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Radio-loud AGN (> 1022 W Hz−1 at 1.4 GHz) will be the dominant bright source population

detected with the SKA. The high resolution that the SKA will provide even in wide-area sur-

veys will mean that, for the first time sensitive, multi-frequency total intensity and polarisation

imaging of large samples of radio-loud active galactic nuclei (AGN) will become available. The

unprecedented sensitivity of the SKA coupled with its wide field of view capabilities will allow

identification of objects of the same morphological type (i.e. the entire FR I, low- and high-

luminosity FR II, disturbed morphology as well as weak radio-emitting AGN populations) up

to high redshifts (z∼ 4 and beyond), and at the same stage of their lives, from the youngest

CSS/GPS sources to giant and fading (dying) sources, through to those with restarted activity ra-

dio galaxies and quasars. Critically, the wide frequency coverage of the SKA will permit analysis

of same-epoch rest-frame radio properties, and the sensitivity and resolution will allow full cross-

identification with multi-waveband data, further revealing insights into the physical processes

driving the evolution of these radio sources. In this chapter of the SKA Science Book we give a

summary of the main science drivers in the studies of lifecycles and detailed physics of radio-loud

AGN, which include radio and kinetic luminosity functions,AGN feedback, radio-AGN trigger-

ing, radio-loud AGN unification and cosmological studies. We discuss the best parameters for the

proposed SKA continuum surveys, both all-sky and deep field,in the light of these studies.
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1. Introduction

Large-scale radio surveys compiled over the past 50 years have revealed a multitude of source
types that we term ‘radio-loud AGN’ (Peacock & Wall 1982; Wall 1994). These objects will be
the dominant population of bright sources detected by the SKA. The deep SKA radio surveys will
allow detailed and complete analysis of most, if not all, radio-loud AGN populations and provide
the basis to resolve some of the most critical questions in this area.

The radio emission from radio-loud AGN is synchrotron emission produced by a population
of electrons, transported in a relativistic outflow from thevicinity of the central supermassive black
hole, and accelerated to high energies as the jet expands anddecelerates to sub-relativistic speeds.
This is the dominating source of radio emission from radio-loud AGN down to luminosity densities
of ∼ 1022 W Hz−1 at 1.4 GHz; below this luminosity density AGN are referred toas weakly radio-
emitting and it is under debate whether their radio emissionis still dominated by an active nucleus
rather than star formation. The subject of weakly radio-emitting AGN is covered elsewhere in this
volume (Orienti et al. 2015, see also §6.1). Based on unification models (e.g. Barthel 1989; Urry &
Padovani 1995; Jackson & Wall 1999), radio-loud AGN are often distinguished as radio galaxies,
radio-loud quasars and BL Lac-type objects (dependent on the orientation to the observer). Radio
galaxies and radio-loud quasars are further broadly divided into unresolved or compact symmetric
objects, FR I and FR II type sources (including peculiar morphologies) and giant radio galaxies
(see §2.1; classification of different life stages and radiomorphologies). Here, we consider all of
these radio-loud AGN, with no selection on multi-wavelength properties of their hosts.

The physics of, and physical conditions in, the radio-emitting plasma are of great interest
in themselves, but radio-loud AGN are important for a numberof other reasons. Firstly, they
provide an obscuration-independent method of selecting AGN out to the highest redshifts, and in
some cases, e.g. radiatively inefficient, low accretion-rate AGN radio emission gives us theonly
method of measuring the output and accretion rate of the system. Secondly, radio-loud AGN are
now routinely invoked in models of galaxy formation and evolution, where they provide a so-
called ‘feedback’ mechanism. AGN feedback is now thought tobe one of the main mechanisms
preventing the cooling of large-scale gas and the consequent growth of the host galaxies (Bower
et al. 2006; Croton et al. 2006). Finally, we expect the SKA surveys to reach nJy levels, detecting
statistically significant numbers of sources across the wide range of the radio luminosity function
(RLF) at all cosmic epochs. When coupled with sufficient angular resolution and multi-waveband
data, it will be possible to separate the contribution of radio emission due to an active nucleus from
that due to ongoing or bursting star formation (SF; McAlpineet al. 2015).

In this Chapter we primarily focus on how the SKA will reveal the evolution of the radio-loud
AGN populations characterised by their radio morphologiesand luminosity densities, and at the
same time directly provide the necessary radio data for studies of the radio source physics for the
first time. There are a number of key questions that these deepsamples can address.

• What is the RLF at all cosmic epochs?

There is a huge range of radio AGN luminosity densities; in the local Universe this extends
from 1022 to 1027 W Hz−1 at 1.4 GHz (Mauch & Sadler 2007). Due to the Malmquist
effect, deep samples are highly biased towards high luminosity sources near to the limiting
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magnitude at each epoch. The result is that RLFs derived from‘complete’ small-area radio
samples are limited in accuracy and fail to fully probe the breadth of the full RLF. Although
it is well established that the RLF evolves steeply for the overall radio-loud AGN population
(note the steepness is luminosity dependent, e.g. Dunlop & Peacock 1990; Sadler et al 2007;
Donoso, Best & Kauffmann 2009; Rigby et al 2011; McAlpine, Jarvis & Bonfield 2013;
Best et al. 2014, among many others), it is still not clear whether it is sources themselves or
number of sources that become brighter.

• Is there a link between the evolving radio-loud AGN RLF and the evolution of galaxies and
galaxy clusters? Are feedback processes inherent to all radio-loud AGN, or to just a subset
of them, and what does this reveal about the physical processes within these populations?

Although interaction between the radio lobes and the hot ambient medium is directly observ-
able in X-rays in the local Universe, it is still an open question whether the physics of radio
galaxies is consistent with the role they are thought to playin the models of galaxy formation
and evolution (Cattaneo et al 2009; McNamara & Nulsen 2012).Studies of radio-loud AGN
populations in the local Universe (e.g. Best & Heckman 2012)show that there is a fundamen-
tal dichotomy between hosts of high- and low-excitation radio galaxies, and that it is the low
luminosity radio sources that drive the AGN activity atz< 0.2 (e.g. Shabala, Kaviraj, & Silk
2011). A number of authors attempted to implement AGN feedback into galaxy evolution
models (e.g. Shabala & Alexander 2009), but deep radio-loudAGN samples of wide range
of luminosity densities and atz> 0.5 are required to validate the models.

