + α−1

1 IN2

)
FH

2 H̄H
2

+α̃2Φ2 + α−1
1 IN3 (33)

α̃2 , tr
(
F2

(
H̄1F̃1F̃H

1 H̄H
1 + Φ1 + α−1

1 IN2

)
FH

2

)
. (34)

It can be clearly seen from (32)-(34) that for a given F̃1,
EH1,H2 [E] is a decreasing function of α1. It can be shown in
a similar way to (32)-(34) that EH1,H2 [E] also decreases with
respect to α2. Thus, the optimal solution of F1 and F2 occurs
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at α1 = τ1P1 and α2 = τ2P2. Consequently, from (14)-(16),
we find that Ũi and Ṽi do not depend on F1 and F2.

Now the task is to find the Nb ×Nb diagonal matrices Λi,
i = 1, 2. Substituting (17) back into (11)-(13), we have

min
Λ1,Λ2

q
(
d
[[

INb
+Σ̃2

1,1Λ
2
1Σ̃

2
2,1Λ

2
2

(
Σ̃2

2,1Λ
2
2+INb

)−1]−1
])

(35)

s.t. tr
(
Λ2

2(Λ
2
1Σ̃

2
1,1 + INb

)
) ≤ P2 (36)

tr(Λ2
1) ≤ P1 (37)

where Σ̃i,1 is a diagonal matrix containing the largest Nb

singularvalues in Σ̃i, i = 1, 2. The problem (35)-(37) can be
solved by the iterative method we just developed for solving
the problem (29)-(31). Before moving to the next section, we
would like to mention that as can be seen from (29)-(31)
and (35)-(37), the proposed robust algorithm has the same
computational complexity order as the algorithm developed in
[4] which requires the exact CSI at all nodes. In other words,
the improved robustness in performance is achieved without
increasing the computational complexity.

IV. ROBUST MIMO RELAY DESIGN WITH EXACT CSI AT
THE DESTINATION

In some cases, channel estimation at the destination node
can be accurate enough to be modelled as perfect (i.e., perfect
CSI of H2 and H1), while the CSI available at the source and
relay node is still imperfect due to feedback error/delay and
quantization. In such case, the linear receiving matrix W can
be designed to optimize the MSE matrix E in (2) as W =[
H2F2(H1F1FH

1 HH
1 + IN2)F

H
2 HH

2 + IN3

]−1
H2F2H1F1.

The resulting MSE matrix, defined as E0, is given as

E0 =
[
INb

+ FH
1 HH

1 FH
2 HH

2 (H2F2FH
2 HH

2 + IN3)
−1

×H2F2H1F1

]−1
(38)

Since the exact CSI of H1 and H2 is unknown at the
node performing the optimization, we consider minimizing the
objective function of q(d[EH1,H2 [E0]]). However, it can be
seen from (38) that it is intractable to obtain the expression
of EH1,H2 [E0]. To avoid the difficulty, in the following, we
derive a lower bound of EH1,H2 [E0].

LEMMA 2 [11, Ch. 16]: For a matrix function f(X) of
random matrices X having finite expectation E[X], if f is
matrix-convex, then E[f(X)] º f(E[X]).

It can be shown from [13] that f(X) = X−1 is a matrix-
convex function of X. Using Lemma 2 and (38), we find that
for a fixed H2,

EH1[E0] º
[
INb

+ FH
1 EH1[H

H
1 C2H1]F1

]−1
(39)

where C2 , FH
2 HH

2 (H2F2FH
2 HH

2 + IN3)
−1H2F2. Let us

define C1 , INb
+ FH

1 HH
1 H1F1 and C3 , H1F1, (38) can

be written as

E0 =
[
C1 −CH

3

(
FH

2 HH
2 H2F2 + IN2

)−1
C3

]−1

= C−1
1 + C−1

1 CH
3

(
FH

2 HH
2 H2F2 + IN2

−C3C−1
1 CH

3

)−1
C3C−1

1 (40)

where the matrix inversion lemma is applied to obtain (40).
Using Lemma 2, it can be seen from (40) that for a given H1,

EH2 [E0] º C−1
1 + C−1

1 CH
3

(
FH

2 EH2

[
HH

2 H2

]
F2

+IN2 −C3C−1
1 CH

3

)−1
C3C−1

1 (41)

From (39) and (41), we obtain Elb, a lower bound of
EH1,H2 [E0] as

Elb =
[
INb

+ FH
1 EH1

[
HH

1

[
IN2 −

(
FH

2 EH2

[
HH

2 H2

]
F2

+IN2

)−1]
H1

]
F1

]−1

=
[
INb

+ FH
1 EH1

[
HH

1

[
IN2 −

(
FH

2

[
H̄H

2 H̄2

+tr(Φ2)ΘT
2

]
F2 + IN2

)−1
]
H1

]
F1

]−1

(42)

