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Effect of fluid viscosity on elastic wave attenuation in porous rocks

Boris Gurevich∗

ABSTRACT

Attenuation and dispersion of elastic waves in fluid-
saturated rocks due to pore fluid viscosity is investigated
using an idealized exactly solvable example of a system
of alternating solid and viscous fluid layers. Waves in pe-
riodic layered systems at low frequencies can be studied
using an asymptotic analysis of Rytov’s exact dispersion
equations. Since the wavelength of the shear wave in the
fluid (viscous skin depth) is much smaller than the wave-
length of the shear or compressional waves in the solid,
the presence of viscous fluid layers requires a considera-
tion of higher-order terms in the low-frequency asymp-
totic expansions. This expansion leads to asymptotic low-
frequency dispersion equations. For a shear wave with
the directions of propagation and of particle motion in
the bedding plane, the dispersion equation yields the
low-frequency attenuation (inverse quality factor) as a
sum of two terms which are both proportional to fre-
quencyω but have different dependencies on viscosity η:
one term is proportional toω/η, the other toωη. The low-
frequency dispersion equation for compressional waves
allows for the propagation of two waves corresponding

to Biot’s fast and slow waves. Attenuation of the fast
wave has the same two-term structure as that of the shear
wave. The slow wave is a rapidly attenuating diffusion-
type wave, whose squared complex velocity again con-
sists of two terms which scale with iω/η and iωη.

For all three waves, the terms proportional to η are re-
sponsible for the viscoelastc phenomena (viscous shear
relaxation), whereas the terms proportional to η−1 ac-
count for the visco-inertial (poroelastic) mechanism of
Biot’s type. Furthermore, the characteristic frequencies
of visco-elastic ωV and poroelastic ωB attenuation mech-
anisms obey the relation ωVωB= Aω2

R, where ωR is the
resonant frequency of the layered system, and A is a di-
mensionless constant of order 1. This result explains why
the visco-elastic and poroelastic mechanisms are usually
treated separately in the context of macroscopic theo-
ries that implyω¿ωR. The poroelastic mechanism dom-
inates over the visco-elastic one when the frequency-
indepenent parameter B=ωB/ωV = 12η2/µsρ f h2

f ¿ 1,
and vice versa, where h f is the fluid layer thickness, ρ f

the fluid density, and µs represents the shear modulus of
the solid.

INTRODUCTION

It is generally believed that the phenomena associated with
the viscosity of the pore fluid represent one of the main causes
of the attenuation of elastic waves in reservoir rocks and other
fluid-saturated porous materials. However, despite decades of
theoretical as well experimental research in this area, there
is still some confusion as to the effect of the fluid viscosity
on the attenuation at low frequencies. Indeed, according to
Biot’s theory of poroelasticity, dimensionless attenuation (in-
verse quality factor) in the low-frequency limit is proportional
to frequency and to the inverse of viscosity (Biot, 1956a). On
the other hand, the attenuation due to the local flow (squirt)
mechanism is proportional to the product of frequency and vis-
cosity (Mavko and Nur, 1975; O’Connell and Budiansky, 1977).
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Despite the fact that the two mechanisms have the same basic
physical cause (viscosity), there is as yet no sound theory that
provides a comprehensive model that simultaneously includes
both mechanisms. In this paper, I investigate the effect of pore
fluid viscosity on elastic wave propagation using an idealized
exactly solvable example.

One example which has proved particularly useful in vari-
ous studies of porous media is a medium consisting of period-
ically alternating fluid and solid layers. Although such a con-
figuration is obviously unrealistic, it possesses a number of key
features of real porous materials (Rytov, 1956; Brekhovskikh,
1981; Schoenberg, 1984; Bedford, 1986). However, most of the
research has been focused on ideal and low-viscosity fluids and
relatively high frequencies when the layered system exhibits
behavior typical of fluid-saturated media as described by the
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high-frequency asymptotic of Biot’s theory of poroelasticity
(Schoenberg, 1984; Schoenberg and Sen, 1986; Molotkov and
Khilo, 1990; Molotkov and Bakulin, 1998). In this paper, I focus
on low frequencies and relatively high-viscosity fluids.

