
Exploring hydro-meteorological drought patterns over

the Greater Horn of Africa (1979-2014) using remote

sensing and reanalysis products

J.L. Awangea,b,c, Khandua, M. Schumacherd, E. Forootand,e, B. Heckb

aWestern Australian Centre for Geodesy and The Institute for Geoscience Research
Curtin University, Perth, Australia

bGeodetic Institute, Karlsruhe Institute of Technology, Karlsruhe Germany
cDepartment of Geophysics, Kyoto University, Japan

dInstitute of Geodesy and Geoinformation, Bonn University, Bonn, Germany
eSchool of Earth and Ocean Sciences, Cardiff University, Cardiff, UK

Abstract

Spatio-temporal patterns of hydrological droughts over the Greater Horn of

Africa (GHA) are explored based on total water storage (TWS) changes

derived from time-variable gravity field solutions of Gravity Recovery and

Climate Experiment (GRACE, 2002-2014), together with those simulated by

Modern Retrospective Analysis for Research Application (MERRA, 1980-

2014). These hydrological extremes are then related to meteorological drought

events estimated from observed monthly precipitation products of Global

Precipitation Climatology Center (GPCC, 1979-2010) and Tropical Rainfall

Measuring Mission (TRMM, 1998-2014). The major focus of this contri-

bution lies on the application of spatial Independent Component Analysis

(sICA) to extract distinguished regions with similar rainfall and TWS with

similar overall trend and seasonality. Rainfall and TWS are used to esti-
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mate Standard Precipitation Indices (SPIs) and Total Storage Deficit In-

dices (TSDIs) respectively that are employed to characterize frequency and

intensity of hydro-meteorological droughts over GHA. Significant positive

(negative) changes in monthly rainfall over Ethiopia (Sudan) between 2002

and 2010 leading to a significant increase in TWS over the central GHA

region were noted in both MERRA and GRACE TWS (2002-2014). How-

ever, these trends were completely reversed in the long-term (1980-2010)

records of rainfall (GPCC) and TWS (MERRA). The four independent hy-

drological sub-regions extracted based on the sICA (i.e., Lake Victoria Basin,

Ethiopia-Sudanese border, South Sudan, and Tanzania) indicated fairly dis-

tinct temporal patterns that matched reasonably well between precipitation

and TWS changes. While meteorological droughts were found to be consis-

tent with most previous studies in all sub-regions, their impacts are clearly

observed in the TWS changes resulting in multiple years of extreme hy-

drological droughts. Correlations between SPI and TSDI were found to be

significant over Lake Victoria Basin, South Sudan, and Tanzania. The low

correlations between SPI and TSDI over Ethiopia may be related to incon-

sistency between TWS and precipitation signals. Further, we found that

hydrological droughts in these regions were significantly associated with In-

dian Ocean Dipole (IOD) events with El Niño Southern Oscillation (ENSO)

playing a secondary role.

Keywords: Greater Horn of Africa, Total Storage Deficit Index (TSDI),

Standardized Precipitation Index (SPI), spatial Independent Component

Analysis (sICA), ENSO, IOD
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1. Introduction1

The people of the semi-arid region of Greater Horn of Africa (GHA)2

largely depend on rain-fed agriculture and livestock that is increasingly com-3

ing under threat from the intensified frequency and severity of drought events4

over the past decades (e.g., Kurnik et al., 2011). Since most crops in GHA5

are planted during rainy seasons, i.e., March-May (MAM) and October-6

December (OND), food security is increasingly coming under jeopardy given7

the fact that these seasons too are now reported to experience drought8

episodes (Marthews et al., 2015). This is further exacerbated by the contin-9

ued warming of the Indian-Pacific Oceans possibly linked to anthropogenic10

influences or multi-decadal climate variability, which has been shown to con-11

tribute to more frequent droughts in GHA over the past 30 years during the12

spring and summer seasons (see, e.g., Williams & Funk, 2011; Lyon, 2014;13

Funk et al., 2014).14

Even with the reality of the threat posed by droughts in the GHA, see e.g.,15

Lyon (2014), effective drought monitoring in this region is, however, chal-16

lenged by multiple factors including: inadequate spatial coverage and hydro-17

meteorological observations (e.g., precipitation, temperature, soil moisture,18

and groundwater storage) that are not readily available beyond the local19

meteorological services, poor communication frameworks, and national red20

tapes in accessing data.21

Furthermore, the large spatial extent of GHA makes the collection of22

hydrological data quite challenging and hence the reason why most studies23

(e.g., Viste et al., 2013) have focused largely on meteorological droughts. This24

view is supported e.g., by Naumann et al. (2014) who pointed out that the25
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lack of reliable hydro-meteorological data hold up development of effective26

real-time drought monitoring and early warning systems in the region. To27

account for various drought conditions over GHA, therefore, an integrated28

drought index that involves various meteorological and hydrological variables29

is desirable (e.g., the African Drought Monitor (ADM1) project; Sheffield30

et al., 2014). This, therefore, highlights the significant role played by satellite31

remote sensing in data deficient regions.32

To this extent, the Gravity Recovery and Climate Experiment (GRACE,33

Tapley et al., 2004) satellite remote sensing mission, launched in 2002, offers34

the possibility to characterize droughts at a wider spatial coverage albeit for35

shorter time span (from 2002 onwards). The value of GRACE-derived total36

water storage (TWS) changes for drought sutdies and estimating e.g., a Total37

Storage Deficient Index (TSDI), has been demonstrated (e.g., in Andersen38

et al., 2005; Yirdaw et al., 2008; Agboma et al., 2009; Leblanc et al., 2009;39

Chen et al., 2009, 2010; Houborg et al., 2012; Long et al., 2013; Li & Rodell,40

2014; Thomas et al., 2014).41

Although GRACE has the capability to offer a wider spatial coverage,42

spatio-temporal analysis of drought in GHA using a single areal-average as43

a representation of the entire GHA region is challenging. This is mainly due44

to the meteorological observations that are influenced by spatial inhomo-45

geneity of climate over the GHA caused by uneven topography, north-south46

migration of Inter-tropical Convergence Zone (ITCZ), and spatially varying47

influences of large-scale climate events among others (see e.g., Viste et al.,48

1http://stream.princeton.edu/AWCM/WEBPAGE/interface.php?locale=en
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2013).49

In this contribution, as opposed to Awange et al. (2008), Awange et al.50

(2013), Awange et al. (2014a) and Awange et al. (2014b) that focused mainly51

on TWS changes in Lake Victoria Basin, Nile Basin and Ethiopia, GRACE52

satellites and sICA method (Forootan & Kusche, 2012, 2013; Forootan et al.,53

2012) are employed for the first time to characterize meteorological and hy-54

drological droughts in the entire GHA. The novelty is that for the first time,55

the long-term (1980-2014) meteorological and hydrological drought in GHA56

is extracted usind the Standardized Precipitation Index (SPI) and TSDI,57

respectively. The spatio-temporal variability of SPI and ISDI is also com-58

pared and a comprehensive interpretation of various drought events across59

the GHA is provided.60

Specifically, the study (i) applies sICA to partition the GHA into various61

sub-regions based on precipitation and TWS changes, (ii) employs GRACE62

(2002-2014) and Modern Retrospective Analysis for Research Application63

(MERRA, 1980-2014) TWS changes to derive hydrological drought indices64

for the four independent sub-regions (as computed in i), (iii) uses observed65

precipitation products, Global Precipitation Climatology Center (GPCC,66

1979-2010) and Tropical Rainfall Measuring Mission (TRMM, 1998-2014)67

to compute remotely sensed SPI, and (iv) examines the relative influence of68

ENSO and IOD events on hydro-meteorological droughts (reflected in TSDI69

and SPI) within the GHA sub-regions.70

The remainder of the study is organized as follows. In section 2, a general71

climatological background of GHA is presented while section 3 presents an72

overview of the data as well as the analysis methods used. In section 4, the73
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drought indicators used in this study are described, while in section 5, the74

results are analysed and interpreted. The study is concluded in section 6.75

2. Greater Horn of Africa (GHA): Climatological Background76

The GHA, a semi-arid region, is made up of Burundi, Djibouti, Ethiopia,77

Eritrea, Kenya, Rwanda, Somalia, South Sudan, Sudan, Tanzania and Uganda.78

Long rains over equatorial GHA region mostly occur during March-May79

(MAM, Figure 1b) while short rains occur in October-December (OND, Fig-80

ure 1d) corresponding to the migration of the intertropical convergence zone81

(ITCZ) from south to north and vice versa (Marthews et al., 2015). Fur-82

thermore, Ethiopia, South Sudan, Sudan, and parts of Uganda experience a83

single rainy season from June-September (JJAS) Figure 1c).84

Apart from its seasonal differences, rainfall variability over the GHA is85

closely associated with the large-scale regional and global circulations such86

as ENSO, fluctuation of the Indian Ocean and Atlantic Ocean SST, and87

moisture fluxes over the Congo region (e.g., Nicholson, 1997; Williams et al.,88

2012; Tierney et al., 2013; Lyon, 2014). Mean temperature patterns over89

GHA follow the annual rainfall pattern.90

3. Data91

The data used in this study include monthly precipitation products ob-92

tained from global gridded rain gauge and near-global satellite-based esti-93

mates, as well as TWS changes from a reanalysis model and GRACE time-94

variable gravity field solutions.95
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3.1. Precipitation Products96