=
[
INb

+ FH
1

[
H̄H

1

[
IN2 −

(
FH

2

[
H̄H

2 H̄2

+tr(Φ2)ΘT
2

]
F2 + IN2

)−1
]
H1 + γΘT

1

]
F1

]−1

(43)

where Lemma 1 is used to obtain (42) and (43) and γ =
tr

(
Φ1

[
IN2 −

(
FH

2

[
H̄H

2 H̄2 + tr(Φ2)ΘT
2

]
F2 + IN2

)−1])
. Let

us introduce ĤH
2 Ĥ2 , H̄H

2 H̄2+tr(Φ2)ΘT
2 , F̃1 , (ΘT

1 )
1
2 F1,

and Ĥ1 , H̄1(ΘT
1 )−

1
2 . Here ΘT

1 = (ΘT
1 )

H
2 (ΘT

1 )
1
2 . Then

(43) can be rewritten as

Elb =
[
INb

+ F̃H
1 ĤH

1 FH
2 ĤH

2

(
Ĥ2F2FH

2 ĤH
2 + IN3

)−1

×Ĥ2F2Ĥ1F̃1 + γF̃H
1 F̃1

]−1
(44)

with γ = tr
(
Φ1FH

2 ĤH
2

(
Ĥ2F2FH

2 ĤH
2 + IN3

)−1
Ĥ2F2

)
.

Using (44), (12), and (13), the robust relay design problem
optimizing q(d[Elb]) can be written as

min
F̃1,F2

q
(
d
[[

INb
+ F̃H

1 ĤH
1 FH

2 ĤH
2

(
Ĥ2F2FH

2 ĤH
2 + IN3

)−1

×Ĥ2F2Ĥ1F̃1 + γF̃H
1 F̃1

]−1]) (45)

s.t. tr
(
F2

(
Ĥ1F̃1F̃H

1 ĤH
1 + tr(F̃1F̃H

1 )Φ1

+IN2

)
FH

2

) ≤ P2 (46)

tr
(
F̃H

1 (ΘT
1 )−

H
2 (ΘT

1 )−
1
2 F̃1

) ≤ P1. (47)

In contrast to the case of imperfect CSI at all nodes discussed
in Section III, it is very difficult to find the optimal structure of
F̃1 and F2 as the solution to the problem (45)-(47). Inspired
by the robust design in Section III, we adopt a (sub)optimal
structure of F̃1 and F2 as F̃1 = V̂1,1Λ1, F2 = V̂2,1Λ2ÛH

1,1,
where Ĥi = ÛiΣ̂iV̂H

i , i = 1, 2, is the SVD of Ĥi, Ûi,1 and
V̂i,1, i = 1, 2, contain Nb columns in Ûi and V̂i associated
with the largest Nb singularvalues, respectively. Now the
robust relay design problem boils down to the optimization



5

of the power loading matrices Λ1 and Λ2, which is given by

min
λ1,λ2

q








(
1 +

σ̂2
1,kλ2

1,kσ̂2
2,kλ2

2,k

σ̂2
2,kλ2

2,k + 1
+ γλ2

1,k

)−1





 (48)

s.t.
Nb∑

k=1

λ2
2,k


σ̂2

1,kλ2
1,k + mk

Nb∑

j=1

λ2
1,j + 1


 ≤ P2 (49)

Nb∑

k=1

dkλ2
1,k ≤ P1 (50)

λ1,k ≥ 0, λ2,k ≥ 0, k = 1, · · · , Nb (51)

where for i = 1, 2, λi,k and σ̂i,k, k = 1, · · · , Nb, are the kth
largest main diagonal elements of Λi and Σ̂i, respectively,
γ =

∑Nb

k=1

σ̂2
2,kλ2

2,kmk

σ̂2
2,kλ2

2,k+1
, mk is the kth main diagonal element

of M , ÛH
1,1Φ1Û1,1, and dk is the kth main diagonal element

of D , V̂H
1,1(Θ

T
1 )−

H
2 (ΘT

1 )−
1
2 V̂1,1.