The properties of waves in periodic layered systems at low
frequencies can be studied using a low-frequency asymptotic
analysis of the known exact dispersion equations (Rytov, 1956;
Brekhovskikh, 1981). For the asymptotic analysis to be valid,
the wavelengths of all the waves involved must be much larger
than the spatial period of the periodic system. Since the wave-
length of the shear wave in the fluid (viscous skin depth) is
much smaller than the wavelength of the shear wave in the
solid or of the acoustic wave in the fluid, the presence of vis-
cous fluid layers requires a consideration of higher terms in the
asymptotic expansions. The procedure is exactly the same for
shear waves with the directions of propagation and of parti-
cle motion in the bedding plane, and for compressional waves
propagating parallel to layering.

LOW-FREQUENCY DISPERSION EQUATIONS

Consider the system of periodically alternating solid and
fluid layers of period d shown in Figure 1. The elastic solid is
characterized by density ρs, bulk modulus Ks, and shear mod-
ulus µs. The viscous fluid is characterized by density ρ f , bulk
modulus (inverse compressibility) K f , and dynamic viscosity
η. The solid and fluid layer thicknesses are hs and h f = d− hs,
respectively.

The aim is to derive the dispersion equations for shear
and compressional waves propagating parallel to the bedding
plane.

Shear wave

Consider propagation of a shear wave in the direction x par-
allel to layering with the displacement in the direction y normal
to x but also parallel to the bedding (SH-wave). For a given
frequency ω, the solution of the mechanical problem can be
sought in the form of a plane-wave particle displacement:

uy = uy0ei (ax−ωt).

FIG. 1. Medium of alternating solid and viscous fluid layers.

We are looking for the low-frequency asymptotic of the
wavenumber a or the phase velocity c=ω/a as a function of ω.
To employ the known results for solid layered systems, one can
regard the fluid as another solid with a complex shear modulus
µ f =−iωη. SH-wave propagation in a periodic system of solid
layers denoted s and f is governed by the exact dispersion
equation (Rytov, 1956; Brekhovskikh, 1981),

p

[(
tan

βshs

2

)2

+
(

tan
β f h f

2

)2
]

+ (1+ p2) tan
βshs

2
tan

β f h f

2
= 0. (1)

Here, β2
s =ω2(1/c2

s − 1/c2) and β2
f =ω2(1/c2

f − 1/c2), where
cs= (µs/ρs)1/2 and cf = (µ f /ρ f )1/2 are shear velocities in the
materials s and f , respectively, and p is given by

p = µ f β f

µsβs
.

For sufficiently long waves or low frequencies, the arguments
of the tangents are small. Thus, the tangents in equation (1)
can be replaced by their respective arguments. The resulting
simplified equation can be solved analytically to give

c2 = hsµs + h fµ f

hsρs + h f ρ f
(2)

or

c2 = (1− φ)µs + φµ f

ρ
,

whereφ= h f /d is the volume fraction of the fluid layers (poros-
ity), and ρ= (1−φ)ρs+φρ f is the average density of the sat-
urated rock. For the fluid layers the substitution

µ f = −iωη (3)

yields the following expression for the velocity c2

c2 = (1− φ)µs

ρ

(
1− φ

1− φ
iωη

µs

)
. (4)

Due to the effect of viscosity, the velocity is now complex,
implying the presence of attenuation.

Equation (4) is the result given in the literature
(Brekhovskikh, 1981; Molotkov and Khilo, 1990) as a low-
frequency or long-wavelength approximation, with an obvious
requirement that |βshs| and |β f h f |must be small. However, at
low frequencies, the wavelength of the viscous wave in the fluid
is much smaller than that of the shear wave in the solid. Thus,
the decrease of frequency ω also increases the relative magni-
tude of the terms containing β f , so that higher-order terms in
the power-series expansion of tan (β f h f /2) may become sig-
nificant. To analyze this phenomenon in greater detail, I retain
the second term in this expansion, i.e.,

tan
β f h f

2
' β f h f

2

(
1+ 1

12

iωh2
f ρ f

η

)
. (5)

Substituting this approximation for tan (β f h f /2) while still re-
placing tan (βshs/2) by its argument and again solving for c2

yields



266 Gurevich

c2 = c2
0

(
1− iωη

µs

φ

1− φ −
1
12

iω

η

φρ2
f h2

f

ρ

)
, (6)

where

c0 = lim
ω→0

c =
√

(1− φ)µs

ρ
.