1. GPCC v6 : The Global Precipitation Climatology Center (GPCC) pro-97

vides gridded precipitation products at various temporal and spatial98

resolutions derived from up to 67,000 quality controlled station data99

around the world between 1901 and 2010 (Schneider et al., 2014). This100

study used monthly precipitation data at 0.50◦ × 0.50◦ (latitude ×101

longitude) spatial resolution covering the period 1979-2010. GPCC102

products have been found to be consistent with other rainfall products103

in Africa (see e.g., Awange et al., 2015). The distribution of rain gauges104

over the GHA region, however, is rather sparse over certain areas such105

as Somalia, Sudan, and Tanzania, and as such may not provide accurate106

representation of the precipitation variability over these regions.107

2. TRMM 3B43 : To complement the GPCC v6 data for the most re-108

cent period, monthly precipitation estimates from the Tropical Rain-109

fall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis110

(TMPA, Huffman et al., 2007) version 7 for the period 1998 to 2014111

were used. These products at 0.25◦ × 0.25◦ spatial resolution were112

interpolated to 0.50◦ × 0.50◦ to make them consistent with those of113

GPCC. Awange et al. (2015) assessed various precipitation products114

over Africa covering 2003-2010, from which TRMM 3B43 (hence forth115

referred to as TRMM) indicated similar skills compared to GPCC v6.116

[FIGURE 1 AROUND HERE.]117

3.2. GRACE Level-2 Data118

In this study, the reprocessed GRACE Level-2 RL05a time-series for the119

period 2002 to 2014 from the Gravity Recovery and Climate Experiment120
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(GRACE, e.g., Tapley et al., 2004) was used. The GRACE data is provided121

by GeoForschungsZentrum (GFZ, Potsdam, Dahle et al., 2013) as sets of122

(approximately) monthly fully normalized geopotential spherical harmonic123

coefficients up to degree and order 90 (see, ftp://podaac.jpl.nasa.gov/124

allData/grace/L2/).125

GRACE degree one (C10, C11, S10) coefficients were replaced by those126

from Cheng et al. (2013), and the more accurate degree two coefficients de-127

rived from satellite laser ranging (SLR, Cheng & Tapley, 2004) replaced C20.128

A commonly used non-isotropic de-correlation filter (DDK3, Kusche et al.,129

2009; Forootan, 2014) was applied to reduce the high degree/order corre-130

lated errors, which are manifested as stripes in the spatial domain. This131

filter removes most of north-south stripes and seems to be suitable to pro-132

cess GFZ RL05a products over the GHA. To be consistent with GPCC, the133

time-variable spherical harmonic coefficients were converted to 0.50◦ × 0.50◦
134

(latitude × longitude) TWS grids using the approach of Wahr et al. (1998).135

The selected spatial grid is optimistic for GRACE products whose spatial136

resolution is ∼ 1◦.137

3.3. MERRA Data138

GRACE TWS estimates were compared with those simulated by the Mod-139

ern Retrospective Analysis for Research Application (MERRA, Rienecker140

et al., 2011). MERRA reanalysis are run globally at a relatively high spa-141

tial resolution (0.67◦×0.50◦) and are available as monthly products from142

1979-present. In this study, monthly MERRA-LAND TWS estimates for the143

period 1980 to 2014 were processed by filtering in the spectral domain and144

then converted to a grid resolution of 0.50◦ × 0.50◦ to be consistent with145
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those of GRACE and GPCC products.146

Filtering of both GRACE and MERRA products, however, causes some147

damping of the signal amplitude and might introduce spatial leakages, which148

should be restored by introducing a multiplicative scaler (or a gridded) gain149

factor (e.g., Landerer & Swenson, 2012). A multiplicative scale factor of 1.05150

was obtained from the MERRA TWS and was uniformly applied to both151

GRACE and reanalysis data used in this study.152

4. Hydro-meteorological Drought Indices153

To assess the hydro-meteorological drought events, two drought indicators154

were analysed: (i) the Standard Precipitation Index (SPI) estimated from155

monthly precipitation products of GPCC and TRMM, and (ii) the Total156

Storage Deficit Index (TSDI) deduced from MERRA and GRACE. Drought157

conditions were assessed over various sub-regions of the GHA extracted using158

the spatial independent component analysis approach discussed in Section159

4.3.160

4.1. Standardized Precipitation Index (SPI)161

The Standardized Precipitation Index (SPI) is a widely-used meteorolog-162

ical drought indicator based on probability distribution of long-term rainfall163

time-series developed by McKee et al. (1993, 1995) to provide a spatially and164

temporally invariant measure of rainfall deficit (or excess) over a variety of165

accumulation timescales (e.g., 3, 6, 12, 24 months). SPI is derived by fitting a166

parametric cumulative probability distribution (CDF) of e.g., γ-distribution167

to the precipitation time-series, which are then transformed to obtain the168

SPI using the inverse normal (Gaussian) distribution function (e.g., Viste169

9



et al., 2013). SPI provides the value of standard anomalies from the median170

indicating negative for drought and positive for wet conditions (see details171

in Table 1). In this study, SPI is computed for the 12-month accumulation172

time periods to capture the long-term trend of meteorological droughts over173

the GHA.174

[TABLE 1 AROUND HERE.]175

4.2. Total Storage Deficit Index (TSDI)176

The Total Storage Deficit Index (TSDI) is a renamed version of Soil Mois-177

ture Deficient Index (SMDI, Narasimhan & Srinivasan, 2005) by Yirdaw et al.178

(2008). TWS changes, which comprise information of the changes in all wa-179

ter components (surface, groundwater, soil moisture, biomass, ice and snow)180

are used in this study to compute TSDI. The procedure to estimate TSDI181

(based on GRACE data) involves an estimation of the Total Storage Deficit182

as (TSD%, Yirdaw et al., 2008):183

TSD(k, j − 2001) =
TWS(k, j) −Mean(TWS(k, :))

Max(TWS(k, :)) −Min(TWS(k, :))
× 100, (1)

k = 1, 2, . . . , 12, j = 2002, 2003, . . . , 2014

where TWS(k, j) is the k’th month of total water storage (anomaly) in each184

year (j = 2002, 2003, . . . , 2014) obtained from GRACE. For MERRA, the left185

hand side of Eq. 1 becomes TSD(k, j − 1979) and j = 1980, 1981, . . . , 2014.186

Mean(TWS(k, :)), Max(TWS(k, :)), and Min(TWS(k, :)) are respectively187

the mean, maximum, and minimum of the k’th month of TWS over the188

study period (for GRACE covering 2002-2014 and for MERRA 1980-2014).189
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The TSD values in Eq. 1 can be stored in a vector TSDi (i = 1, 2, . . . , length190

of TWS time series). Consequently, TSDI can be computed as191

TSDIi = p× TSDIi−1 + q × TSDi, (2)

where the drought severity and duration factors p and q are defined from the192

cumulative TSD plot (e.g., Figure 2) based on the following relation (Yirdaw193

et al., 2008):194

p = 1 − m

m+ b
, q = − C

m+ b
. (3)