• What is the kinetic luminosity function (KLF) for AGN?

The radio luminosity density is the detectable signature ofa radio-loud AGN, but, as we will
discuss in this paper, this bears only a weak relationship tothe intrinsic kinetic luminosity
(jet power) of AGN. By providing multi-frequency, high-resolution images for large samples
of radio-loud AGN, the SKA will give us the best possible chance to break the luminosity
density/kinetic power degeneracy and therefore understand the power input by AGN to their
host environments and supermassive black hole growth over cosmic time (for population
studies see e.g. Kapińska & Uttley 2013, for a case study see Hardcastle et al 2012).

• What drives the AGN evolution? Is the ‘radio-loud AGN’ activity a singular phase for a
galaxy, either long- or short-duration, or is it cyclic? What triggers the fuelling cycle?

At present we know of a number of radio-loud AGN that show signatures of previous activity
episodes (Schoenmakers et al. 2000), but it is still not clear whether all radio sources are re-
triggered or only some fraction of them (e.g. Saikia & Jamrozy 2009), or even what triggers
radio activity. A number of authors have attempted to tacklethis problem via both statistical
population as well as case studies at low-redshifts (for recent works see e.g. Shabala et al.
2008; Janssen et al 2012; Kaviraj et al. 2014; Maccagni et al.2014). However, deep radio-
loud AGN samples of a wide range of luminosity densities atz> 0.5 are required to extend
these studies to higher redshifts (e.g. Karouzos, Jarvis, &Bonfield 2014).

In what follows we assume that continued progress in wide anddeep optical/IR imaging and
spectroscopic surveys will be such that it will be possible to identifya large fraction of the observed
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radio galaxy population and assign redshifts to the sources– a precondition for any study of a
population and its physics. Further discussions of radio-loud AGN hosts must involve a discussion
of the expected optical survey coverage by the start of SKA science operations – this is discussed
elsewhere in this volume (Antoniadis et al. 2015; Bacon et al. 2015; Kitching et al. 2015).

The chapter is composed as follows. In Section 2 we present our current view of the lifecycle
of a radio galaxy, and our current observational and theoretical understanding on the radio source
evolution as it ages throughout its lifetime. In Sections 3 –5 we separately discuss each stage of a
radio-loud AGN life, from a radio galaxy birth, through its mid-life, to its death; in each of those
sections we consider the necessary SKA1 and SKA receivers for each of the radio source class (i.e.
life phase) observations. In Section 6 we take a broader viewon the radio-loud AGN populations,
and discuss them in terms of AGN duty cycles, AGN unification and cosmological studies. A brief
summary of the SKA elements for this study is given in Section7. We assume a flat Universe
with the Hubble constant ofH0 = 67 km s−1 Mpc−1, andΩM = 0.685 andΩΛ = 0.315 (Planck
Collaboration et al. 2013) throughout the paper.

2. Lifecycles of radio-loud AGN

The typical timescales of AGN radio activity are estimated to be∼ 0.1 Gyr (e.g. Wan, Daly, &
Guerra 2000; Kapińska, Uttley & Kaiser 2012; Antognini, Bird, & Martini 2012). Once the radio
activity is triggered, the launched jet expands through thehost galaxy and ambient medium until
the jet supply ceases and the radio source slowly fades radiating away the remaining energy stored
in radio lobes. A series of these events is what we refer to as a‘lifecycle’ of a radio source.

2.1 How complete is our current picture?

The observed populations of radio-loud AGN fall into reasonably well defined classes distin-
guished by radio morphology, luminosity density and physical size (the latter of which is generally
interpreted to be proportional to age). The smallest size radio galaxies, the so-called Compact
Symmetric Objects (CSO,< 500 pc; Wilkinson et al. 1994), Gigahertz Peaked Spectrum (GPS,
< 1 kpc with turnover broadband radio spectra; Blake 1970; Stanghellini et al. 1990; O’Dea, Baum
& Stanghellini 1991) and Compact Steep Spectrum (CSS,< 10 kpc; Peacock & Wall 1982; Fanti
et al. 1990; O’Dea 1998) sources are compact radio sources completely embedded in the host
galaxy. They are believed to be predominantly young, ‘start-up’ or ‘baby radio-galaxies’, approxi-
mately 103−105 years old (Section 3). These sources may be resolved at VLBI angular resolutions,
where they often reveal morphologies similar to those of more extended, of the order of 100-kpc,
sources (e.g. Readhead 1995; Snellen, Schilizzi & van Langevelde 2000). At kiloparsec scales,
the Fanaroff-Riley (1974) class I and II (FR I, FR II respectively) are distinguished (Section 4).
According to unification models (Urry & Padovani 1995; Owen,Ledlow & Keel 1996; Wall &
Jackson 1997; Jackson & Wall 1999), these can be observed at various angles disguising them-
selves at times as, for example, core-dominated quasar and blazar sub-populations. FR I and FR II
type sources are found to be typically∼ 107 years old (Section 6).

A radio source is thought to evolve through these phases as itages: from young, compact
and luminous CSO/GPS and CSS sources, the jets of which strongly interact with dense inter-
stellar medium (ISM) as they try to leave the host galaxy, to the large-scale FR I and FR II stage
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at which the relativistic jets extend into the inter-galactic (IGM) and intra-cluster medium (ICM).
This paradigm was first proposed by Phillips & Mutel (1982) and Carvalho (1985), and further
refined by Readhead (1995), Readhead et al. (1996) and Snellen et al. (1999, 2000), and is based
on high resolution observations of young radio sources. With the recent observational advances we
can now extend these evolutionary tracks to the very late stages of radio source evolution which
include giant (> 1 Mpc; Komberg & Pashchenko 2009), dying (Parma et al. 2007),and re-started
radio galaxies (Schoenmakers et al. 2000, Section 5).

