
©2009 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195646805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Intelligent Matching for Public Internet Web Services –
Towards Semi-Automatic Internet Services Mashup

Chen Wu, Tharam Dillon, Elizabeth Chang

Digital Ecosystems and Business Intelligence Institute
Curtin University of Technology, Perth, Australia

chen.wu@curtin.edu.au

Abstract

In this paper, we propose an Internet public Web

service matching approach that paves the way for
(semi-)automatic service mashup. We will first provide
the overview of the solution, which requires a detailed
review of two fundamental models – schema/graph
matching and semantic space. Based on the conceptual
model and the literature study, the complete service
matching approach is then provided with four essential
steps – semantic space, parameter tree, similarity
measures, and WSDL operation matching. The system
demonstration that proves the concept proposed in this
approach is finally presented. The solution has the
potential to facilitate the Internet services mashup.

1. Introduction
With the surge of SOA and Web services, there is an
abundance of Web services in the global space. One
way to fully utilise their capabilities is to organise
them into small groups, which in turn can be composed
into bigger service communities in order to serve
various user requirements. Similar to the formation of a
new couple and family, matching is considered a very
effective “bottom-up” means of organising (or
‘attracting’) each individual into pairs, which can then
constitute bigger communities, thus forming the
society of service kind. Therefore, in this paper, we
will discuss the motivation, the formulation, and
solution to the Web services matching problem. This
paper paves the way for the future research in realising
service mashup, thereby building bigger service
communities and societies for service consumers.

Service matching paves the way for the (semi-)
automatic service integration, where a set of Web
services works in cooperation to fulfil the requirements
of the end users. Service matching also paves the way
for realising the Service Mashup, in which service
mediation, customisation, and combination are
supported to deliver actual services to meet particular
requirements demanded by various end users.

The rest of this paper is structured as follows.
Section 2 briefly reviews the related work. Section 3
provides the detailed service matching approach. The
prototype system and the evaluation are then
summarized in Section 4. Section 5 concludes the
paper with two future work directions.

2. Basic Schema Matching
Given the importance of Schema Matching in our
solution, this section provides a brief review. Schema
matching has been utilised in numerous applications
[1]. The linguistics-based matching uses linguistic
resources or simple string similarity function to obtain
the distance between names of the schema elements
and attributes. Giunchiglia et al. [2] have utilised the
WordNet [3], in which various ‘senses’ (semantics) of
the same words are organised in hierarchical forms that
can be compared and reasoned. Different words with
similar meanings can be identified based on their
senses’ position in the WordNet lexical hierarchy. A
domain specific knowledge thesaurus has been used in
[4], where the Cupid matching system relies on a
thesaurus that has synonymy and hyponymy
relationships to calculate the linguistic similarity
coefficients between two schema elements. Examples
of schema reuse can be found in [5], [6] and [7].
Equally important to the linguistic matching is the
structural matching, in which the relations between
schema elements are considered as “constraints” that
restrict the matching patterns. Since many schemas can
be represented as (labelled) graph-like structures, some
research such as [8] uses graph-based techniques to
compare the element positions within and graphs. As a
combinatorial problem, graph matching can be
computationally prohibitive. Therefore, a simplified
graph – tree – has been used to measure the structural
similarity between two schemas. Tree also captures the
hierarchical containment relationship inherent in many
schema definitions such as the XML schema. [4] and
[5] utilise the tree elements structural relationship as

2009 IEEE International Conference on Web Services

978-0-7695-3709-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ICWS.2009.116

759

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 15, 2009 at 00:45 from IEEE Xplore. Restrictions apply.

the key component for the XML schema similarity
measure.

3. Matching Approach
In this section, we discuss the matching approach.
Given a WSDL operation, the goal of service matching
is to (1) obtain the matching similarity between
input/output messages of this WSDL and output/input
messages of all other operations in the WSDL corpus,
and (2) select a number of WSDL operations with
sufficient matching similarity scores calculated from
(1). In this section, we further divide the similarity
measure into three parts: semantic, syntax, and
structure.

3.1. Service Semantic Space
In our previous work [9], we have crawled the Web
and obtained some thousands Internet public Web
services. In this paper, we will construct a semantic
space for these public Web services. A Semantic Space
is the assignment of each word (i.e. term) in a
language to a point in a real finite dimensional vector
space [10]. Therefore, the public Service Semantic
Space is the result of assigning each term in the WSDL
Corpus to a point in the reduced-rank vector space. The
model incorporates the rank reduced matrix (produced
by Latent Semantic Analysis [11]) as an important
model element. Readers refer to our previous work in
[12] for details of LSA on WSDL Corpus.