In Eq. 3, C represents drought intensity, which is obtained from the best195

fit line of the cumulative TSD (from the drought monograph) during the196

dryness period (see e.g., line 3 in Figure 2). In general, C can take on any197

of the four drought classifications values (-4.0 for extreme drought, -3.0 for198

severe drought, -2.0 for moderate drought, and -1.0 for mild drought) defined199

according to Palmer (1965). The other elements of the regression line are200

the slope m and the intercept b of the best fit of the drought monograph for201

the dryness period of the cumulative TSD curve.202

Using an example, we illustrate how the TSDI values of this study are203

estimated. Figure 2(a) shows a TSD (%) plot over Ethiopia derived from204

GRACE TWS changes based on Eq. 1 between 2004 and 2013. A prolonged205

drought pattern from March 2004 to November 2006 (33 months) has been206

detected with the TSD values reaching as low as 66%. Assuming this sce-207

nario, we plot the cumulative TSDs in Figure 2(b) to derive the parameters208

in Eqs. 2-3. Using the linear regression parameters during the declining209

TWS period (i.e., 2004-2007), TSDI was computed for the period of decline.210
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The slope (m = −31.54) and y-intercept (b = −20.51) parameters derived211

from the cumulative TSD based on 33 months from March 2004 to Novem-212

ber 2006 were subsequently used to calculate the critical parameters p and q.213

Therefore, C= -3 is the category of drought event as can be seen in Figure214

2. Correspondingly p and q were derived as 0.394 and 0.058, respectively.215

TSDI1,1 was assumed to be 2% of TSD1 in line with Yirdaw et al. (2008).216

The TWS droughts, categorized based on the “C” values of Figure 2, are re-217

ported in Table 2. This procedure was used to compute TSDI from GRACE218

and MERRA TWS changes in order to explore hydrological droughts over219

the GHA for the entire study period (1980-2014).220

[FIGURE 2 AROUND HERE.]221

[TABLE 2 AROUND HERE.]222

4.3. Spatial Independent Component Analysis (sICA)223

The sICA (Forootan & Kusche, 2012) approach was applied to extract224

statistically independent modes of precipitation and TWS changes. We em-225

phasize that sICA patterns are essentially regions with similar seasonality226

(and not typical spatial patterns of variability) and as such, there could be227

significant bias in the analysis from the wettest stations. As the estimated228

modes are statistically independent, they can be separately analysed without229

considering other modes (see an application of sICA over the Nile Basin in230

Awange et al., 2014a). Suppose X(t, s) is a gridded time series of precipita-231

tion or TWS changes after removing their dominant annual and semi-annual232

cycles. sICA decomposes the time-series of X into j spatial Sj and temporal233

Aj modes as:234
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X(t, s) = Aj(t) Sj(s), (4)

where t is the time and s represents the grid points. By applying sICA the235

rows of S are statistically as independent as possible, and the columns of A236

are their corresponding temporal evolutions. The use of sICA as opposed to237

principal component analysis (PCA) or its rotated version (RPCA) makes238

sense in this study since it helps to identify (or localize) specific hydrologi-239

cal areas impacted by droughts or extreme wet conditions over GHA, which240

is not possible when using PCA or RPCA. The details of sICA estimation241

are reported in Forootan (2014), chapter 4. Here, only the first four domi-242

nant modes of both precipitation and TWS changes were found statistically243

significant and consequently were considered separately to reconstruct pre-244

cipitation and TWS changes over various sub-regions of GHA. Both SPI and245

TSDI (as discussed in Sections 4.1 and 4.2) were estimated using the four246

dominant sICA modes.247

5. Results and Discussions248

5.1. Changes in Precipitation and TWS249

Changes in TWS depend on the variability of precipitation and climate250

extremes. Rainfall over GHA region has been reported to show consider-251

able inter-seasonal and inter-annual variability over the past few decades be-252

side the long-term changes (e.g., Williams et al., 2012; Lyon, 2014; Omondi253

et al., 2014). Figure 3 shows the variability of rainfall and TWS changes.254

Trends were estimated from monthly rainfall/TWS anomalies (y) over var-255

ious common time periods (T ) using multilinear regression technique (y =256
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β̂0 + β̂1T + β̂2.sin(2πT ) + β̂3.cos(2πT ) + β̂4.sin(4πT ) + β̂5.cos(4πT ) + ε(T )),257

where β̂0 is a constant term, β̂1 represents the linear trend, and the remain-258

ing terms represent the annual and semi-annual signals, ε represents the error259

terms. Only changes that are significant at 95% confidence interval based on260

student’s t-test are shown.261

Figure 3(a) shows significant decline (up to 20 mm/decade) in rainfall262

over southern and northern Sudan as well as increase in rainfall over cen-263

tral Ethiopia between 2002 and 2014 based on monthly TRMM precipita-264

tion estimates. Equivalent increase (decrease) in TWS over central Ethiopia265

(eastern Kenya, Somalia, and northern Sudan) are noted in MERRA (Figure266

3b). GRACE also indicated decreasing trends over southern Sudan and east-267

ern Kenya (similar to rainfall) as well as anomalously large positive trends268

(up to 20 mm/year) over the Lake Victoria region (Figure 3c). However,269

a completely opposite sign is observed in the long-term records of GPCC270

precipitation products between 1980 and 2010 (Figure 3d; i.e., multidecadal271

oscillations may be influencing the sign of the trends), which indicate sig-272

nificant negative (positive) changes over Ethiopia and Tanzania (Sudan and273

Somalia). This might have lead to a overall negative trend in TWS over274

the northern parts of GHA during the same period as shown by MERRA in275

Figure 3e.276

[FIGURE 3 AROUND HERE.]277

Figure 4 shows the area-averaged seasonal anomalies of TWS based on278

MERRA (1980-2014) and GRACE (2002-2014) data. Substantial inter-seasonal279

variations in TWS over the past 30-40 years are observed. Besides decadal280
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trends, prolonged periods of negative TWS anomalies in the late 1980s to281

early 1990s and late 1990s and early 2000s are observed. Although, GRACE282

data covers a very short time period, the inter-seasonal variations are visible283

in all the seasons. While the TWS changes in 2009 may have occurred as a284

result of the historical 2009-2011 drought, TWS changes between 2002 and285

2006 at a rate of 6.20 mm/month seen in GRACE data has been linked to286

other processes such as anthropogenic, evaporations, and rainfall deficiency287

(Awange et al., 2008, 2014a).288

To assess the overall relationship between rainfall and GRACE TWS289

changes over the region, the temporal correlations are computed and pre-290

sented in Figure 5, together with their lags. High correlations between rain-291

fall and TWS (with a 2-month time lag) observed in Figure 5a indicate that292

TWS changes are primarily driven by precipitation. Areas of low correlation293

(over central GHA region) show a time-lag of about one month (see, Figure294

5d). This low correlations could be related to seasonality, where the rainfall295

is usually bimodal over these regions.296

MERRA TWS changes on its part show considerably better correlations297

with rainfall indicating that TWS changes simulated by MERRA are mainly298

driven by precipitation (Figure 5b). It should be noted that MERRA does299

not simulate changes in surface water and groundwater, and therefore, does300

not represent the integrated changes in TWS as observed by GRACE satel-301

lites (Rienecker et al., 2011). The large-scale high correlation patterns ob-302

served in Figure 5b are further illustrated by the time lags, where the majority303

of the region indicated a lag of only one month. Further, the correlations304

between GRACE and MERRA (Figure 5c) closely resemble those of rainfall305
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and GRACE, although over a different time lag (see, Figure 5f).306