Whilst simple and appealing, this widely accepted evolutionary path may represent just one of
many possible evolutionary tracks of radio-loud AGN – perhaps the longest, main lifecycle path.
Alternative paths may include sources that do not reach the giant phase stage, the FR I/FR II stage,
or even the CSS stage (e.g. Marecki, Spencer & Kunert 2003). Recent observational evidence
for such alternatives comes from the existence of so-calledyoung faders (Kunert-Bajraszewska,
Marecki & Spencer 2004; Kunert-Bajraszewska et al. 2010), aclass of compact, low radio lumi-
nosity density and small-scale CSS sources that resemble large-scale dying radio galaxies. It is
still not clear what causes the radio activity to cease and why it may happen on a wide range of
timescales, with some radio sources becoming long-lived giants and others dying in their infancy.
For example, in the discussion on why only some FR Is and FR IIsevolve to Mpc scales, longer
lifetimes, more powerful engines, or under-dense environments have been suggested as a solution,
but no consensus has yet been reached (Machalski & Jamrozy 2006; Jamrozy et al. 2008; Komberg
& Pashchenko 2009; Kuźmicz & Jamrozy 2013).

A true over-abundance of a young class of radio sources wouldadvocate the view that some
radio activity is indeed terminated prematurely. Our current radio source population counts suffer
from well-recognised selection biases. Deep, sensitive and completeN(z) measurements of each,
well defined radio source type are required. However, selection criteria for the samples must ensure
inclusion of all types of radio source at the same time to allow for the lifecycle analyses. Such
deep measurements have also a potential to help us to investigate the weakly radio-emitting source
population (weak-radio AGN), analyses of which are pivotalin the investigations of AGN duty
cycles (Section 6).

2.2 Our theoretical understanding of radio-loud AGN evolution

Building on the seminal work undertaken in the 1970s (Blandford & Rees 1974; Scheuer
1974), tremendous progress has been made especially in the past 20 years towards an analytical
understanding of the physics and evolution of extragalactic radio sources. Semi-analytical approx-
imations developed for classical double FR II radio sources(Kaiser & Alexander 1997; Kaiser,
Dennett-Thorpe & Alexander 1997; Blundell, Rawlings & Willott 1999), are being extended to
both young GPS/CSS (Snellen et al. 2000; Alexander 2000, 2006; An & Baan 2012; Maciel &
Alexander 2014) and dying radio galaxy stages (Komissarov &Gubanov 1994; Kaiser & Cot-
ter 2002). The latter has been supported by observations of cavities in X-ray brightness maps of
galaxy clusters (considered to be signatures of radio source activity; Bîrzan et al. 2004; McNamara
& Nulsen 2007), as well as the discovery of so-called double-double (re-started) radio galaxies
(Schoenmakers et al. 2000). The most recent developments include analytical modelling of re-
started radio sources (Kaiser, Schoenmakers & Röttgering 2000; Brocksopp et al. 2011) that can
account for multiple activity episodes. Very few radio sources with signatures of re-started radio
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Figure 1: The evolution of radio luminosity density as a function of source physical size as seen in 3D MHD
simulations. The different coloured lines show the evolution of a radio source of thesamejet power (1038 W)
in different plausible group/cluster environments, wheredot-dashed lines represent poor environments, solid
lines intermediate and dashed lines rich environments, andthe colours denote the steepness of the density
profile in theβ -model (King 1962, blue represent the steepest and red the flattest profile). Note the wide
scatter in the luminosity densities at late times and the significant difference between the early luminosity
densities and those in the ‘plateau’ phase at a few hundred kpc. Standard estimates of jet kinetic power
(based on scaling relations) would assign a wide range of different kinetic powers to the source simulated
here, depending on the part of the lifecycle observed and theenvironment it inhabits. Figure adapted from
Hardcastle & Krause (2014).

activity have been observed to date – the semi-analytical models are based on fewer than 30 known
cases of re-started radio galaxies and on only one source with clear signatures of two episodes of
previous activity (Brocksopp et al. 2007, 2011). However, the existence of these sources and un-
derstanding of the physics involved is crucial in identifying the radio AGN activity (re)triggering
processes and determining duty cycles of radio sources. At the same time, numerical models
involving realistic environments are now reaching the stage where they can be used to produce es-
timates of the evolution of integrated and resolved source properties that complement, and in some
cases improve upon, those available from analytic modelling (e.g. Figure 1).

On the other hand, FR I sources are notoriously difficult to model analytically or numerically
because of their complex, turbulent and often heavily disturbed radio structures. A number of
attempts have been made (Laing, Canvin & Bridle 2003; Luo & Sadler 2010), but no general an-
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alytical model exists that can predict properties of the FR Iclass as a whole. This is particularly
important, as FR Is are thought to be much more numerous at lowluminosity densities; it is pos-
sible that they will comprise the majority of the radio-loudAGN population at high redshift, low
luminosity density radio samples; however, evidence for their high numbers is currently limited to a
few studies in deep fields (Simpson et al. 2012; McAlpine, Jarvis & Bonfield 2013). Numerical ap-
proaches to the problem of modelling FR I radio galaxies havebeen so far focusing predominantly
on dynamical evolution of their radio structures (e.g. Perucho & Martí 2007; Perucho et al. 2014).
Sensitive, deep SKA observations that will be available fora large number of such sources are
required for further theoretical advances [detailed discussion on this subject is covered elsewhere
in this volume; see Agudo et al. (2015); Laing (2015)].