The imaginary terms in the right-hand side of equation (6) in-
dicate the presence of dissipation. The corresponding dimen-
sionless attenuation (inverse quality factor) can be written

q−1 = Im c2

Re c2
= ωη

µs

φ

1− φ +
1
12
ω

η

φρ2
f h2

f

ρ
. (7)

Equations (6) and (7) represent the asymptotic low-
frequency solution to the dispersion equation for the shear
wave in a solid/viscous fluid layered system. The most interest-
ing feature of these equations is the presence of two dissipative
terms with the same frequency dependency but different de-
pendencies on fluid viscosity. In fact, both terms are familiar
ones. The first term (proportional to η) is the same as in equa-
tion (4) and accounts for the contribution of the complex shear
modulus of the fluid to the overall complex shear modulus of
the layered system (viscous shear relaxation). The second term,
which scales with η−1, can be identified with the visco-inertial
attenuation in a porous medium as described by Biot’s theory
of poroelasticity (Biot, 1956a). In Biot’s theory, the shear wave
attenuation in the low-frequency limit is given by

q−1
B =

ω

η

ρ2
f κ

ρ
, (8)

where κ denotes permeability. The permeability of a system of
plain slits is (Biot, 1956b; Bedford, 1986)

κ = φh2
f

12
. (9)

Substitution of equation (9) into equation (8) yields an ex-
pression identical to the second term in the right-hand side of
equation (7).

One can see that both terms in equation (7) are related to the
well-known mechanisms of wave attenuation in porous media:
viscoelastic mechanism (viscous shear relaxation) (Mavko and
Nur, 1975; O’Connell and Budiansky, 1977) and visco-inertial
(poroelastic) Biot’s mechanism (Biot, 1956a, b). In the above,
both terms have been derived for an idealized porous medium
from the same standpoint.

Figure 2 shows the result expressed by equation (7) against
the numerical solution of the exact dispersion equation (1). The
parameters of the medium were chosen such that the attenua-
tion factors caused by the two mechanisms are of the same or-
der of magnitude. This figure demonstrates that the combined
effect of the two mechanisms as expressed by equation (7) rep-
resents the low-frequency asymptotic to the exact solution.

Compressional waves

The waves polarized in the x-z plane can be analyzed in a
similar fashion. The dispersion equation for waves symmetri-
cal with respect to the middle axis of a layer is (Rytov, 1956;
Brekhovskikh, 1981)

4(µs−µ f )2K1K2 + ω2ρs
[
C2ρs − 4(µs − µ f )

]
K2 tan

βshs

2

+ ω2ρ f
[
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]
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β f h f

2

− ω2ρ f ρsC
2
[

L1 tan
β f h f

2
+ L2 tan

βshs

2

]
= 0. (10)

Here, α2
s =ω2(1/C2

s −1/C2) and α2
f =ω2(1/C2

f −1/C2), where
Cs= [(Ks+ 4µs/3)/ρs]1/2 and C f = [(K f + 4µ f /3)/ρ f ]1/2 are
compressional velocities in the materials s and f , respectively,
and

K1 = ω2

C2
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βshs

2
+αsβs tan

αshs

2
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2
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2
,
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2
− α f βs tan

α f h f

2
,

L2 = ω2

C2
tan

β f h f

2
− αsβ f tan

αshs

2
.

The long-wave solution can be obtained by replacing all tan-
gents with their respective arguments:

C2 =
1+ 4φ(1− φ)

(µs − µ f )[Ks+µs/3− K f − µ f /3]
(Ks+ 4µs/3)(K f + 4µ f /3)

ρ

(
1− φ

Ks+ 4µs/3
+ φ

K f + 4µ f /3

) .