[FIGURE 4 AROUND HERE.]307

[FIGURE 5 AROUND HERE.]308

5.2. Spatio-temporal Drought Patterns over GHA309

To study the temporal drought patterns over the GHA, sICA was ap-310

plied on the non-seasonal rainfall/TWS anomalies to derive region-specific311

patterns of temporal variability over the period 1979 to 2014. Figure 6 shows312

the standard deviations derived from the first four leading modes of rainfall313

variability, together with their corresponding temporal patterns (ICs). The314

first independent mode of rainfall variability based on GPCC indicates the315

largest anomalies over central GHA (Kenya, parts of Ethiopia and Soma-316

lia), accounting for 23.8% of the variability (Figure 6a). The second mode317

(20.2%) is localized over central Ethiopia indicating a maximum standard318

deviation of about 30 mm (Figure 6b) while the third mode (20.0%) is con-319

centrated over Tanzania (Figure 6c). The fourth mode (13.3%) is localized320

over northern Ethiopia and Sudan (Figure 6d). TRMM showed similar spa-321

tial patterns to GPCC (Figure 6e-h) except that the second and third modes322

were inter-changed (cf. that of GPCC in Figures 6b and 6c). The maxi-323

mum variability in the third mode was found to be localized completely over324

Ethiopia (Figures 6g-h).325

The corresponding temporal patterns in Figures 6i-l, indicate consider-326

able inter-annual variability and their temporal variations appeared to be327

considerably different from each other signifying the complexity of the re-328
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gion. Note that the ICs are only shown for the period 1998 to 2014 in order329

to highlight the differences between the two precipitation products.330

The four dominant modes of TWS variability are shown in Figure 7 with331

both MERRA (1980-2014) and GRACE (2002-2014) indicating distinct pat-332

terns of maximum variability over various parts of the GHA region. In order333

to highlight the differences in temporal evolutions between MERRA and334

GRACE, the ICs are plotted from 2002 to 2014 only. MERRA TWS showed335

the largest anomalies over western Ethiopia (explaining about 30% of the336

variability; Figure 7a) while the second mode (18.2%) is localized over west-337

ern Tanzania (Figure 7b). The third independent mode showed maximum338

variations over the northern Lake Victoria region accounting for 17.3% of339

the variability (Figure 7c). The fourth mode (14.3%) is mainly concentrated340

over South Sudan (Figure 7d).341

GRACE showed maximum variability (∼27%) over the Lake Victoria342

region (Figure 7e). Its second mode (16%) indicates maximum variations343

between Sudan and Ethiopia (Figure 7f) while its third mode (∼14%) is lo-344

calized over South Sudan (Figure 7g). The fourth mode (13.8%), although345

not very distinctive in its spatial pattern, shows a similar temporal pattern346

to that of MERRA over Tanzania. It should be noted here that the spatial347

patterns of maximum variability shown by MERRA do not exactly match348

with those from GRACE data. This could be possibly due to limitations in349

MERRA (errors in TWS modelling) and GRACE data (short time period).350

One obvious limitation in MERRA lies in its inability to capture the maxi-351

mum variations resulting from the Lake Victoria Basin (see, e.g., sICA 1 in352

Figure 7e). Note though that for GHA, the regions of maximum variations353
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often overlap among the four leading modes. For example, the maximum354

variations over South Sudan shown by MERRA (Figure 7d) matche quite355

well with sICA 3 of GRACE data (see, Figure 7g).356

In this way, we match the spatial patterns of sICA from GRACE and357

MERRA to plot their ICs in Figures 7i-l. It can be seen that the matched358

temporal patterns between GRACE and MERRA are very close. The corre-359

sponding ICs plotted between 2002 and 2014 show considerably inter-annual360

variability, indicating the hydrological extremes over parts of the GHA re-361

gion. For example, the temporal patterns over the Lake Victoria region (Fig-362

ure 7e) are reproduced reasonably well by GRACE and MERRA (Figure 7i),363

indicating a rapid decline in TWS from 2002 to 2006 and steadily increasing364

thereafter (see e.g., Awange et al., 2008; Swenson & Wahr, 2009). GRACE365

(IC2, Figure 7j, Ethiopia-Sudanese border) indicates the typical hydrological366

extremes, i.e., droughts of 2004, 2009, and 2011 while GRACE (IC3) fairly367

representes the dry periods over South Sudan (Figure 7k). GRACE (IC4),368

which is mainly localized over the eastern GHA region (Figure 7l) indicates369

a rapid decline of TWS from 2002 to 2006 and 2007 to 2010.370

[FIGURE 6 AROUND HERE.]371

[FIGURE 7 AROUND HERE.]372

Based on the sICA results in Figures 6 and 7, in Table 3, we classified373

GHA into four sub-regions in the order of sICA-derived patterns of GRACE374

TWS in Figures 7e-h. Precipitation and TWS anomalies reconstructed from375

the individual spatial and temporal modes provide rainfall and TWS changes376

with anomalies mainly localized over these four regions. Four time-series were377
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calculated for each dataset based on the four leading sICA modes to gener-378

ate SPI and TSDI indices used to study the hydrological extremes over the379

period 1980 to 2014. Since we have already removed the seasonal component380

from both precipitation and TWS changes before applying the sICA, it is381

not necessary to use Eq. 1 to compute the TSD anomalies. Instead, we con-382

verted the TWS anomalies to TSD (in %) by dividing them with the range383

(TWSmax-TWSmin). While SPI is straight forward (Figure 8), the calcula-384

tion of TSDI index is rather complicated depending on the period of drought385

events, which is important for deriving the slope and y-intercept parameters386

from the cumulative TSDs. By analyzing the individual time-series, we esti-387

mated the TSDIs for all the four regions and plotted them in Figure 9. For388

example, TSDI (of GRACE TWS) over Lake Victoria region (Region 1) was389

calculated from cumulative TSDs between June 2006 and November 2006390

while the TSDI over South Sudan (Region 3) was calculated for August 2009391

to May 2010 (see Table 3).392

[TABLE 3 AROUND HERE.]393

Figure 8 shows the 12-month SPI indices calculated from GPCC (1979-394

2010) and TRMM (1998-2014) over the four regions as indicated in Table 3395

and Figures 7e-h. These are (a) Region 1 covering the Lake Victoria Basin,396

(b) Region 2, including the Ethiopia-Sudan border, (c) Region 3 covering397

South Sudan, and (d) Region 4, including Tanzania and parts of Ethiopia.398

The first 12 months of GPCC (i.e., 1979) and TRMM (i.e., 1998) were re-399

moved during the SPI computation. Table 4 summarizes the duration and400

intensity of severe to extreme meteorological drought episodes for the four401
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sub-regions between 1980 and 2014. The SPI indices over Region 1 in Fig-402

ure 8a (corresponding to Figures 6a and 6e) shows extreme drought events in403

1984, 1999-2000, 2009, and 2011, consistent with the findings in Lyon (2014).404

The most notable droughts over Ethiopia and eastern Sudan (Region 2, Table405

3) include the extreme drought events of 2009 and some moderate droughts in406

1984, 1986, 1992, 1994,and 2002 (Figure 8b). SPI patterns over South Sudan407

(Figure 8c, see also, Table 3) indicate prolonged droughts from 1982 to early408

1985 and between 2009 and 2010. The SPI indices over Tanzania (Region409

4, Figure 8d) indicate considerable variability with severe/extreme droughts410

lasting from one to two years (e.g., 1988-1989, 1997-1998, 2003-2004, and411

2005-2006).412

Although there were indications of decreasing rainfall from 1980-1982, it413

did not lead to extreme droughts over Tanzania. The region exhibited only a414

moderate drought from 2010-2011, which caused devastating affects in other415

parts of the GHA (WMO, 2012; Tierney et al., 2013). The two precipitation416

products, GPCC and TRMM were found to be fairly consistent across all417

the four regions between 1998 and 2010 but were found to differ slightly over418

Region 3 (over South Sudan, Figure 8c), where rainfall variability of GPCC419

was highest over central Sudan and northern Ethiopia (see, Figure 6d) in420

contrast to South Sudan as indicated by TRMM (Figure 6g).421

[FIGURE 8 AROUND HERE.]422

[TABLE 4 AROUND HERE.]423

Figure 9 shows the TSDIs of the four regions (see Table 3). Major hy-424

drological drought events between 1980 and 2014 based on TWS changes de-425
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rived from MERRA (1980-2014) and GRACE (2002-2014) are summarized426

in Table 5. For MERRA, only severe to extreme droughts are shown for427

brevity. Clearly, three or more severe to extreme hydrological droughts oc-428

curred over various regions of GHA with some of them lasting for 75 months429

(Table 5). Over the Lake Victoria Basin, especially over Kenya and northern430

Tanzania, four major droughts were detected, which in total lasted for 20431

or more months (Figure 9a). All the four droughts occurred as a result of432

prolonged meteorological dry episodes (see, Table 4) over the same region.433

While MERRA indicated only moderate droughts from 2004-2006, GRACE434

showed severe droughts from March 2004 to November 2006, which lasted for435

33 months, the period that coincided with the fall of Lake Victoria water level436