However, analytical models investigating the plausible transition of FR II sources into FR Is
have been developed (Wang et al. 2011; Turner & Shabala 2015), and it is also thought that all
radio sources start off with the FR II morphology. Furthermore, we have also discovered a curious
class of hybrid radio morphology objects, which show properties of both FR I and FR II sources
(Gopal-Krishna & Wiita 2000; Kapińska et al. 2015). This has direct implications for studies of the
AGN host types, environments and their evolution across cosmic time, especially in terms of the
observed FR dichotomy (Saripalli 2012), and are already allowing us to statistically model young
radio sources, FR IIs and the FR transition populations.

Clearly, observational advances drive our theoretical understanding of radio sources; only by
combining both can we study the physical properties of radio-loud AGN that cannot be measured
directly (Blundell, Rawlings & Willott 1999; Kapínska, Uttley & Kaiser 2012), but are crucial in
the studies of galaxy and galaxy clusters evolution, and AGNfeedback and activity.

3. The birth of radio galaxies

Young, compact radio sources are expected to be very numerous (Fanti et al. 1990), but are
generally poorly studied in large samples. The observed complete, flux density limited parent sam-
ples often impose significant constraints on the populationof radio galaxies that can be detected;
most samples are biased towards middle-aged radio sources where the radio luminosity density is
expected to be the highest for a given jet kinetic power (Figure 1). There is also a strong bias of
GPS/CSS sources to higher redshifts as compared to 100-kpc scale radio galaxies (Snellen et al.
2000). In recent years, a number of faint GPS and CSS samples have been constructed probing
lower intrinsic luminosities of these objects (Snellen et al. 1999; Tschager et al. 2003; Kunert-
Bajraszewska et al. 2010); but it is important to bear in mindthat such samples are often con-
structed in a very different way than typical, complete samples of extragalactic radio sources, thus
making it difficult to compare them to larger, and more evolved radio galaxies.

CSO/GPS and CSS sources are considered to be predominantly young radio galaxies, with
typical ages of 103−105 years (Owsianik & Conway 1998; Murgia et al. 1999; Polatidis& Con-
way 2003). However, it is often difficult to distinguish truly young sources from objects whose
expansion is ‘frustrated’ by interaction with a dense ISM (van Breugel, Miley & Heckman 1984;
O’Dea, Baum & Stanghellini 1991; An & Baan 2012). There is also increasing evidence that young
double radio sources can have a substantial effect on the ISMof their hosts (Croston, Kraft & Hard-
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castle 2007; Croston et al. 2009; Heesen et al 2014); this seems to be also true for the small radio
sources associated with canonically radio-quiet AGN (Mingo et al. 2012).

Estimation of the ratio of young to older, large radio galaxies gives crucial constraints on the
lifetime distribution of such objects (i.e. what fraction of them survive to the ages of 107 years
implied by dynamical and spectral ageing studies of 100-kpcscale radio galaxies), and hence on
the accretion history of supermassive black holes that power them. It seems very plausible that
there is substantial ‘infant mortality’ in radio galaxies,i.e. that many do not last long enough to
reach the largest sizes and highest luminosity densities (Kunert-Bajraszewska, Marecki & Spencer
2004; Kunert-Bajraszewska et al. 2010; An & Baan 2012; Maciel & Alexander 2014). This has
been theoretically discussed by Reynolds & Begelman (1997), and fading CSS as well as GPS
sources with re-started activity have also been observed (Baum et al. 1990; Kunert-Bajraszewska
et al. 2010). Deep and completeN(z) measurements are crucial here to answer question whether
all these small scale radio galaxies are progenitors of larger-scale FR I and FR II sources and to our
overall understanding of the AGN lifecycles and the activity patterns of their central engines.

3.1 Required SKA elements and the SKA surveys

With the SKA1 baseline design (Dewdney et al 2013), survey depths will be such that we
have a realistic chance of detecting the small-scale counterparts of all radio galaxies of even the
lowest jet kinetic power (1035 W; Hardcastle, Evans & Croston 2006) out toz∼ 0.6 using all-sky
surveys with SKA1-SUR or SKA1-MID (Band 2, 1.4 GHz) and deep field observations with high
frequency receivers on SKA1-MID (Band 4 and 5, 4 GHz and 9.2 GHz respectively). Assuming
the jet kinetic power – luminosity density scaling relationof Willott et al. (1999) holds, and scaling
down the resulting luminosity density by a few orders of magnitude to account for evolution during
the radio source growth (Figure 1) we estimate luminosity densities of∼ 1022 W Hz−1 for young
radio sources which could be progenitors of the weakest FR IIradio galaxies. Given the numbers
of FR IIs, we would expect at least of order one of these young sources per square degree on the
sky, and possibly many more if many FR II-power jets turn off before they reach 100-kpc scales.

The main limitation of SKA1 for the study of CSS/GPS sources will be angular resolution; if
we assume 0.05 arcsec resolution at the highest frequencies (SKA1-MID Band 5), then atz= 0.3
we will resolve only sources with linear sizes> 0.66 kpc, and> 1.35 kpc at higher redshifts
(assuming source size at least 3× the beam size). Lower frequencies (and especially SKA1-LOW)
will not be useful for detailed radio morphology analyses. However, the high frequency capabilities
will still allow an almost complete survey of the whole of thelow- and mid-z radio galaxy popula-
tion down to the smallest sizes and lowest powers. Using a combination of angular resolution and
in-band spectral information we will be able to distinguishyoung objects (steep spectrum, double
lobe structure) from beamed, core-dominated systems (flat spectrum). The broad-band spectral
coverage of SKA1-MID, -SUR and -LOW, especially when combined with each other, is crucial
for selection of the GPS sources and investigation of their physics (Callingham et al. 2015). Early
science can be carried out by aiming to be complete to some less ambitious combination of jet
kinetic power lower limit and redshift upper limit, which will still give valuable insights into the
properties of the lower-power sources.