Lower [10] formally models a semantic space as a
quadruple {A, B, S, M}, where B is a set of basis
elements (b1, b2, …bD) that determines the
dimensionality D of the space, A defines the mapping
function that produces vector elements given the
statistical co-occurrence frequencies of each word in
both each bi and the language, S represents the
similarity measures which interpret pair-wise vector
comparison results as semantic similarity in the form
of quantity values, M is the mathematical or statistical
model that can be used to transform one semantic
space to another. In order to illustrate the instantiation
from the semantic space model, we provide a mapping
(Table 1) between the generic Semantic Space model
and the Web services semantic space in the service
matching approach.

Table 1. Mapping between model and services semantic
space

Semantic
Space Model

Web Services Semantic
Space (LSA)

A log * entropy
B n WSDL documents / k factors
S Cosine value
M Singular Value Decomposition

The set of basis elements B are WSDL documents,

thus each WSDL file representing one Web service
corresponds to one bi. Similarity measure S is the
cosine value between two term vectors. The transform
model M of the Web services semantic space is the
Singular Value Decomposition (SVD [13]) used in
LSA, which projects existing vectors in B into a linear
subspace B’ supported by k orthogonal “factors”.
Hence, the new B’ consists of these k factors.

The Semantic Space can be utilised for multiple
purposes. In our previous work, we discussed the term
semantic similarity which is used for the service
retrieval suggestion. In this paper, we will demonstrate
that the retrieval suggestion mechanism is a
representation (i.e. view) of the underlying service
semantic space model. Therefore, the same model may
correspond to different views.

As mentioned earlier, the model M is a rank reduced
vector space, where term vectors are represented using
orthogonal k singular vectors (i.e. factors). Capturing
hidden relations between terms and WSDL documents,
the semantic space model can be further mapped to
various applications in the form of ‘view’. An example
of such a view has been demonstrated in our previous
work as an application of ‘term suggestion’. The
associated terms are ranked based on their similarity
value retrieved from the underlying semantic space
model. To an end user, semantic space is merely a
ranked list of related terms for a query.

Similarly, other views can be created based on user
requirements in various applications. For example, a
visualised representation of the semantic space is very
helpful to gain a thorough understanding of the
relations between all terms and to navigate users from
one term to another during the query expansion. In this
section, we will create the “Similarity Map” view for
service matching. It is essential for the service
matching process to efficiently obtain the semantic
similarities between terms that are used in the WSDL
operation parameters. Although the cosine similarity
between vectors can be calculated and retrieved from
the semantic space, a dedicated view that provides fast
similarity retrieval would be far more desirable for
service matching.

3.2. Generate Parameter Tree
Parameter is the WSDL Part element. Parameter Tree
is a labelled unordered rooted tree, where each tree
node represents an element constituting the data
structure of the WSDL Part element. For each
parameter, a corresponding parameter tree is generated
to characterise its internal data structure that fits into
the graph/tree model. The parameter tree is generated
from the WSDL ‘<part />’ element, which describes a

760

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 15, 2009 at 00:45 from IEEE Xplore. Restrictions apply.

logical abstract content of an IN/OUT message of a
WSDL operation. This follows the WSDL1.1
specification, where <part /> is associated with a data
type from some type system using a message-typing
attribute.

Therefore, the parameter tree contains all essential
data type information. In particular, the non-leaf tree
nodes represent elements with complex data type, the
leaf nodes are elements with base or simple data types.
The label of each tree node describes the name of the
element, and the root node of a parameter tree points to
the ‘<Part />’ WSDL element itself, with the label
representing the value of the name attribute of the
‘<Part />’. The order of tree nodes at the same
hierarchical level does not matter for the matching. In
practice, the Parameter Tree is modelled as an XML
document, where each XML element’s label represents
the Tree node label and the “type” attribute captures
the data type.

The tree generation algorithm G takes as input a
well-formed and valid WSDL document W, which
contains N WSDL operations that have appropriate
WSDL bindings. The algorithm generates as output 2N
parameter tree lists, each of which includes a list of
parameters that constitute the IN or OUT message.
Each parameter P encodes the hierarchical data
structure of the type T defined in the type system,
which can be either obtained from within this WSDL
document or imported from another WSDL document
located elsewhere. Since XML Schema is treated as the
“intrinsic” [14] type system in WSDL, the main task
becomes that of converting the XML schema definition
into the hierarchical data structure encoded by P, i.e.
the parameter tree. When thinking of representing
XML Schema as a labelled unordered rooted tree, one
needs to address several empirical problems. First of
all, there exists no “root” node in an XML Schema
definition. A generic W3C schema document often
contains a number of data types (i.e. the global schema
components) at the top level immediately under the
element “<schema />”. In this way, they can be
referenced by other lower level data elements in the
same schema or even imported to other schema
documents for reuse purposes. On the other hand, a
tree structure must have exactly one root, from which
all other tree nodes can be traversed. Moreover, data
types in an XML Schema document can arbitrarily “be
referenced by” or “reference to” various complex or
simple data types defined at any levels for the reuse
purpose. This without doubt completely breaks the tree
structure, where a “single parent – multiple children”
relation is enforced at each level of the data elements
hierarchy.