between 2002 and 2006 due to the expansion of the Owen Falls Dam (see e.g.,437

Awange et al., 2008). From Table 4 (see also, Figure 8d), it can be seen that438

a severe meteorological drought also occurred from October further exacer-439

bating the TWS decline. However, the most recent extreme meteorological440

droughts of 2009-2010 and 2010-2011 (see, Table 4) only caused moderate441

hydrological droughts over the region (Table 5).442

[FIGURE 9 AROUND HERE.]443

[TABLE 5 AROUND HERE.]444

Over Ethiopia and Sudan (Region 2), we observe very different scenarios445

of TWS variability between GRACE and MERRA especially over 2002 to446

2014, where GRACE data showed large positive (negative) TSDIs between447

2007 and 2009 (2007 and 2011), which were not represented well by MERRA448

(Figure 9b). MERRA also indicates prolonged droughts from April 2000 to449
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June 2006 lasting for about 75 months (Figure 9b and Table 5), which we450

believe could be spurious. However, it is also observed that two meteorolog-451

ical droughts have occurred (1999-2000, and 2002-2004), which might have452

affected the TWS variability in MERRA. Extreme hydrological droughts453

have been found from July 2011-July 2012 (MERRA) and September 2009-454

October 2011 (GRACE) in response to the prolonged meteorological drought455

conditions over the region (see, Figure 9b). MERRA also indicated extreme456

droughts between 1990 and 1993, which was again, in response to the me-457

teorological droughts that occurred from 1991-1992. The region also experi-458

enced the largest TWS decline (extreme hydrological drought) in 2009-2010459

and 2010-2011, corresponding to the historical drought events from 2009-460

2011. These events were well-captured by the two precipitation products461

(Figure 8b) and GRACE-derived TWS changes (Figure 9b). During this two462

periods, SPI dropped below -2.5 while the TSDI was round -6.0 during the463

peak period (i.e., December to February 2009-2010). It is also interesting464

to observe that both the meteorological droughts eventuated from rainfall465

deficits during the OND season.466

TSDI patterns over Region 3 representing the South Sudan region are467

quite complicated as both GRACE and MERRA indicate high intra-seasonal468

variability (especially observed in GRACE) but the extreme drought of 2011-469

2012 was well captured by GRACE (Figure 9c). This could have occurred as a470

result of prolonged meteorological droughts that last for 39 months from May471

2009 to July 2012. Note that MERRA also indicated prolonged hydrological472

droughts between July 1988 and December 1992. Region 4 covering Tan-473

zania and parts of Ethiopia experienced several instances of droughts with474
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varying intensities between 1980 and 2014 (Figure 9d). The most notable475

drought events shown by MERRA are the prolonged droughts that occurred476

in the early 1990, the late 1990s, and in 2011. Similar to the Lake Victoria477

Basin (Region 1), this region also exhibited significant decline in TWS from478

2003 to mid-2006 leading to a prolonged (and extreme) hydrological drought479

over the region. It should be noted here that the region also suffered two480

meteorological droughts (2003-2004 and 2005-2006) during the period (see,481

Figure 8d). The 2010-2011 extreme drought was also captured very well by482

GRACE data.483

Figure 10 illustrates the spatial evolution of the 2009-2010 drought com-484

puted as a sum of rainfall/TWS over three important seasons. It is ob-485

served that the entire GHA experienced anomalously low rainfall during486

OND 2010 (Figure 10a), which remained relatively dry during MAM 2011487

over Kenya, Ethiopia, and South Sudan (Figure 10b) before recovering to488

positive changes. TWS anomalies were mostly negative in the southern and489

western parts of GHA during OND 2010 (Figure 10d) but their magnitudes490

further increased during MAM 2011 (Figure 10e). High negative anomalies491

have shifted to Region 3 during JJAS 2011 but the majority of the regions492

still indicate negative anomalies (Figure 10f) as a result of deficit rainfall in493

the two preceding months.494

[FIGURE 10 AROUND HERE.]495

It is observed that almost all the hydrological droughts over the GHA re-496

gion have resulted from extreme (and/or prolonged) meteorological droughts497

with both SPI and TSDI indicating consistent temporal variability during498
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the period 1980-2014. To illustrate the relationship between SPI and TSDI,499

we plot the SPI and TSDI values based on TRMM precipitation estimates500

(1998-2014) and GRACE-derived TWS changes (2002-2014) for the period501

1999 to 2014 in Figure 11, with TSDI values scaled to the SPI values. The502

temporal patterns of SPI and TSDI are closely matched for Region 1, 3, and503

4 while the major drought events of 2009-2010 and 2010-2011 over Region504

2 were also represented well by SPI and TSDI, where hydrological droughts505

have occurred almost 5-6 months after the meteorological drought.506

The correlations between SPI and TSDI were computed for the period507

2002-2014 (Table 6). Consistent with Figure 11, we found significant correla-508

tions (at 95% confidence interval) between SPI and TSDI during the period509

with a correlation of 0.44 (at one month lag), 0.52 (at 3 month lag), and 0.59510

(at one month lag) for Region 1, Region 3, and Region 4, respectively. The511

correlation between SPI and TSDI for Region 2 was not significant. There512

exists a high seasonal correlation over the region between rainfall and TWS513

changes (see, Figure 5a). The correlations between MERRA-derived TSDI514

and GRACE-derived TSDI were found to be significant over all the four re-515

gions with a lag of up to 1 month (see, Table 6). In quantifying changes in516

TWS and the resulting hydrological drought events (as indicated by TSDI)517

in GHA, contributions due to evapotranspiration and increased use of fresh-518

water (groundwater and surface water) in the region should be taken into519

account.520

[FIGURE 11 AROUND HERE.]521

[TABLE 6 AROUND HERE.]522
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The study further explored global teleconnection relationships to SPI and523

TSDI indices. Table 7 shows the correlation coefficients and time lags (in524

months) between SPI (and TSDI) indices and Niño3.4 and the Dipole Mode525

Index (DMI) over various time periods between 1979 to 2014. Both SPI526

and TSDI (GRACE) of Region 1 are significantly correlated with ENSO and527

IOD and are more related to IOD than ENSO (with a maximum correlation528

of 0.53 between TRMM and DMI). SPI (GPCC) and TSDI (GRACE) also529

show significant correlations with ENSO (IOD) while both SPI and TSDI530

over Region 4 show significant correlations with IOD with the highest cor-531

relation of 0.41 for the GRACE-derived TSDI. SPI and TSDI over Region 3532

(representing South Sudan) show the least correlation against ENSO (IOD)533

indicating that rainfall and TWS variability over South Sudan was not asso-534

ciated with large-scale climate events as the region is located further inland535

compared to the other three regions.536

It is observed that MERRA product shows low but opposite correlations537

with ENSO (IOD) compared to GRACE, which could be another limitation538

of the reanalysis product. Furthermore, IOD is seen to be the leading driver539

of rainfall and TWS variability especially over the eastern GHA region with540

the highest impact over Tanzania and Lake Victoria (see, Table 7). This541

is consistent with previous studies, which reported that the East African542

climate is highly governed by the Indian Ocean SST variability (e.g., Williams543

& Funk, 2011; Tierney et al., 2013; Lyon, 2014).544

[TABLE 7 AROUND HERE.]545
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6. Summary and Conclusions546

The study found significant changes in long-term and decadal rainfall547

based on monthly estimates from GPCC and TRMM over 1979 to 2014.548

Long-term rainfall changes between 1980 and 2010 indicated significant pos-549

itive (negative) changes over Sudan (Ethiopia and Tanzania) while changes550

from 2002 to 2014 showed completely opposite trends over these two regions.551

GRACE-derived TWS changes showed high positive (negative) trends552

over central GHA (South Sudan and Tanzania) with a maximum increase of553

about 20 mm/yr over the Lake Victoria Basin and central Ethiopia. High554

correlations (up to 0.9) were noted between monthly rainfall and GRACE555

TWS changes over South Sudan, western Ethiopia, and Tanzania, with a lag556

of 1-2 months while rainfall over arid and semi-arid regions such as northern557

Sudan and Somalia were least correlated, indicating that large-scale varia-558

tions of TWS are mainly influenced by seasonal rainfall variations.559

SPI and TSDI indices estimated over the four sICA-derived spatial re-560

gions (Lake Victoria Basin, Ethiopia-Sudanese border, South Sudan, and561

Tanzania) indicated several instances of severe to extreme meteorological562

droughts (SPI <1.5) resulting in extreme hydrological droughts that were563

observed in MERRA and GRACE TWS changes (indicated by TSDIs). Cor-564

relations between meteorological droughts (SPI) and hydrological droughts565

(GRACE-derived TSDI) were found to be significant especially over Lake566

Victoria region (0.44), Tanzania (0.52), and South Sudan (0.59), signifying567

that precipitation plays an important role in the hydrological budget of the568

regions.569

While the Lake Victoria Basin experienced six major meteorological droughts570
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between 1979 and 2014, South Sudan and Ethiopia suffered seven meteoro-571

logical droughts lasting between one year to 3 and half years. The impact572

of prolonged meteorological droughts is clearly evident in the TWS changes573

over all the four regions, which resulted in multiple years of hydrological574

droughts.575

Consistent with the previous studies (e.g., Tierney et al., 2013), the Indian576

Ocean SST variations were found to play a larger influence on the regional577

TWS changes ompared to the ENSO mode. It should be noted here that cor-578

relations between MERRA and ENSO (IOD) indices were considerably lower579

(and often opposite). Further verifications are required to assess the qual-580

ity of reanalysis products to study the long-term changes and hydrological581

extremes over the GHA region.582
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Funk, C., Hoell, A., Shukla, S., Bladé, I., Liebmann, B., Roberts, J. B.,668