All of these observations will provide a large number of sources too small for the SKA1 to
resolve but which can be followed up by longer-baseline instruments such as the EVN, which
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Figure 2: Largest angular size (LAS) and 151 MHz surface brightness (SB) for FR II radio galaxies from
the SKADS SEX simulations (Wilman et al. 2008). Colour coding indicates redshift, from dark blue (z= 0)
to red (z≃ 6).

are expected to provide an important complementary facility in the SKA era, unless the SKA
VLBI facility is incorporated from the beginning of the telescope operations. Furthermore, detailed
polarimetric studies of individual objects remain crucialto both understanding the relativistic jet–
ISM interaction on parsec scales (An et al. 2010; Agudo et al.2015; Dehghan et al. 2015), and
establishing the fraction of young vs. frustrated CSO/GPS and CSS sources.

In the final SKA stage we would expect to be able to see essentially every source with jet
kinetic power> 1035 W, independent of its age except for sources less than a few hundred years
old, out toz= 0.5−1.0 (Bands 2 and 5), and all FR II-power (> 1036 W; Rawlings & Saunders
1991) start-up galaxies out toz∼ 3, well into the regime where cosmological evolution of the radio
source population becomes important. Assuming the angularresolution will be improved to at least
0.005 arcsec, we will be able to resolve sources of linear sizes> 150 pc at all redshifts.

4. Radio galaxies in their mid-life: evolution, jet power and environmental impact

4.1 Detailed physics of jets and radio lobes

Large radio galaxies, with physical sizes of tens to hundreds of kpc, are the best-studied class
of radio galaxy and have the best-understood effects on their ambient medium – the hot phase of the
IGM/ICM; these are the sources generally thought to be responsible for the ‘radio-mode feedback’
that prevents the hot phase from cooling out onto the most massive galaxies (Bîrzan et al. 2004;
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McNamara & Nulsen 2007). As shown in Figure 1, the brightnessof the radio emission is expected
to peak in this phase of a source’s evolution, so these are theobjects predominantly selected in
large-scale flux density-limited surveys, and will be the easiest to detect and image with the SKA.

Traditionally, radio galaxies detected in surveys have been characterized on the basis of an
integrated flux density, and thus an estimate of radio luminosity density – this can be directly
used to construct RLFs of radio-loud AGN. However, for AGN feedback or radio source studies
what one really wants to know is the jet kinetic power – the instantaneous or time-averaged rate
at which radio-loud AGN are transferring energy to their environments. The relationship between
the observed radio emission and the jet kinetic power is a long-standing problem (Rawlings &
Saunders 1991; Willott et al. 1999; Kapińska, Uttley & Kaiser 2012, see also Section 2.2) and
it is increasingly clear that the answer is not expected to besimple. At low radio luminosities, a
substantial scatter in the relation between radio luminosity density and jet kinetic power is observed
(Cavagnolo et al. 2010; Godfrey & Shabala 2013); this is expected on theoretical grounds, since the
radio luminosity density should be a function of the jet kinetic power, the age of the source (Kaiser,
Dennett-Thorpe & Alexander 1997), radio morphology, and, crucially, the source’s environment
(Barthel & Arnaud 1996; Hardcastle & Krause 2013) which we know to differ widely from source
to source even at a fixed redshift (Ineson et al. 2013). In the case of weakly radio-emitting AGN,
we can assess the interaction with their host environments just by measuring a luminosity density
in some band and applying a bolometric correction. The problems described above mean that, for
radio-loud AGN, no comparable correction exists.

The jet kinetic power-environment-age degeneracy can be broken with observations that char-
acterize not just the radio luminosity density but also the physical size, aspect ratio and spectral
age of the source; in principle, this can allow not just the jet kinetic power but also the properties
of the environment (possibly including an estimate of the heating rate) to be determined directly
from radio observations. Spectral age measurements can be made by fitting to the spatially re-
solved broad-band spectrum of the source (Harwood et al. 2013), and so to apply these techniques
we need high spatial resolution (to image the lobes) as well as high spatial dynamic range (so that
the largest scales are also well mapped). For this method to result in robust measurements, large
samples of the order of hundred – thousand sources are required.

4.2 The role of SKA

To illustrate the potential of the SKA1 baseline design (Dewdney et al 2013) in this area
we consider the FR II radio sources in the SKADS simulations of the extragalactic sky (Wilman
et al. 2008). These simulations are probably not accurate enough to give reliable estimates for
the properties of the young source population discussed in Section 3, but should be adequate to
consider the well-resolved FR II population. We focus on theFR IIs here since the dynamics
and particle content of these ‘classical double’ sources are (relatively) well understood (Kaiser &
Alexander 1997; Celotti 2003). Figure 2 shows the mean 151 MHz surface brightness of all FR IIs
in the simulation as a function of source largest angular size; their surface brightness at 5 GHz is
expected to be a factor 6 to 30 lower. With 0.05 arcsec beam (SKA1-MID Band 5) we can achieve
modest levels of resolution (at least 5 beams across these large-scale sources) for most FR IIs in
the simulation, and do a lot better for the bulk of the population. While theµJy sensitivity and
exceptionaluv-coverage of the projected surveys will allow the typical surface brightness of all but
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Figure 3: L− z limits of planned SKA1-LOW and SKA-LOW continuum all-sky surveys (solid lines; deep
field observations are not feasible, confusion limited). Weassume SKA-LOW will reach 90 km baselines
(arm-core, 2× SKA1-LOW) and angular resolution of 4.3 arcsec. For comparison, the current SKA-LOW
pathfinders and precursors are plotted (dashed lines): the ongoing MWA all-sky survey (7 mJy rms) and deep
LOFAR Surveys observations (expected 70µJy rms for Tier 1). The horizontal line (dotted, black) marks
the traditional FR I/FR II divide (Fanaroff & Riley 1974) scaled to 160 MHz (assumingS∝ ν−0.75).

the faintest lobes to be imaged. Although at lower resolution, the SKA1-SUR in Band 2 (1.4 GHz)
will be also very useful for this application as it will provide us with large, wide-field surveys of
FR Is and FR IIs compiled within only 2 years on-sky time (Figure 4); we will still be able to
resolve over half a population of these sources.