The parameter tree generation algorithm deals with
these problems using several strategies. Firstly, the

selection of root node is totally determined by the data
type of the WSDL “<part />” element. In other words,
a global schema data type automatically becomes the
root node if it is directly referenced from the WSDL
“<part />” element. Secondly, the ‘multi-parents’
problem is solved by duplicating the child whenever
this child has more than one parent node. As a result,
two parents will never share the same child, but each
maintains a ‘deeply-cloned’ copy of the child. Thirdly,
label the anonymous data types with names copied
from their enclosing elements. Lastly, the algorithm
will scan the schema prior to the actual tree generation.
The cyclic definition can be detected, and recursive
relations will be subsequently cut off in order to
maintain the simple hierarchical structure. The
rationale behind this is that the cyclic definition lies in
the ‘syntax’ level of the problem, and does not
significantly affect the semantics of the data type, and
hence can be ignored. Future work can be carried out
to investigate the impact of such a syntax level on the
service matching problems. Figure 1 depicts the
algorithm for parameter tree generation.

10 Input wsdlFile: String // the location of the crawled WSDL file
20 3rd Party Library parser // from WSDL2Java, Axis1.4 Open Source
30 Output paraTree: ParameterTree //each Part of each Operation has one paraTree
40
50 parser.run(wsdlFile);
60 symbolTable := parser.getSymbolTable()
70 definition := symbolTable.getDefinition()
80 FOR EACH binding in definition.getBindings()
90 bdEntry := symbolTable.getBindingEntry(binding)
100 portType := binding.getPortType()
110 IF (portType has been processed)
120 CONTINUE // since one portType can have more than one bindings
130 FOR EACH operation in the portType
140 parameters:Parameters := bdEntry.getParameters(operation)
150 IF (parameters = null) CONTINUE
160 FOR EACH parameter in parameters //each part
170 paraTree := generateTree(parameter)
180 Byte b = parameter.getMode()
190 IF (b = IN || b = INOUT) paraTreeListIn.add(paraTree)
200 ELSE IF (b = OUT || b = INOUT) paraTreeListOut.add(paraTree)
210 IF (parameters.returnParam != null)
220 paraTree := generateTree(parameters.returnParam)
230 paraTreeListOut.add(paraTree)
240 paraTreeListIn.serialiseToXML()
250 paraTreeListOut.serialiseToXML()
260
270 ParaTree generateTree(parameter)
280 type:TypeEntry := parameter.getType()
290 typeDef : TypeDef := buildTypeDef(type)
300 RETURN typeDef.generateTree()
310
320 TypeDef buildTypeDef(type)
330 IF (type IS CollectionType OR type IS CollectionElement)
340 RETURN new ArrayTypeDef(type)
350 IF (NOT (type IS DefinedType OR type IS DefinedElement))
360 RETURN new BaseTypeDef(type)
370 IF (type.getComponentType() != NULL)
380 RETURN new ArrayTypeDef(type)
390 IF (type IS DefinedElement)
400 IF (type IS BaseType)
410 RETURN new BaseTypeDef(type)
420 ELSE RETURN new ComplexTypeDef(type)
430 IF (type IS SimpleType) //type is DefinedType
440 RETURN new SimpleTypeDef(type)
450 ELSE RETURN new ComplexTypeDef(type)
460
470 Class ComplexTypeDef implements TreeGen
480 ParaTree generateTree()
490 root := new ParaNode(getName(), getType())
500 ptree := new ParameterTree(root)
510 FOR EACH typeDef in getElements()
520 addChildrenNode(root, typeDef)
530 RETURN ptree
540
550 void addChildrenNode(parent, typeDef)
560 IF (typeDef IS ArrayTypeDef) // ignore array structure
570 addChildrenNode(parent, typeDef.getElementType())

761

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 15, 2009 at 00:45 from IEEE Xplore. Restrictions apply.