Robertson, F. R., & Husak, G. (2014). Predicting East African spring669

droughts using Pacific and Indian ocean sea surface temperature in-670

dices. Hydrol. Earth Syst. Sci. Discuss., 11 , 3111–3136. doi:10.5194/671

hessd-11-3111-2014.672

31

http://dx.doi.org/10.2312/GFZ.b103-1202-25
http://dx.doi.org/http://hss.ulb.uni-bonn.de/2014/3766/3766.htm
http://dx.doi.org/http://hss.ulb.uni-bonn.de/2014/3766/3766.htm
http://dx.doi.org/http://hss.ulb.uni-bonn.de/2014/3766/3766.htm
http://dx.doi.org/10.1016/j.rse.2012.05.023
http://dx.doi.org/10.1007/s00190-011-0532-5
http://dx.doi.org/10.1007/s11200-012-0718-1
http://dx.doi.org/10.5194/hessd-11-3111-2014
http://dx.doi.org/10.5194/hessd-11-3111-2014
http://dx.doi.org/10.5194/hessd-11-3111-2014


Houborg, R., Rodell, M., Li, B., Reichle, R., & Zaitchik, B. F. (2012).673

Drought indicators based on model-assimilated Gravity Recovery and Cli-674

mate Experiment (GRACE) terrestrial water storage observations. Water675

Resources Research, 48 . doi:10.1029/2011WR011291.676

Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F.,677

Gu, G., Hong, Y., Bowman, K. P., & Stocker, E. F. (2007). The678

TRMM multisatellite precipitation analysis (TMPA): Quasi-global, mul-679

tiyear, combined-sensor precipitation estimates at fine scales. Journal of680

Hydrometeorology , 8 , 38–55. doi:10.1175/JHM560.1.681

Kurnik, B., Barbosa, P., & Vogt, J. (2011). Testing two different precipitation682

datasets to compute the standardized precipitation index over the Horn of683

Africa. International Journal of Remote Sensing , 32 , 5947–5964. doi:10.684

1080/01431161.2010.499380.685

Kusche, J., Schmidt, R., Petrovic, S., & Rietbroek, R. (2009). Decorrelated686

grace time-variable gravity solutions by gfz, and their validation using a687

hydrological model. Journal of Geodesy , 83(10), 903–913. doi:10.1007/688

s00190-009-0308-3.689

Landerer, F. W., & Swenson, S. C. (2012). Accuracy of scaled GRACE690

terrestrial water storage estimates. Water Resources Research, 48 . doi:10.691

1029/2011WR011453.692

Leblanc, M. J., Tregoning, P., Ramillien, G., Tweed, S. O., & Fakes, A.693

(2009). Basin-scale, integrated observations of the early 21st century mul-694

32

http://dx.doi.org/10.1029/2011WR011291
http://dx.doi.org/10.1175/JHM560.1
http://dx.doi.org/10.1080/01431161.2010.499380
http://dx.doi.org/10.1080/01431161.2010.499380
http://dx.doi.org/10.1080/01431161.2010.499380
http://dx.doi.org/10.1007/s00190-009-0308-3
http://dx.doi.org/10.1007/s00190-009-0308-3
http://dx.doi.org/10.1007/s00190-009-0308-3
http://dx.doi.org/10.1029/2011WR011453
http://dx.doi.org/10.1029/2011WR011453
http://dx.doi.org/10.1029/2011WR011453


tiyear drought in southeast australia. Water Resources Research, 45 , n/a–695

n/a. doi:10.1029/2008WR007333.696

Li, B., & Rodell, M. (2014). Evaluation of a model-based groundwater697

drought indicator in the conterminous U.S. Journal of Hydrology , 526 ,698

78–88. doi:10.1016/j.jhydrol.2014.09.027.699

Long, D., Scanlon, B. R., Longuevergne, L., Sun, A. Y., Fernando, D. N., &700

Save, H. (2013). GRACE satellite monitoring of large depletion in water701

storage in response to the 2011 drought in Texas. Geophysical Research702

Letters , 40 , 33953401. doi:10.1002/grl.50655.703

Lyon, B. (2014). Seasonal drought in the Greater Horn of Africa and its704

recent increase during the March-May long rains. Journal of Climate, 27 ,705

79537975. doi:10.1175/JCLI-D-13-00459.1.706

Marthews, T. R., Otto, F. E. L., Mitchell, D., Dadson, S. J., & Jones,707

R. G. (2015). The 2014 drought in the horn of africa: Attribution of708

meteorological drivers. Bull. Amer. Meteor. Soc., 96 , 8388. doi:http:709

//dx.doi.org/10.1175/BAMS-EEE_2014_ch17.1.710

McKee, T., Doesken, N. J., & Kliest, J. (1993). The relationship of drought711

frequency and duration to time scales. In Proceedings of the 8th Confer-712

ence of Applied Climatology, 17-22 January, Anaheim, CA (pp. 194–184).713

American Meterological Society, Boston, MA.714

McKee, T., Doesken, N. J., & Kliest, J. (1995). Drought monitoring with715

multiple time scales. In 9th AMS Conference on Applied Climatology (pp.716

233–236). American Meterological Society, Boston, MA.717

33

http://dx.doi.org/10.1029/2008WR007333
http://dx.doi.org/10.1016/j.jhydrol.2014.09.027
http://dx.doi.org/10.1002/grl.50655
http://dx.doi.org/10.1175/JCLI-D-13-00459.1
http://dx.doi.org/http://dx.doi.org/10.1175/BAMS-EEE_2014_ch17.1
http://dx.doi.org/http://dx.doi.org/10.1175/BAMS-EEE_2014_ch17.1
http://dx.doi.org/http://dx.doi.org/10.1175/BAMS-EEE_2014_ch17.1


Narasimhan, B., & Srinivasan, R. (2005). Development and evaluation of718

Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index719

(ETDI) for agricultural drought monitoring. Agricultural and Forest Me-720

teorology , 133(1-4), 6988. doi:10.1016/j.agrformet.2005.07.012.721

Naumann, G., Dutra, E., Barbosa, P., Pappenberger, F., Wetterhall, F.,722

, & Vogt, J. V. (2014). Comparison of drought indicators derived from723

multiple data sets over Africa. Hydrology and Earth System Sciences , 18 ,724

1625–1640. doi:10.5194/hess-18-1625-2014.725

Nicholson, S. E. (1997). An analysis of the enso signal in the tropical at-726

lantic and western INDIAN oceans. International Journal of Climatol-727

ogy , 17 , 345375. doi:10.1002/(SICI)1097-0088(19970330)17:4<345::728

AID-JOC127>3.0.CO;2-3.729

Omondi, P. A., Awange, J. L., Forootan, E., Ogallo, L. A., Barakiza, R.,730

Girmaw, G. B., Fesseha, I., Kululetera, V., Kilembe, C., Mbati, M. M.,731

Kilavi, M., King’uyu, S. M., Omeny, P. A., Njogu, A., Badr, E. M., Musa,732

T. A., Muchiri, P., Bamanya, D., & Komutunga, E. (2014). Changes in733

temperature and precipitation extremes over the greater horn of africa734

region from 1961 to 2010. International Journal of Climatology , 34 , 1262–735

1277. doi:10.1002/joc.3763.736

Palmer, W. (1965). Meteorological drought . Technical Report Research737

Paper 45 US Department of Commerce, Weather Bureau Washington738

DC. Available at: https://www.ncdc.noaa.gov/temp-and-precip/739

drought/docs/palmer.pdf.740

34

http://dx.doi.org/10.1016/j.agrformet.2005.07.012
http://dx.doi.org/10.5194/hess-18-1625-2014
http://dx.doi.org/10.1002/(SICI)1097-0088(19970330)17:4<345::AID-JOC127>3.0.CO;2-3
http://dx.doi.org/10.1002/(SICI)1097-0088(19970330)17:4<345::AID-JOC127>3.0.CO;2-3
http://dx.doi.org/10.1002/(SICI)1097-0088(19970330)17:4<345::AID-JOC127>3.0.CO;2-3
http://dx.doi.org/10.1002/joc.3763
https://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf
https://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf
https://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf


Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu,741

E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G. K., Bloom, S.,742

Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster,743

R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder,744

C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., &745

Woollen, J. (2011). Merra: Nasas modern-era retrospective analysis for746

research and applications. Journal of Climae, 24 , 36243648. doi:10.1175/747

jcli-d-11-00015.1.748

Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M., &749

Rudolf, B. (2014). GPCC’s new land surface precipitation climatology750

based on quality-controlled in situ data and its role in quantifying the751

global water cycle. Theoretical and Applied Climatology , 115 , 15–40.752

doi:10.1007/s00704-013-0860-x.753

Sheffield, J., Wood, E. F., Chaney, N., Guan, K., Sadri, S., Yuan, X., Olang,754

L., A., Amani, Ali, A., Demuth, S., & Ogallo, L. (2014). A drought755

monitoring and forecasting system for Sub-Sahara African water resources756

and food security. Bull. Amer. Meteor. Soc., 95 , 861–882. doi:10.1175/757

BAMS-D-12-00124.1.758

Swenson, S., & Wahr, J. (2009). Monitoring the water balance of lake759

victoria, east africa, from space. Journal of Hydrology , 370 , 163–176.760

doi:10.1016/j.jhydrol.2009.03.008.761

Tapley, B. D., Bettadpur, S., Watkins, M., & Reigber, C. (2004). The grav-762

ity recovery and climate experiment: Mission overview and early results.763

Geophysical Research Letters , 33 . doi:10.1029/2004GL019779.764

35

http://dx.doi.org/10.1175/jcli-d-11-00015.1
http://dx.doi.org/10.1175/jcli-d-11-00015.1
http://dx.doi.org/10.1175/jcli-d-11-00015.1
http://dx.doi.org/10.1007/s00704-013-0860-x
http://dx.doi.org/10.1175/BAMS-D-12-00124.1
http://dx.doi.org/10.1175/BAMS-D-12-00124.1
http://dx.doi.org/10.1175/BAMS-D-12-00124.1
http://dx.doi.org/10.1016/j.jhydrol.2009.03.008
http://dx.doi.org/10.1029/2004GL019779


Thomas, A. C., Reager, J. T., Famiglietti, J. S., & Rodell, M. (2014). A765

GRACE-based water storage deficit approach for hydrological drought766

characterization. Geophysical Research Letters , 41 , 1537–1545. doi:10.767

1002/2014GL059323.768

Tierney, J. E., Smerdon, J. E., Anchukaitis, K. J., & Seager, R. (2013).769

Multidecadal variability in East African hydroclimate controlled by the770

Indian Ocean. Nature, 493 , 389–392. doi:10.1038/nature11785.771

Viste, E., Korecha, D., & Sorteberg, A. (2013). Recent drought and pre-772

cipitation tendencies in Ethiopia. Theoretical and Applied Climatology ,773

112(3), 535–551. doi:10.1007/s00704-012-0746-3.774

Wahr, J., Molenaar, M., & Bryan, F. (1998). Time variability of the Earth’s775

gravity field: Hydrological and oceanic effects and their possible detec-776

tion using GRACE. Journal of Geophysical Research, 103 , 30,205–30,229.777

doi:10.1029/98JB02844.778

Williams, A. P., & Funk, C. (2011). A westward extension of the warm779

pool leads to a westward extension of the Walker circulation, dry-780

ing eastern Africa. Climate Dynamics , 37 , 2417–2435. doi:10.1007/781

s00382-010-0984-y.782

Williams, A. P., Funk, C., Michaelsen, J., Rauscher, S. A., Robertson, I.,783

Wils, T. H. G., Eshetu, Z., & Loader, N. J. (2012). Recent summer pre-784

cipitation trends in the Greater Horn of Africa and the emerging role of785

Indian Ocean sea surface temperature. Climate Dynamics , 39 , 2307–2328.786

doi:10.1007/s00382-011-1222-y.787

36

http://dx.doi.org/10.1002/2014GL059323
http://dx.doi.org/10.1002/2014GL059323
http://dx.doi.org/10.1002/2014GL059323
http://dx.doi.org/10.1038/nature11785
http://dx.doi.org/10.1007/s00704-012-0746-3
http://dx.doi.org/10.1029/98JB02844
http://dx.doi.org/10.1007/s00382-010-0984-y
http://dx.doi.org/10.1007/s00382-010-0984-y
http://dx.doi.org/10.1007/s00382-010-0984-y
http://dx.doi.org/10.1007/s00382-011-1222-y


WMO (2012). WMO statement on the status of the global climate in788

2011 . Technical Report WMO-No. 1085 World Meteorological Organi-789

zation Geneva, Switzerland.790

Yirdaw, S., Snelgrove, K., & Agboma, C. (2008). GRACE satellite ob-791

servations of terrestrial moisture changes for drought characterization in792

the canadian prairie. Journal of Hydrology , 356 , 84–92. doi:10.1016/j.793

jhydrol.2008.04.004.794

37

http://dx.doi.org/10.1016/j.jhydrol.2008.04.004
http://dx.doi.org/10.1016/j.jhydrol.2008.04.004
http://dx.doi.org/10.1016/j.jhydrol.2008.04.004


Figure 1: Spatial variability of seasonal rainfall over GHA from 1979-2010 based on GPCC

v6 data: a) January-March (JFM), b) March-May (MAM), c) June- September (JJAS),

and d) October-December (OND). Note that the signals over Lake Victoria has been

masked out in our analysis to avoid spurious trends due to varying lake levels.
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Figure 2: Total storage deficit over eastern GHA region from 2004 to 2013 (a) and cu-

mulative total storage deficit (%) over the same period (b). Considering the horizontal

line of zero in the Figure (b) to represent near normal condition, following Palmer (1965)

classification, the interval from near normal to severe dryness was divided into four equal

intervals, with the part above the best fit line having two lines (1 and 2) and the best

fit is shown by line 3. To complete the Palmer (1965) classification, a fourth line 4 was

plotted. All the four lines were drawn at equal intervals to define the extreme (Line 4),

severe (Line 3), moderate (Line 2), and normal (Line 1) drought conditions.
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Figure 3: Spatial variability of linear trend over GHA based on a full complement of

monthly data at 95% confidence level from 2002-2014 for (a) TRMM rainfall, (b) MERRA

TWS, and (c) GRACE TWS. Long term variability are also assessed from 1980-2010 for

(d) GPCC rainfall and (e) MERRA TWS. Note that signals over Lake Victoria were not

included (i.e., they are masked).
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Figure 4: Regional-averaged seasonal anomalies of TWS over the GHA region based on

MERRA (1980-2014) and GRACE (2002-2014). The seasonal averages are shown for (a)

MAM, (b) JJAS, and (c) OND corresponding to Figures 1b-d.
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Figure 5: Temporal correlations (with lags in months) between monthly rainfall and TWS

changes for the common period 2002-2014. Correlations and lags were computed between

a&d) monthly precipitation estimates of TRMM and TWS changes derived from GRACE

Level 2 data, b&e) monthly precipitation estimates of TRMM 3B43 and TWS changes

simulated MERRA, and c&f) GRACE and MERRA TWS changes over the entire GHA

region. Note that the values which are not significant at 95% were not shown.
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Figure 6: The first four dominant modes of rainfall variability over the GHA region based

on a-d) GPCC (1979-2010), and e-h) TRMM (1998-2014). The corresponding temporal

patterns (or ICs) are shown in the bottom panels (i-l), where a low-pass filter is applied

to enhance their interpretation. (i) Temporal patterns corresponding to a & e, (j) b& g,