Good constraints on spectral age require broad-band measurements, ideally including low-
frequency observations which would measure the un-aged energy spectrum of the electrons, the
so-called injection index, which is known to vary significantly across the source population (Konar
& Hardcastle 2013). The reference design for SKA1-LOW (Dewdney et al 2013), with a beam at
best a few arcsec, will not resolve the bulk of these sources,complicating the experiment. How-
ever, samples constructed from such low-frequency observations would be the base samples in our
analyses of the AGN lifecycles and RLFs as they present the best probe of observing radio-loud
AGN unbiased by the effects of relativistic beaming and orientation. At MHz frequencies, obser-
vations preferentially select jet and lobe emission due to its inherent injection spectral signature
(i.e. very steeply rising spectra towards lower radio frequencies). The SKA1-LOW all-sky survey,
completable within two years on-sky time, is expected to reach rms noise levels of 20µJy (con-
fusion limited) at angular resolution of∼ 9". This translates to luminosity densities of 5.7×1023

W Hz−1 at z= 2 (Figure 3) allowing us to detect the vast majority of CSS, FRI and FR II sub-
populations out to very high redshifts (z∼ 4−5 and beyond), but only at a modest spatial resolution
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of 20−75 kpc depending on the redshift.

While the SKA1 reference design (Dewdney et al 2013) will allow many thousands of FR II
sources to be imaged to high redshift at high-to-moderate resolution, providing an essential test-
bed for this technique, the final stage of the SKA will be necessary to obtain well-resolved low-
frequency images; this would require baselines of> 300 km. Such baselines will allow us to
resolve (3− 5× beam size of 1.3 arcsec) over half of the population of FR IIs at these low radio
frequencies (Figure 2). This would also extend the study to the much fainter, high-redshift FR I
population, and thus allow full analysis of the FR dichotomyat all epochs. Ideally, one would like
to reach angular resolutions of 0.4 arcsec as this would allow us to resolve almost whole FR II
population; this however, would require baselines as long as∼ 1000 km for SKA-LOW.

5. Death, relics and activity re-triggering

5.1 The population of relic radio galaxies

The prominent features of radio sources (core, jets, hotspots) are fed by the continuous sup-
ply of energy from the active nucleus; once the jet activity stops, these features will disappear
relatively quickly, and the lobe plasma will continue to expand and to cool via synchrotron and
inverse-Compton losses, leaving a ‘relic’ radio galaxy (Cordey 1987). During this fading phase
very strong spectral evolution of the source occurs, with the high radio frequency part of the spec-
trum developing an ultra steep, exponential cut-off, and the spectral break shifting to lower radio
frequencies. Although every galaxy must go through this stage, only a handful examples of true dy-
ing radio sources is currently known (Parma et al. 2007; Dwarakanath & Kale 2009). Reasons for
the rarity of such sources may be their low surface brightness and relatively short time they spend
in the fading phase as compared to the average lifetime of a radio source; at GHz frequencies a
source will fade away within 104−105 years, while at MHz frequencies this may take∼ 107 years.
Identification of genuinely dying radio galaxies will give important information about lifetimes and
duty cycles of extragalactic radio sources. Fading radio galaxies have also implications for AGN
feedback since large amounts of the energy supplied by the jet remains stored in the lobes at the
end of the active jet phase, and it remains an open question whether, and on what time and spatial
scales, that energy is imparted to the ICM.

As discussed in Section 2.1 the cessation of the jet energy supply seems to happen at any stage
of radio source growth, and so we need to be searching for dying radio galaxies at all spatial scales,
from pc to Mpc scales. Luminosity densities of lobes of fading radio galaxies are 0.3−40×1023

W Hz−1 at 1.4 GHz (Parma et al. 2007; Dwarakanath & Kale 2009), whilethose of low-luminosity
CSS sources, a significant number of which is believed to be infading phase, to reach as low as
2×1023 W Hz−1 at 1.4 GHz (Kunert-Bajraszewska et al. 2010). With the currently available all-
sky surveys (e.g. FIRST, NVSS; Becker, White & Helfand 1995;Condon et al. 1998) we are able to
probe only the ‘tip of the iceberg’ of this population, at relatively low redshifts (> 6×1023 W Hz−1

up toz∼ 0.3 at 1.4 GHz) assuming the sources are not resolved out.

This is the biggest problem we are presently struggling with– very few instruments can de-
tect such low surface brightness sources, radio structuresof which are often spread over multiple
telescope’s beams. One of the most spectacular recent examples of hidden imprints of previous
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Figure 4: L−z limits of planned SKA1-SUR and SKA1-MID (Band 2) continuum all-sky and deep surveys.
We assume SKA-SUR will reach 10× the sensitivity of SKA1-MID. For comparison, the FIRST survey that
have been serving us well over the past 20 years (0.15 mJy rms at 1.4 GHz) and the planned ASKAP-EMU
all-sky survey (anticipated 10µJy) are plotted (dashed lines). The horizontal line (dotted, black) marks the
traditional FR I/FR II divide (Fanaroff & Riley 1974) scaledto 1.4 GHz (assumingS∝ ν−0.75).

activity (fading lobes) is 3C 452, which up to now was believed to be a classical FR II radio galaxy
(Sirothia, Gopal-Krishna & Wiita 2013). How many radio sources have previous activity signatures
hidden in such a way? Clearly, there is a hidden world of secret lives of radio-loud AGN we are
just starting to uncover. Presently advances and new discoveries are being already made with the
existing and new facilities such as Murchison Wide-field Array (MWA; e.g. Hurley-Walker et al.
2014), Giant Metrewave Radio Telescope (GMRT) and Low Frequency Array (LOFAR).

5.2 What will SKA see?

As an EoR driven instrument, SKA1-LOW will have tremendous surface brightness sensitivity
capabilities, and so will be well adapted to searches for large, faint objects with little compact struc-
ture, although it may be difficult to identify them with theirhost galaxies. In principle, the number
of large-scale fading radio galaxies should be comparable to the number of ‘alive’ large-scale FR Is
and FR IIs, but the fading radio galaxies will have much steeper spectra and considerably lower
radio luminosity density; surface brightness sensitivityis one of the crucial aspects of the new radio
telescopes if we want to obtain large samples of this rare class of radio source.