Figure 1 Pseudo Code for Parameter Tree Generation

3.3. Structural Similarity
The overall similarity between two parameter trees
(lists) determines the matching score between two
WSDL operations. Definition the overall similarity as:

(, ,)overall semantic structure SyntaxSim Sim Sim Sim
where the semantic similarity determines the extent to
which two tree nodes are conceptually related. The
structural similarity examines the level of similarity
between two parameter tree nodes in terms of their
positions in the tree and the neighbourhood
arrangement of the tree hierarchy. The syntax
similarity considers the ‘signature-level’ proximity
between two parameter tree nodes. These three types of
similarities are then integrated into one composite
similarity between two tree nodes – thus forming the
overall similarity.
First, we define:

(,)structureSim LSim GSim
where LSim represents the local structural similarity
and GSim represents the global structural similarity.
Thus, the structural similarity can be seen as the
composite of both local and global similarities. More
specifically, the local structure refers to the structure
neighbouring the current tree node. The global
structure refers to the overall structure features in the
whole tree. To calculate global structural similarity, we
directly use the structural similarity provided in [15],
which measures the difference in the tree depth at
which the node appears. This is based on the
observation that, in the parameter tree, each hierarchy
level represents a grouping of related concepts, each of
which in turn can be composed by a set of abstract data
types. Such a depth-based scheme does reflect the
position of the tree node in the tree. However, it
neglects the local structure that might also play an
important role in shaping the tree structure.

To work out the local structural similarity, we
propose an alternative algorithm based on the sub-
vector space model. The rationale is as follows. For a
non-leaf node in a tree, there are two factors that
distinguish its structure from others – its children and
its sibling. Therefore, the number of child nodes and
the number of sibling nodes play a central role in
determining the structure of a node from a local
neighbouring perspective. If we consider each tree
node as a two-dimensional vector, the two dimensions
are children and siblings respectively. And the
component value of each dimension is the number of
children or siblings, i.e. the extent to which this node
performs on that particular dimension. Therefore, the
structural similarity between two tree nodes can be
calculated using the cosine similarity.

2 2 2 2

() () () ()(,)
() () () ()

C A C B S A S BLSSim A B
C A S A C B S B

where C(A/B) represents the number of children for
node A/B, S(A/B) denotes the number of siblings of
node A or B. For leaf nodes, only the sibling number is
considered. Moreover, if two leaf nodes are compared,
their syntactic similarities are also calculated as
discussed later in this section.

Having obtained both the global and the local
structural similarities, the overall structural similarity is
defined as:

(,) (,) (1) (,)SSim A B LSSim A B GSSim A B
where 0<= <=1 represents the weight of local
similarity in contributing to the overall structural
similarity. An appropriate value of can be found after
several rounds of experiments. It can also reflect the
preferences of the matching requirements or the nature
of the parameter tree lists. For example, if many
complex data types have been defined at each level of
the parameter hierarchy (e.g. the eBay or the Amazon
Web services), the local structural similarity tends to
be more important as the global structure becomes
insufficient for capturing the rich data type definitions
hidden in the “sub-trees”. For this reason, we have set

 = 0.7 in our prototype, which relatively favours the
local structure similarity.

3.4. Syntax Similarity
The type similarity constitutes the sole part of the
syntax similarity. The concept of data types is rooted in
the theory of computer programming language (e.g.
compiler) that helps to statically declare data used for
different occasions. Such a “strong” type mechanism is
well supported in the W3C schema and hence in the
parameter tree list converted from the WSDL files. The
basic idea of type similarity (syntax similarity in this
paper) is to ascertain the closeness of all the available
types in terms of their ‘general purpose’. The
assumption is that two parameters are considered
similar if their data types are very similar, i.e. they
might be used to serve similar purposes, to achieve
parallel goals, or to fit into related contexts. The
closeness between a pair of data types is determined by
their position in the type hierarchy defined in the XML
schema. The data type similarity comparison can be
assessed using data type mapping table defined in [16].
Alternatively, in this paper, we have defined the
similarity comparison result falls into four discrete
values as shown in Equation 1.

Case (1) of Equation 1 represents those types that
are actually equivalent to each other. For example, type
“int” and type “integer” refer to the same concept. The
only difference lies in their format, which is ignored

762

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 15, 2009 at 00:45 from IEEE Xplore. Restrictions apply.

during the type similarity comparison. In case (2) two
types originates from the same ‘ancestor’ in the type
hierarchy. For example, based on the XML Schema
[17], type “token” and type “normalizedString” both
derive from the type “string” but they process special
characters (e.g. spaces) in a slightly different way.
Case (3) resembles the concept ‘cast’ widely used in
most advanced strong type-based programming
languages. Typical examples are numeric data types
such as “integer” and “positiveIngeter”, “short” and
“byte”, “decimal” and “float”, etc. Time-related data
types often fit in this category: such as “time” and
“dataTime”, “date” and “gYearMonth”, etc. Moreover,
“QName” and “NCName” also reflect such a ‘part-of’
relation.