For viscous fluid layers with µ f =−iωη, this yields

C2 = C2
0 (1− i QV ), (11)

FIG. 2. Viscosity-related shear wave attenuation (inverse qual-
ity factor) as a function of frequency: numerical solution of
equation (1) (squares) versus the low-frequency asymptotic.
One can observe a perfect agreement between the numeri-
cal solution and the compound effect [equation (7), solid line]
of the viscoelastic (dash-dotted line) and Biot’s visco-inertial
(dashed line) mechanisms.
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where

C2
0 =

1+ 4φ(1− φ)
µs[Ks + µs/3− K f ]

(Ks + 4µs/3)K f

ρ

(
1− φ

Ks + 4µs/3
+ φ

K f

) (12)

represents the velocity in the static limit, and

Q−1
V =

4ωηφ
3K f

[
Ks + 4µs/3

(1− φ)K f + φ(Ks+ 4µs/3)
+ (1− φ)

× 3K f (K f − Ks + 2µs/3)− µs(Ks+µs/3)
4φ(1− φ)µs(Ks+µs/3− K f )+ (Ks + 4µs/3)K f

]
(13)

the attenuation. Equations (11)–(13) are valid in the high-
viscosity limit or, more precisely, when |β f h f | is sufficiently
small. For an arbitrary fluid viscosity, the low-frequency asymp-
totic analysis of equation (10) involving higher-order terms in
the series expansion (5) yields an algebraic dispersion equation
whose two roots represent two types of quasi-compressional
waves. In the static limit ω→ 0, one of these roots approaches
a constant velocity C0 (“fast wave”), whereas the other
vanishes (“slow wave”).

Fast wave.—The first root, which tends to C0 in the static
limit, is given by

C2
1 = C2

0 (1− i Q−1), (14)

where

Q−1 = Q−1
V + Q−1

B , (15)

with QV given by equation (13) and

Q−1
B = ω

ρ2
f φh2

f

12ρη

1− 1
ρ f C2

0

 1− 2(1− φ)µs

Ks+ 4µs/3
φ

K f
+ (1− φ)

Ks + 4µs/3




2

.

(16)
Equation (16) can be rewritten in the form

Q−1
B = ω

κρ2
f

ρη

[
1− σM

ρ f C2
0

]2

, (17)

which is identical to the attenuation of the fast compressional
wave in Biot’s theory (Biot, 1962; Geertsma and Smit, 1961;
Berryman, 1988). Here, I have used the expressions for Biot’s
constants charazterizing a system of alternating solid and fluid
layers (Bedford, 1986):

σ = 1− 2(1− φ)µs

Ks + 4µs/3
,

M = 1
φ/K f + (1− φ)/(Ks + 4µs/3)

.

Slow wave.—The second root of equation (10) corresponds
to a wave whose velocity vanishes in the zero-frequency limit:

C2
2 = −iω

[
M

ρC2
0

µs(Ks + µs/3)(1− φ)φh2
f

3η(Ks+ 4µs/3)
+ η

2ρ f

]
.

(18)
Equation (18) shows that the so-called slow wave is a diffusion-
type dissipative wave. Similarly to the case of the attenuation
of the shear and fast compressional waves, the most interest-
ing feature of equation (18) is the presence of two terms with
the same frequency dependency but different dependencies
on fluid viscosity. The absolute value of C2

2 as given by equa-
tion (18) is the sum of two terms: one which scales with inverse
viscosity and one which scales with viscosity. In the limit of low
viscosity, the second term vanishes, and the velocity is given by

C2
2 = −

iωκ(1− φ)M

ηρC2
0

4µs(Ks + µs/3)
Ks + 4µs/3

, (19)

which is identical to the expression for the complex velocity of
Biot’s slow wave (Biot, 1956a, 1962) for the medium of solid
and fluid layers at low frequencies. For high viscosities, when
the term proportional to η−1 can be neglected, equation (18)
has the form

C2
2 = −

iωη

2ρ f
. (20)

Equation (20) resembles the dispersion equation for the vis-
cous wave in the free fluid.