To demonstrate capabilities of the SKA and its precursors, let us assume a fading radio source
of an observed luminosity density 6×1023 W Hz−1 at 160 MHz and 500 kpc total physical size.
This luminosity density and physical size can be easily translated to a brightness temperature per
telescope’s beam and an angular size once a redshift is assigned. As shown in Figure 5, SKA1-
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Figure 5: Brightness temperature capabilities of SKA1-LOW and its precursors (MWA, LOFAR) for detect-
ing fading radio source of 500 kpc physical size and total luminosity density 6×1023 W Hz−1 at 160 MHz.
Solid lines indicate the brightness temperature sensitivity of each instrument for a given set of flux density
limit and angular resolution; 5σ values are plotted. Dashed lines indicate the observed surface brightness
temperature per beam of the assumed source, as a function ofz, and are drawn only to a point where the
angular size of the source is> 3× the beam size of the instrument with which we want to detect the source.
Both solid and dashed lines of the same colour refer to the same instrument. For a comparison, capabili-
ties of SKA1-SUR/SKA1-MID Band 2 (1.4 GHz) in detecting sucha source are plotted; predicted Band 2
all-sky survey sensitivity of 1µJy has been scaled to 160 MHz using an assumed steep spectral index of a
fading radio source,α ∼ 1.8. For discussion see Section 5.2. Note that the surface brightness sensitivity of
an instrument depends on both its sensitivity (flux density limit) and angular resolution.

LOW will be invaluable in searches for such radio sources, being able to detect and resolve them (at
least with the modest 3× beam size) up toz∼ 0.4. Furthermore, we attempted to verify capabilities
of higher frequency receivers of SKA for this application. Assuming a steep spectral index of the
considered fading radio source,α ∼ 1.8, its total luminosity density at 1.4 GHz would be 1.3×1022

W Hz−1 spread over many telescope’s beams, but the high sensitivity of SKA1-SUR/-MID will still
be able to detect such a source out toz∼ 0.2. Those higher frequency receivers will be able to detect
less extreme sources at higher redshifts; for instance, a fading radio galaxy of a total luminosity
density 6×1024 W Hz−1 at 1.4 GHz will be detectable out toz∼ 1.6, and although SKA1-LOW
will detect sources of such luminosity density at 160 MHzz∼ 2 and beyond, the former receivers
will provide us with much higher resolution. A combination of both arrays may provide us with
versatile range of images of dying radio sources.
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6. Evolution of the AGN population, radio-loud AGN unificati on and cosmology

6.1 Duty cycles of radio activity

Duty cycles, the relative times a radio source spends in its active and quiescent phases, is
a crucial piece of information in our understanding of AGN lifecycles and their impact on the
evolving Universe. To constrain these, we need to establishwhat causes radio sources to shut off
and re-trigger, and whether all radio sources go through there-triggering phase, or only a fraction
of them. We need to construct representative RLFs not only ofthe radio-loud AGN in the midst
of their activity (Sections 3–5), but also of those in quiescence that are composed of the weakly
radio-emitting AGN; these samples need to be well defined in terms of black hole accretion levels
(e.g. Falcke, Körding & Nagar 2004; Merloni & Heinz 2008).

It remains an open question as to whether there are underlying physical distinctions between
the radio-loud/weak-radio AGN populations, or if there exists a continuum of radio activity which
extends to the nuclear radio-quiescent galaxies, dominated by active or evolved star formation (see
e.g. Broderick & Fender 2011; Kimball et al 2011; Mahony et al. 2012, for recent analyses). The
sensitive SKA continuum surveys will, for the first time, provide us with large samples of the
largely unexplored weakly radio-emitting AGN (1020

− 1022 W Hz−1 at 1.4 GHz). During the
SKA1 stage, with SKA1-SUR/SKA-MID (Band 2) all-sky surveyswe will be able to detect the
weak-radio AGN population down to luminosity densities of 5× 1021 W Hz−1 (5σ detection) at
z= 0.5. With deep SKA1-SUR/SKA1-MID (Band 2) and SKA1-MID (Band 5) surveys we will
go much deeper reaching 1×1021 W Hz−1 at z= 0.5 and 4×1019 W Hz−1 in the local Universe
(z∼ 0.1). SKA1-MID Band 5 receivers will also allow us to resolve these sources on linear scales of
0.3 kpc atz∼ 0.5. For detailed discussion on the physics of the weak-radio AGN and observations
during the SKA era see Orienti et al. (2015).

6.2 Radio-loud AGN unification

The deep SKA surveys will sample all radio-loud AGN populations (Section 1) with a subset
of these being resolved in suitable detail to model their detailed internal physical processes. How-
ever, another view of the radio-loud AGN lifecycles is to view them in terms of populations that
manifest themselves as quasars, radio galaxies, and blazars, depending on their orientation on the
sky. Clearly, the detailed studies of these sources as described in this paper will improve our view
of the radio-loud AGN populations and provide direct tests of simple unification models which
extrapolate sparse RLF information with evolutionary scenarios to fit deep source count data (e.g.
Owen, Ledlow & Keel 1996; Wall & Jackson 1997; Jackson & Wall 1999). As discussed in Sec-
tion 2.2 we model AGN lifecycles assuming that FR Is and FR IIsare physically distinct classes of
radio source. This view is supported by simple unified modelsfor radio-loud AGN where the FR I
and FR II populations are the ‘parent’ populations of many other observed classes of sources (e.g.
Urry & Padovani 1995; Jackson & Wall 1999). In adopting theseunified models, we can probe
both the gross evolution of these populations and disentangle the effects of the AGN lifecycle, as
well as map the contribution from weakly radio-emitting AGNand SF sources at least up toz∼ 0.5.
Angular resolutions of the order of arcsec are sufficient forthese studies (e.g. McAlpine, Jarvis &
Bonfield 2013).
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Whilst testing the radio-loud AGN unification models we willobtain a simplified method to
map the evolution of the radio-loud AGN population by exploiting the deep source counts, radio
luminosity functions and populations under test. These analyses are best done from samples and
source counts at low frequencies (<800 MHz); at these frequencies the sources are dominantly
steep-spectrum and uncontaminated by relativistic beaming effects. For instance, following the
methodology of e.g. Jackson & Wall (1999) or McAlpine, Jarvis & Bonfield (2013) we will be
able to determine the evolution scenarios that fit best to theobserved complete samples. These
analyses may be used to provide insight into AGN duty cycles (Section 6.1), and the prevalence of
certain types of sources such as GPS/CSS and dying radio galaxies. Using a range of deep counts
at a range of observed frequencies (100 MHz – few GHz) we can test evolutionary and lifecycle
scenarios as well as explore the radio-loud / radio-quiet AGN divide.