(k) c & f, and (l) d & h.
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pass filter is applied to enhance their interpretation. (i) Temporal patterns corresponding

to c & e, (j) a& f, (k) d & g, and (l) b & h.
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Figure 8: 12-month SPI indices estimated from monthly precipitation products of GPCC

(1979-2010) and TRMM (1998-2014) over the four homogenous regions classified based on

sICA (see also, Table 3). a) Region 1, b) Region 2, c) Region 3, and d) Region 4. Note

that SPI was not calculated for the first 12 months in both datasets.
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Figure 9: TSDI indices computed based on sICA-derived modes over (a) Region 1, (b)

Region 2, (c) Region 3, and (d) Region 4 (see Table 3).
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Figure 10: Seasonal rainfall anomaly and TWS changes (mm/season) over the GHA region

during a-b) October-December 2010, c-d) March-May 2011, and e-f) June-September 2011.
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Figure 11: SPI and TSDI indices of TRMM precipitation product and GRACE TWS

changes for the period 1999 to 2014. The TSDI indices were normalized to the SPI to

highlight their temporal pattern over the four regions.
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Table 1: Various categories of droughts and wet conditions based on the SPI Index (McKee

et al., 1993; Viste et al., 2013).

SPI Category

+2.0 and above Extreme wet

+1.5 to +1.99 Very wet

+1.0 to +1.49 Moderately wet

+0.99 to -0.99 Normal

-1.0 to -1.49 Moderate drought

-1.5 to -1.99 Severe drought

-2 and below Extreme drought

Table 2: Various categories of droughts and wet conditions based on the TSDI Index

(Palmer, 1965; Yirdaw et al., 2008).

TSDI Category

+4.0 and above Extreme wet

+3.0 to +3.99 Very wet

+2.0 to +2.99 Moderate wet

+1.99 to -1.99 Normal

-2.0 to -2.99 Moderate drought

-3.0 to -3.99 Severe drought

-4 and below Extreme drought
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Table 3: Four sub-regions classified according to the first four leading modes of precipita-

tion and TWS.

Region Area GPCC v6 TRMM 3B43 MERRA GRACE

Region 1

Kenya

ICA1 ICA1 ICA3 ICA1

Uganda

Rwanda

Burundi

Northern Tanzania

Region 2
Ethiopia

ICA2 ICA3 ICA1 ICA2
Sudan

Region 3 South Sudan ICA4 ICA4 ICA4 ICA3

Region 4
Tanzania

ICA3 ICA2 ICA2 ICA4
Eastern Ethiopia
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Table 4: Severe to extreme meteorological droughts based on the SPI in the four regions

(see, Table 3) of GHA from 1979 to 2014.

Region Periods Duration SPI [Max] Class

Region 1

Jul 1983-Feb 1985 20 months -2.13 Extreme

Apr 1993-Sep 1994 18 months -1.54 Severe

Nov 1998-Mar 2002 43 months -2.31 Extreme

Mar 2004-Jul 2006 29 months -1.53 Severe

Jun 2008-Nov 2009 19 months -1.66 Severe

Nov 2010-Sep 2011 12 months -1.62 Severe

Region 2

Apr 1984-Apr 1985 13 months -2.13 Extreme

Jan 1986-Jul 1988 28 months -1.60 Severe

Oct 1991-Dec 1992 15 months -1.84 Severe

Nov 1993-Nov 1994 13 months -1.59 Severe

Apr 2002-Jan 2004 22 months -1.52 Severe

Feb 2009-Feb 2010 13 months -2.50 Extreme

Oct 2010-Oct 2011 13 months -2.80 Extreme

Region 3

Jul 1982-Sept 1985 39 months -2.57 Extreme

Apr 1982-May 1985 38 months -2.61 Extreme

Mar 2009-July 2012 41 months -2.03 Extreme

Region 4

Dec 1987-Mar 1989 16 months -1.54 Severe

Nov 1996-Sep 1997 9 months -2.18 Extreme

Nov 1998-Oct 2000 24 months -2.14 Extreme

Mar 2003-Jul 2006 41 months -2.10 Extreme

Dec 2008-Jul 2011 32 months -1.52 Severe
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Table 5: Severe to extreme hydrological droughts based on the TSDI in the four regions (see

Table 3) of GHA derived from MERRA (1980-2014) and GRACE (2002-2014) products.

MERRA (1980-2014) GRACE (2002-2014)

Region Periods Duration TSDI [Max] Category Periods Duration TSDI [Max] Category

Region 1

Nov 1983-May 1987 43 months -4.33 Severe Sep 2004-Nov 2006 27 months -4.31 Severe

Mar 1992-Mar-1996 49 months -4.05 Extreme Jun 2008-Feb 2010 21 months -2.08 Moderate

Feb 2000-Nov 2002 34 months -3.34 Severe Sept 2010-Sep 2011 13 months -2.58 Moderate

Oct 2010-May 2012 20 months -3.68 Severe

Region 2

Jan 1980-Jul 1981 19 months -5.02 Extreme Mar 2004-Nov 2006 33 months -3.36 Severe

Apr 2000-Jun 2006 75 months -6.25 Extreme Sep 2009-Oct 2011 26 months 4.60 Extreme

Jul 2011-Jul 2012 13 months -4.72 Extreme

Region 3

Dec 1998-Mar 1993 52 months -5.93 Extreme May 2004-Nov 2006 31 months -3.26 Extreme

Jul 2000-Mar 2002 21 months -3.9 Severe Jun 2009-Sep 2011 28 months -4.40 Extreme

Jun 2000-Feb 2006 45 months -4.81 Extreme

Region 4

Feb 1991-Mar 1996 62 months -5.84 Extreme Mar 2004-Oct 2006 32 months -5.70 Extreme

Jan 1997-Jan 2001 49 months -6.93 Extreme Nov 2011-Jan 2014 27 months -3.98 Severe

Nov 2005-Nov 2006 13 months -3.47 Severe

May 2010-Nov 2011 19 months -3.17 Severe

Table 6: Correlations between TSDI derived from GRACE TWS changes and SPI de-

rived from TRMM precipitation estimates between 2002 and 2014. Correlations between

GRACE and MERRA TSDIs are also shown to indicate the skills of MERRA with re-

spect to TWS changes derived from GRACE observations. Correlation coefficients that

are significant at 95% confidence level are indicated in bold.

Region Region 1 Region 2 Region 3 Region 4

SPI and TSDI (GRACE) 0.44(1 month) 0.24 (2 month) 0.52 (3 month) 0.59 (1 month)

MERRA vs GRACE (TSDI) 0.47(1 month) 0.51(0 month) 0.46(1 month) 0.57(0 month)
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Table 7: Correlations (significant at 95% confidence level) and lags (in brackets) between

rainfall (and TWS) and ENSO/IOD between 1979-2014. Negative months’ lags indicate

ENSO/IOD occurs before rainfall or variations of TWS and vice versa. Correlation coef-

ficients that are significant at 95% confidence level are indicated in bold.

Region Products ENSO (Niño3.4) IOD (DMI)

Region 1

GPCC v6 (1979-2010) 0.33 (-1) 0.48 (-1)

TRMM 3B43 (1998-2014) 0.44 (-1) 0.53 (-1)

MERRA (1980-2014) -0.23 (5) -0.18 (6)

GRACE (2002-2014) 0.38 (-6) -0.42 (-6)

Region 2

GPCC v6 (1979-2010) 0.44 (-1) 0.53 (-1)

TRMM 3B43 (1998-2014) -0.26 (-6) -0.07 (-2)

MERRA (1980-2014) -0.26 (1) -0.24 (1)

GRACE (2002-2014) 0.48 (-1) 0.57 (-5)

Region 3

GPCC v6 (1979-2010) -0.23 (1) -0.18 (-6)

TRMM 3B43 (1998-2014) -0.26 (-1) -0.20 (-1)

MERRA (1980-2014) -0.37 (3) -0.44 (3)

GRACE (2002-2014) -0.21 (2) -0.34 (-6)

Region 4

GPCC v6 (1979-2010) -0.23 (-1) 0.39 (-2)

TRMM 3B43 (1998-2014) -0.20 (-6) 0.34 (-1)

MERRA (1980-2014) -0.22 (7) -0.34 (6)

GRACE (2002-2014) 0.34 (-6) 0.41 (-6)
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