By introducing xk , λ2
1,k, ak , σ̂2

1,k, bk , σ̂2
2,k,

yk , λ2
2,k

(
σ̂2

1,kλ2
1,k + mk

∑Nb

j=1 λ2
1,j + 1

)
, k = 1, · · · , Nb,

the problem (48)-(51) can be equivalently written as

min
x,y

q

({(
1 +

akbkxkyk

akxk + bkyk + mk

∑Nb

j=1 xj + 1

+γxk)−1
})

(52)

s.t.
Nb∑

k=1

yk ≤ P2, yk ≥ 0, k = 1, · · · , Nb (53)

Nb∑

k=1

dkxk ≤ P1, xk ≥ 0, k = 1, · · · , Nb (54)

where we have now γ =
∑Nb

k=1
bkykmk

akxk+bkyk+mk

∑Nb
j=1 xj+1

.

Similar to the problem (29)-(31), the problem (52)-(54) can
be efficiently solved by iteratively updating x and y.

V. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed
robust source and relay matrices through numerical simu-
lations. In the simulations, the estimated channel matrices
H̄1 and H̄2 have i.i.d. complex Gaussian entries with zero-
mean and variances σ2

i /Ni for H̄i, i = 1, 2. We define
SNRi = σ2

i PiNi+1/Ni as the signal-to-noise ratio (SNR) for
the ith hop, i = 1, 2. In all simulations, we set Ni = 4,
i = 1, 2, 3, Nb = 3, SNR2 = 20dB, and all simulation results
are averaged over 1000 independent realizations of the true
channel matrices H1 and H2. We will consider the following
five MIMO relay algorithms.

• Non-RB (Imp. CSID): The algorithm proposed in [4]
using the imperfect CSI at all nodes.

• Non-RB (Exact CSID): The algorithm developed in [4]
with the exact CSI at the destination node.

• RB (Imp. CSID): The robust algorithm with imperfect
CSI at the destination node developed in Section III with
q = tr(EH1,H2 [E]).

• RB (Exact CSID): The robust algorithm with the exact
CSI at the destination node developed in Section IV with
q = tr(Elb).

• Exact CSI (All nodes): The MIMO relay algorithm pro-
posed in [4] using the exact CSI at all nodes.

In the first example, the true channel matrices are modelled
as (3) with Θi = INi

, i = 1, 2, and Φi, i = 1, 2, are defined
as Toeplitz matrices [5]-[9] with elements given by [Φ1]m,n =
0.8|m−n| and [Φ2]m,n = 0.9|m−n|, respectively. Fig. 1 shows
the MSE performance of four algorithms versus SNR1. It can
be seen that for a MIMO relay system with imperfect CSI
at the destination node, the MSE produced by the non-robust
relay algorithm increases with SNR1. This is due to the fact
that the mismatch between Hi and H̄i is not considered by the
non-robust relay algorithm. The robust algorithm developed
in Section III has a much better MSE performance compared
with the non-robust algorithm. But due to the missing of the
exact CSI at the destination node, it still yields a high error-
floor. With the exact CSI at the destination node, the robust
relay algorithm proposed in Section IV yields a similar slope
of decreasing MSE with respect to SNR1 as the relay scheme
with the exact CSI at all nodes.
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Fig. 1. Example 1: MSE versus SNR1.
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Fig. 2. Example 1: BER versus SNR1.
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Fig. 2 shows the BER performance of four relay algorithms
versus SNR1. The QPSK constellations are used to modulate
the source symbols. We observe that when the exact CSI is
not available at the destination node, the non-robust algorithm
has a BER close to 0.5 over the whole SNR1 range. The
robust relay algorithm has a better performance in this case.
With the exact CSI at the destination node, the robust relay
algorithm proposed in Section IV further improves the system
BER performance. But at large SNR1, there is still some gap
between the BER of the relay system with the exact CSI at all
nodes and the relay system with imperfect CSI at the source
and relay nodes.

In the second example, the true channel matrices are mod-
elled as (3) with [Θ1]m,n = 0.7|m−n|, [Θ2]m,n = 0.8|m−n|,
[Φ1]m,n = 0.6|m−n|, and [Φ2]m,n = 0.7|m−n|. As mentioned
in Section III, the explicit structure of the optimal robust
F1 and F2 is difficult to obtain when the destination node
has the imperfect CSI. Thus, we compare the performance
of three relay systems with the exact CSI at the destination.
Fig. 3 shows the MSE performance of three algorithms versus
SNR1, while Fig. 4 displaces the system BER produced by
three algorithms versus SNR1. Similar to Figs. 1 and 2, we
observe that the robust relay algorithm developed in Section IV
has improved MSE and BER performance than the non-robust
algorithm.
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Fig. 3. Example 2: MSE versus SNR1.

VI. CONCLUSIONS

We have addressed two imperfect CSI scenarios in lin-
ear non-regenerative MIMO relay communications. For each
case, we have developed statistically robust source and relay
matrices for most commonly used MIMO system design
criteria. Simulation results show an improved robustness of
the proposed algorithms against CSI errors.
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