6.3 The SKA era precision cosmology

Oneof the important aspects of the science described here isthat we will identify different
populations of AGN, and as presented in Ferramacho et al. (2014) who showed that if one can
separate out the various populations, which in turn sample the underlying dark-matter density dis-
tribution with a different bias, then the effects of cosmic variance may be overcome in determining
the angular power spectrum. This is critical for studying the Universe on the largest scale (Camera
et al. 2015). Powerful radio-loud AGN, provide a unique sampling of the underlying dark mat-
ter distribution as they are, generally, the most highly biased tracers of the density field, and are
detected up to the highest redshifts (z∼ 6). Therefore, when combined with less biased tracers,
e.g. star-forming galaxies (Jarvis et al. 2015), they may provide a unique way to understand the
largest scales in the Universe, given that the ability to overcome the cosmic variance is dependent
on the difference between the bias of the two populations under consideration. The key issue here
is to separate AGN from star-forming galaxies, and the high-resolution of SKA1-MID can enable
the separation of AGN and star-forming galaxies on either morphology for jet sources (& 0.5 arc-
sec) or through pure brightness temperature measurements.Furthermore, knowledge of theN(z) is
also crucial and the detailed follow-up that would be carried out for this science case, in particular
obtaining redshifts, will also be valuable for cosmological science.

7. Concluding remarks

A combination of the SKA arrays and their receivers at a wide range of frequencies and an-
gular resolutions are necessary to address the science casediscussed in this chapter. In particular,
the SKA1-LOW array with its 300 MHz bandwidth, which we assumed here to be centered on
160 MHz, is an indispensable tool for searching for old, dying radio sources, and for the construc-
tion of complete, flux density and volume limited samples of radio-loud AGN unbiased by the
effects of relativistic beaming. SKA1-SUR and SKA1-MID Band 2 (centered on 1.4 GHz, with
800 MHz bandwidth) will provide us with deep, wide-field surveys at a reasonable resolution of
1−2 arcsec. This will allow for morphological identification of large radio-loud AGN samples, as
well as it will provide us with large weak-radio AGN samples in the local Universe. SKA1-MID
Band 2, with angular resolution 3−5× better (0.3−0.5 arcsec), can be used as a follow up for a
number of deep fields. Finally, SKA1-MID with its Band 4 and Band 5 (centered on 4 GHz and
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9.2 GHz, with 2.4 GHz and 2× 2.5 GHz bandwidths respectively) is particularly useful for high
resolution (0.05 arcsec) imaging of jets and lobes of both young and evolved radio galaxies for
detailed physics analyses. It will be also useful for distinguishing sources within our radio samples
that are truly relativistically beamed. The SKA-VLBI facility, if incorporated from the beginning of
the telescope operations, will be invaluable for detailed physics investigations of most of radio-loud
AGN.

A combination of these SKA arrays and frequency bands will provide us with broad-band radio
spectra of the sources – this is crucial for selecting certain types of radio source; e.g. GPS sources
are distinguished by their turn-over spectra, while dying radio galaxies are extreme steep spectrum
sources (α > 1.8). Furthermore, such broad-band spectra will allow for spectral age estimates of
the radio sources so important for the radio-loud AGN physics and lifecycle studies.

With such rich data sets we will be able to not only to investigate radio-loud AGN and their
engine and model radio source detailed physics, but also to trace the AGN activity (triggering
and feedback) up to the high-z Universe and advance the galaxy formation and evolution models.
Progress in these crucial science areas is currently hindered by the lack of wide-field, deep radio-
loud AGN samples that extend to high-z, and so is limited only to the local Universe.

Advances are now being made with the SKA pathfinders and precursors, such as MWA, LO-
FAR, MeerKAT and ASKAP. SKA1 will be much faster than any of these precursors and pathfind-
ers, completing all-sky surveys (3π sr) within only 2 years on-sky time. It is, however, the full
SKA that may revolutionise our understanding of the radio-loud AGN lifecycles and physics, by
reaching the unexplored flux density depths of the radio sky.
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Kapińska A. D., Uttley P., & Kaiser C. R., 2012, MNRAS, 424, 2028

Karouzos M., Jarvis M. J., & Bonfield D., 2014, MNRAS, 439, 861

Kaviraj S., Shabala S. S., Deller A. T., & Middelberg E., 2014, submitted, arXiv:1411.2028

Kimball A. E., Kellermann K. I., Condon J. J., Ivezic Z., & Perley R. A., 2011, ApJ, 739, 29

King I., 1962, AJ, 67, 471

Kitching T. et al., 2015, ‘Euclid-SKA Synergies’, in proceedings of ‘Advancing Astrophysics with
the Square Kilometre Array’

Komberg B. V., & Pashchenko I. N., 2009, Astronomy Reports, 53, 1086

Komissarov S. S., & Gubanov A. G., 1994, A&A, 285, 27

Konar C., & Hardcastle M. J., 2013, MNRAS, 436, 1595
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