DISCUSSION

Characteristic frequencies

The results obtained in the previous section give low-
frequency dispersion equations for shear and compressional
waves in an idealized porous medium consisting of solid and
fluid layers. For low fluid viscosity, these equations, as expected,
reduce to the dispersion equations of anisotropic Biot’s the-
ory of poroelasticity. For high viscosity, these equations reduce
to the classical equations of viscoelasticity. To further analyze
these results, I rewrite one of the obtained equations [e.g., equa-
tion (7)] in the form

q−1 = ω

ωV

φ

1− φ +
ω

ωB

φρ f

ρ
. (21)

Here,

ωV = µs

η
(22)

is the characteristic frequency of the viscoelastic mechanism.
At this frequency the absolute value of the complex shear mod-
ulus of the viscous fluid equals the solid shear modulus. In turn,

ωB = ηφ

κρ f
(23)

is Biot’s characteristic frequency (Biot, 1956b), at which the
wavelength of the shear wave (viscous skin depth in the fluid)
equals the thickness of the fluid layers h f =φd. The expressions
for the two characteristic frequencies may be multiplied to give

ωVωB = Aω2
R, (24)
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where for shear waves

A = 3ρ
π2φ2(1− φ)ρ f

(25)

is a dimensionless parameter of order 1 depending only
on the porosity and the ratio of solid-to-fluid densities, andωR is
the resonant frequency of the layered periodic system, at which
the wavelength of the shear wave equals the period of the
system,

ωR = 2πc0

d
. (26)

Similarly to equation (21), the attenuation of the fast compres-
sional wave, equation (15) can be written in the form

Q−1 = S1
ω

ωV
+ S2

ω

ωB
, (27)

where S1 and S2 are dimensionless combinations of the mate-
rial parameters of order 1. Assuming that the bulk and shear
moduli of the solid phase are of the same order of magnitude,

Ks/µs = O(1),

we can see that the same is true for the compressional and shear
velocities in the static limit

C0/c0 = O(1).

Thus for the fast compressional wave, we can write an equation
identical to equation (24)

ωVωB = Aω2
R, (28)

where A is given by an expression different from equation (25)
while ωR is still given by equation (26). Strictly speaking, for
the fast compressional wave we should have used a differ-
ent definition of ωR based on C0 instead of c0, but the use of
the same definition of the resonant frequency for both shear
and compressional waves is possible in the order-of-magnitude
analysis of the characteristic frequencies performed in this sec-
tion. Also note that while our analysis of the compressional
wave attenuation takes into account only the shear viscosity
of the fluid, taking into consideration the bulk viscosity would
be straightfoward and would have no effect on the order of
magnitude of the characteristic frequencies, provided the bulk
and shear viscosities are of the same order of magnitude, as is
the case for most natural fluids (Landau and Lifshitz, 1987).

It is also instructive to note that frequency ωR, which is de-
fined above as a resonant frequency for a periodic system with
spatial period d, can also be thought of as the scattering fre-
quency in an isotropic disordered (nonperiodic) porous mate-
rial with the characteristic grain size d. Furthermore, while the
relation between the characteristic frequencies [equation (24)]
has been derived for a very specialized example of a periodic
porous medium, one can surmise that similar relations (albeit
with different numerical coefficients) would hold for a general
porous medium with a single characteristic length or grain size.
This gives some clue as to why the viscoelastic and visco-inertial
mechanisms of attenuation are usually treated separately. In-
deed, from equation (24), it follows that either

ωV <
√

AωR < ωB

or

ωB <
√

AωR < ωV .

In other words, if one of the characteristic frequencies is smaller
than the resonant (scattering) frequency ωR, the other one
is bound to be larger than ωR. But a macroscopic (effective
medium) theory, by definition, aims to describe only the ef-
fects on spatial scales much larger than the grain or pore size
(or period for periodic media), that is, for frequencies much
smaller than ωR. Thus any macroscopic poroelastic theory can
describe either the viscoelastic or the visco-inertial (Biot’s)
mechanism of attenuation. This has been shown for the ide-
alized porous medium consisting of solid and fluid layers. For
a general three-dimensional periodic porous medium with a
single characteristic pore size, this fact was proved mathemat-
ically by Boutin and Auriault (1990) in the context of the the-
ory of asymptotic homogenization of periodic structures, the
theory that explicitly employs the ratio ω/ωR as a small pa-
rameter. In this paper, these terms have been obtained to-
gether only because the current approach is based not on
any macroscopic (effective medium) theory, but on the dis-
persion equations (1) and (10) which are exact for all frequen-
cies. And it was possible only because in our highly idealized
example (periodic system of flat parallel layers) there is no
scattering.