It should be noted that the ‘cast’ operation might
lead to the loss of data for either data types, which
differentiates case (3) from case (1) and (2). Many
pairs of types belong to different type hierarchy.
However, they sometimes can be converted from/to
each other with good reasons. Take the type pair
“token” and “Name” as an example. Each one is from
different type hierarchy, but generally “token” can be
converted to “Name” without seriously changing the
intention or context for the usage of type “Name”, and
vice versa. We thus define case (4) for such data types.
In the last case (5), two types are in different type
hierarchies and there appears little justification and
grounding to support any kinds of explicit conversion
between these two. For example, the type “boolean”,
which indicates the two states (‘true’ or ‘false’) of a
concept, cannot be converted to type “anyURL”
whatsoever. Hence, they do not share positive syntax
similarity values.

0.75, the same basic types but with minor restrictions (2)

0.50, the same basic types that maintains part-of relations (3)

0.00, different basic types, and conversion is not usual (5)

0.25, different basic types, but conversion can be justified (4)

typeSim

1.00, equivalent types (1)

Equation 1. Four possible values of the type similarity result

Applying Equation 1, each simple data type is
compared with all other simple types, and the result is
then fed to the similarity comparison matrix, which
contains pair-wise comparisons between any two types.
During the run-time parameter tree similarity
calculation, this type comparison matrix will be used as
an in-memory hashtable dictionary that is responsible
for a fast, simple type of similarity lookup. If either
parameter tree node is of a complex type, the result of
the syntax similarity comparison is assigned value ‘0’.
In other words, syntax similarity is applicable only for
parameter tree nodes with simple (primitive) data types
in our solution.

3.5. WSDL Operation Matching
Given two WSDL operations (A and B), service
matching is able to produce two matching scores. The
forward matching score examines how well A’s output
message matches B’s input message. Likewise, the
backward matching score measures the degree to
which B’s output message matches A’s input message.
The basic idea of matching scores is to measure the
‘complementary degree’ between two Web service
operations, which can be seen as two tails of an
information (i.e. message) transaction (or exchange).

The outputs of this algorithm are two matching
scores as two message similarity measures. Since the
Service messages can be modelled, the problem is thus
reduced to comparing two parameter tree lists. This
boils down to the parameter tree matching problem,
which is solved using the Maximum Weighted
Bipartite Matching (MWBM) algorithm given the
available pair-wise comparison matrix. Next, two
corresponding post order lists (i.e. parameter trees) are
generated to fit in the MWBM model. Lastly, the tree
node similarity comparison is obtained through the
combination of semantic, structural, and syntactic
similarities. While structural and syntactic similarities
are calculated based on their associated metadata, the
semantic similarity requires the MWBM routine to get
the maximum matching score between two token lists
given a token weights matrix. This is because the label
of each tree node consists of a list of English words
after the tokenisation process. For example, one of the
parameter tree nodes of eBay auction service has the
label “Get Feedback Response”. Therefore, the
semantic similarity between two tree labels equates to
comparing two token lists, which can be solved using
the MWBM routine.

The MWBM routine has been employed three times
in order to (1) calculate the semantic similarity
between two token lists (two nodes), (2) calculate the
overall similarity between two trees (i.e. node lists),
and (3) calculate the similarity between two messages
(i.e. tree lists). The Hungarian Method [18] has been
utilised. The implementation of MWBM in this paper,
however, has been optimised based on the detailed
algorithm provided in [19]. The basic idea of the
MWBM algorithm remains the same: to start with any
empty matching, and repeatedly discover ‘augmenting’
paths that can maximise the overall matching weight.
Interested readers can refer to graph theory, and in
particular the network flow problem [20], for a
comprehensive understanding of the rationale behind
the MWBM algorithm. In what follows, we will focus
solely on the maximum matching weight normalisation.

Finding the maximum weight matching is one thing;
normalising the matching score is another. Intuitively,
the graph (tree) with more vertices (nodes) is bound to

763

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 15, 2009 at 00:45 from IEEE Xplore. Restrictions apply.

have higher weights than those with smaller number of
vertices, which leads to fewer matching weights.
Therefore, it is essential to normalise the matching
weight such that all graphs are treated equally
regardless of their vertices numbers. Formally, given a
matching M between sub-graph A and B with total
maximum weight W, Definition:

max(() , ())Mscore W V A V B
Equation 2

Where |V(A)| and |V(B)| represent the number of the
vertices in graphs A and B respectively. This
normalised score scheme takes into account the size of
the tree nodes and thus penalises those parameter trees
that receive higher weight only because the absolute
number of their enclosing tree nodes is bigger than
average. Figure 2 is the algorithm for parameter tree
generation.

Input: oA, oB : WSDLOperation Output: two matching scores between oA and oB
 //PT represents ParameterTree
10 forwardMatchingScore := getMsgSim(oA.allOutputPT(), oB.allInputPT())
20 backwardMatchingScore := getMsgSim(oA.allInputPT(), oB.allOutputPT())
30
40 float getMsgSim(paraTreeListA, paraTreeListB)
50 FOR EACH paraTreeA in paraTreeListA
60 FOR EACH paraTreeB in paraTreeListB
70 treeWeights[i][j] := getTreeSim(paraTreeA, paraTreeB)
80 RETURN bipartiteMatch(paraTreeListA, paraTreeListB, treeWeights)
90
100 float getTreeSim(paraTreeA, paraTreeB)
110 nodeListA := postOrderTraverse(paraTreeA)
120 nodeListB := postOrderTraverse(paraTreeB)
130 FOR EACH nodeA in nodeListA
140 FOR EACH nodeB in nodeListB
150 nodeWeights[i][j] := getNodeSim(nodeA, nodeB)
160 RETURN bipartiteMatch (nodeListA, nodeListB, nodeWeights)
170
180 float getNodeSim(nodeA, nodeB)
190 structSim := getStructSim(nodeA, nodeB) //refer to structure similarity
200 typeSim := getTypeSim(nodeA, nodeB) //refer to syntax similarity
210 tokenListA := tokenise(nodeA.text)
220 tokenListB := tokenise(nodeB.text)
230 FOR EACH tokenA in tokenListA
240 FOR EACH tokenB in tokenListB
250 tokenWeights[i][j] := getSemanticSim(tokenA, tokenB)//use semantic space
260 semanticSim := bipartiteMatch (tokenListA, tokenListB, tokenWeights)
270 RETURN compositeNodeSim(structSim, typeSim, semanticSim)//refer to sim
280
290 float bipartiteMatch(List A, List B, float[][] weightMatrix) //normalise as well
300

Figure 2 Algorithm of operation matching based on MWBM

A service chain is initially started by a ‘central’

Web service, from which both ‘up’ and ‘down’ stream
Web services are gradually identified using the service
operation matching algorithm discussed above. The
service chain needs a central Web service as the
starting point and a list of Web services as the potential
searching space. By default, each operation in the
central Web service corresponds to a service chain.
However, users can also narrow down the starting
point to a particular operation. For each chain, we have
set the maximum length as the threshold to end the
chain generation process. Interesting future work can
be carried out to propose alternative thresholds. For
example, one possible condition would be to check if
the two tails of the chain have reached close enough to
some parameters specified in the input and the output
as a complex user service discovery request. A list of

integrated Web services (vs. a single Web service) is
returned as a service chain in response to user queries
with input and output constraints. During the chain
generation, the last and the first operations are
compared with all Web service operations in the
searching space in order to find the two that have the
highest forward and backward matching scores
respectively.

4. Prototype Demonstration
In this section, we will provide the service matching
demonstration. Firstly, we will examine the parameter
tree generation, and then we will present the service
matching result.

Applying the parameter tree algorithm to the eBay
Web service 1 will yield the following results. As
shown in Figure 3, the algorithm generates a total of
220 Parameter Tree Lists (only 102 are shown) out of
one WSDL file, which contains 110 WSDL operations.
That is, each operation produces two parameter tree
lists: IN and OUT. From the names of these lists, one
can easily distinguish between IN and OUT.

Figure 3. 102 out of 220 parameter tree lists generated from
the eBay Web service

An example of a generated parameter tree list from
“GetFeedback_OUT.xml” is illustrated in Figure 5. In
both samples, the leaf tree nodes are all kept with
primitive XML schema data type. The eBay Web
service sample also suggests that the crucial role of the
cyclic checking, without which the “StackOverFlow”
runtime error is reported due to the infinite type
reference recursion during the tree generation process.

We now demonstrate the service matching process
and result. Suppose a system developer needs to
constantly check the weather condition in the software

1 http://developer.ebay.com/webservices/latest/ebaySvc.wsdl

764

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 15, 2009 at 00:45 from IEEE Xplore. Restrictions apply.

application in order to provide real-time weather
forecasting services to the end users. A user’s physical
location is stored in the user profile as the name of the
city and the suburb. The developer is then looking for a
Web service in the weather-related domain syndication,
trying to find a Web service that takes as input the user
location (i.e. city name), and produces as output the
weather condition. He might put ‘weather’ or ‘weather
report’ in the service retrieval user interface, which
then returns a list of Web services ranked according to
their relevance to the theme ‘weather’. Suppose the
first Web service in the ranking list provides
comprehensive weather condition (i.e. wind, humidity,
temperature, etc.) that well suffices for an end user’s
requirement. Unfortunately, while perusing this Web
service’s specification (i.e. WSDL), the system
developer finds that the most relevant WSDL operation
‘getWeatherByZipCode’ does not support city/suburb
names as the default input. In other words, the
developer needs another Web service that can convert
a geographic location into a postal code before using
the desired weather Web service. This implies that
another round of Web service retrieval is necessary for
the developer, who then needs to manually compare
the output of the first Web service with the input of the
second Web service in order to check if they can be
integrated as a whole to provide the weather
forecasting services to the end users.

Figure 4. Service matching UI

First, a service consumer attempts to find
temperature-related Web services, the service retrieval
provides the following three Web services as shown in
Figure 4. This GUI is the extended version of our
previous service discovery system in [21]. Suppose
that after the service selection, the service consumer
prefers the second one. So s/he decides to use the
service that “returns current temperature in a given US
zipcode”. However, as stated in the requirement, this
Web service does not accept address (e.g. city/suburb
names) as the default input but US zipcode. Due to the
limited knowledge of zipcode, the service consumer
cannot use this service ‘as is’. This is where service
matching comes into the help. The service consumer
can launch the service matching by clicking the
“Match!” link as shown in Figure 4.

<?xml version="1.0" encoding="UTF-8"?>
<GetFeedback type="ParaTreeList">
 <GetFeedbackResponse type="GetFeedbackResponse">
 <FeedbackDetailType type="FeedbackDetailType">
 <CommentingUser type="string"/>
 <CommentingUserScore type="int"/>
 <CommentText type="string"/>
 <CommentTime type="dateTime"/>
 <CommentType type="token"/>
 <FeedbackResponse type="string"/>
 <Followup type="string"/>
 <ItemID type="string"/>
 <Role type="token"/>
 <ItemTitle type="string"/>
 <ItemPrice type="token"/>
 <FeedbackID type="string"/>
 <TransactionID type="string"/>
 <CommentReplaced type="boolean"/>
 <ResponseReplaced type="boolean"/>
 <FollowUpReplaced type="boolean"/>
 <any type="any"/>
 </FeedbackDetailType>
 <FeedbackDetailItemTotal type="int"/>
 <FeedbackSummary type="FeedbackSummaryType">
 <FeedbackPeriodType type="FeedbackPeriodType">
 <PeriodInDays type="int"/>
 <Count type="int"/>
 <any type="any"/>
 </FeedbackPeriodType>
 <FeedbackPeriodType type="FeedbackPeriodType">
 <PeriodInDays type="int"/>
 <Count type="int"/>
 <any type="any"/>
 </FeedbackPeriodType>
 <FeedbackPeriodType type="FeedbackPeriodType">
 <PeriodInDays type="int"/>
 <Count type="int"/>
 <any type="any"/>
 </FeedbackPeriodType>
……

Figure 5. eBay feedback response parameter tree list

Figure 6. Service Matching Result

The service matching process uses the matching
algorithm discussed in Section 4 to enumerate the
WSDL collection in order to conduct pairwise
matching score calculation. For each pair, both forward
and backward matching scores are obtained. Each type
of matching scores is ranked in a descending order,
thus forming forward matching list and backward
matching list as shown in Figure 6. In the middle is
presented the WSDL file of the selected Web service
that takes zipcode and generates the temperature. This
service is considered as the ‘central Web service’. On
the left is the backward matching list, which includes a
list of Web services that can produce ‘zipcode’ as
service output message. On the right side is the
forward matching list, which includes a list of Web

765

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 15, 2009 at 00:45 from IEEE Xplore. Restrictions apply.

services that can take ‘temperature’ as service input
message. Both lists are ranked based on their matching
scores. Perusing the first Web service
‘ITempConvertservice’ in the forward matching list as
shown in Figure 7, one can find that it provides the
temperature conversion function so that Celsius can be
converted to Fahrenheit through the WSDL operation
‘CtoF’. The input message ‘CtoFRequest’of this
operation matches the output message
‘getTempResponse’ of the central Web service.

Figure 7. the First Web Service in the Forward Matching List

5. Conclusions and Future Work

In this paper, we propose a service matching approach
that paves the way for (semi-)automatic service
mashup. We reviewed two fundamental models –
schema/graph matching and semantic space. Based on
the conceptual model and the literature study, the
complete service matching approach is then provided
with four essential steps – semantic space, parameter
tree, similarity measures, and WSDL operation
matching. The system demonstration that proves the
concept proposed in this approach is finally presented.
In the future, we aim to achieve two important goals:
(1) To develop a service matching/mashup benchmark
dataset, which needs intensive human labelling, and (2)
to carry out more quantitative experiment in order to
test the matching performance.

7. References

[1]P. Shvaiko and J. Euzenat, "A Survey of Schema-based
Matching Approaches," Journal on Data Semantics, 2007.
[2]F. Giunchiglia, P. Shvaiko, and M. Yatskevich, "S-Match:
an algorithm and an implementation of semantic matching,"
presented at European Semantic Web Symposium, 2004.
[3]A. G. Miller, "A lexical database for English,"
Communication of the ACM, vol. 38, pp. 39 - 41, 1995.

[4]J. Madhavan, P. A. Bernstein, and E. Rahm, "Generic
Schema Matching with Cupid," presented at 27th VLDB
Conference, Roma, Italy, 2001.
[5]H. H. Do and E. Rahm, "COMA - A system for flexible
combination of schema matching approaches," presented at
28th VLDB Conference, Hong Kong, China, 2002.
[6]E. Rahm, H. H. Do, and S. Mabmann, "Matching large
XML schemas," SIGMOD Record, vol. 33, pp. 26 - 31, 2004.
[7]J. Madhavan, P. A. Bernstein, K. Chen, A. Halevy, and P.
Shenoy, "Corpus-based schema matching," presented at
International Conference on Data Engineering, 2005.
[8]S. Melnik, H. Garcia-Molina, and E. Rahm, "Similarity
Flooding: A Versatile Graph Matching Algorithm and its
Application to Schema Matching," presented at 18
International Conferences on Data Engineering, 2002.
[9]C. Wu and E. Chang, "Searching services “on the Web”:
A public Web services discovery approach," presented at
THE THIRD INTERNATIONAL CONFERENCE ON
SIGNAL-IMAGE TECHNOLOGY & INTERNET–BASED
SYSTEMS, Shanghai, China, 2007.
[10]W. Lowe, "Towards a Theory of Semantic Space," 2002.
[11] S. Deerwester, S. Dumais, G. W. Furnas, T. K.
Landauer, and R. Harshamn, "Indexing by Latent Semantic
Analysis," Journal of the American Society for Information
Science, vol. 41, pp. 391 - 407, 1990.
[12]C. Wu, V. Potdar, and E. Chang, "Latent Semantic
Analysis - The Dynamics of Semantic Web Service
Discovery," in Advanced Web Semantics, vol. 4891. LNCS-
IFIP, 2008, pp. pp. 346–373.
[13]D. M. Berry, T. Do, G. W. O'Brien, V. Krishna, and S.
Varadhan, "SVDPACKC (Version 1.0) User's Guide,"
Computer Science Department, Univeristy of Tennessee
1993.
[14]E. Christensen, F. Curbera, G. Meredith, and S.
Weerawarana, "Web Services Description Language (WSDL)
1.1," 2001.
[15]D. Caragea and T. Syeda-Mahmood, "Semantic API
Matching for Automatic Service Composition," presented at
WWW2004, New York, USA, 2004.
[16]A. Sheth and J. Cardoso, "Semantic e-workflow
composition," Journal of Intelligent Information Systems
(JIIS), vol. 21, pp. 191 - 225, 2003.
[17]D. C. Fallside, "XML Schema Part 0: Primer," W3C,
2001.
[18]D. Konig, "Graphs and matrices," Mat. Fiz. Lapok
(Hungarian), vol. 38, pp. 116 - 119, 1931.
[19]D. S. Johnson and C. C. McGeoch, "Network flows and
matching: first DIMACS implementation challenge," Series
in DIMACS, vol. 12, 1993.
[20]L. R. Ford and D. R. Fulkerson, Flows in Networks:
Princeton University Press, 1962.
[21]C. Wu and E. Chang, "Aligning with the Web: An Atom-
based Architecture for Web Services Discovery," Service
Oriented Computing and Applications, vol. 1, pp. 97 - 116,
2007.

766

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 15, 2009 at 00:45 from IEEE Xplore. Restrictions apply.