Furthermore, I define a fundamental parameter of the at-
tenuation of shear and fast compressional waves in a layered
solid/fluid system or a porous medium

B = ωB

ωV
= η2φ

µsκρ f
(29)

that shows which of the two viscosity-related dissipation mech-
anisms dominates at frequenciesω¿ωR when the macroscopic
description makes sense (note that all the results in the previ-
ous section are obtained in the low-frequency limit, i.e., for ω
which is much lower than the smallest of the three character-
istic frequencies ωB, ωR, ωV ). I emphasize that the parameter
B does not depend on the frequency, but only on the physical
and geometrical properties of the layered system (or a porous
rock). For the permeability of 1 darcy and viscosity of water,
the parameter B is about 10−4, but it may be larger for more
viscous fluids (heavy oil, bitumen) and/or lower permeabilities.
Let us consider three different situations:

1) B¿ 1. This situation is typical for high-permeability
reservoir rocks and soils. In this case, Biot’s poroelas-
tic mechanism is dominant, and the viscoelastic terms in
the dispersion equations are negligible.

2) BÀ 1. This situation is encountered for low-permeability
materials (such as clays) and for porous rocks saturated
with very viscous fluids (such as bitumen). In this case,
seismic attenuation is controlled by the viscoelastic mech-
anism while the poroelastic effects are negligible

3) B∼ 1. This is an intermediate situation, when all three
frequencies ωB, ωR, ωV are of the same order of magni-
tude. Note thatωR is primarily controlled by the dominant
grain size of the rock, and thus is very high (>1 MHz for
grains smaller than 1 mm size). Given that the poroelastic
and viscoelastic effects are controlled by the ratiosω/ωB,

ω/ωV , it is clear that at low (seismic) frequencies both
effects are negligible. However, these effects may be-
come important for ultrasonic frequencies used in sonic
logs and lab experiments. In this case, contributions of
viscoelastic and poroelastic phenomena are comparable,
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and general relations (7), (15), and (18) which account
for both phenomena should be used.

The three characteristic frequencies ωV , ωR, and ωB in-
troduce three dimensionless frequencies: V =ω/ωV =ωη/µs,

Ä=ω/ωR=ωd/c0, and `=ω/ωB=ωκρ f /ηφ. Equation (24)
shows that V/`= A−1(Ä/`)2= A(V/Ä)2= B, and Ä2= AV`.
The parameters L =√` andÄwere introduced by Schoenberg
and Sen (1986). Their work focused on the “low-frequency”
(Ä¿ 1) but “small viscous skin depth” (`À 1) regime, that is,
on frequencies ω that are in the interval

ωB ¿ ω ¿ ωR,

which implies the medium with B< 1. On the other hand,
asymptotic low-frequency relations (6) and (7) obtained in this
paper are valid when V¿ 1 and `¿ 1 at the same time, that is,
when frequency is small compared with any of the characteris-
tic frequencies

ω ¿ min(ωB, ωV ).

As mentioned above, the viscoelastic and visco-inertial
mechanisms of attenuation in porous media are usually treated
separately. In particular, the viscoelastic phenomenon is ig-
nored in Biot’s theory by simply neglecting the fluid shear
stress in the microscopic (pore-scale) constitutive equations.
Pride et al. (1992) analyzed the effect of this approximation
and showed that it requires that the parameter V =ωη/µs be
small. Indeed, if V is very small, the viscoelastic attenuation
is also very small [see equations (21) and (27)]. However, if
at the same time the parameter ` is even smaller than V (i.e.,
`<V¿ 1), the poroelastic effects on the attenuation would be
even less pronounced than the viscoelastic ones. The condi-
tion for neglecting the viscoelastic attenuation relative to the
poroelastic one is B=V/`¿ 1. And, most importantly, this
condition involves medium parameters only and is indepen-
dent of the frequency. Thus, if this condition holds for a par-
ticular medium, Biot’s theory would apply for all frequencies
below the resonant frequency of individual pores. This is con-
sistent with observations of Bedford (1986), who compared
numerically the solutions of the exact dispersion equation for
a layered solid/fluid system (with very small parameter B) with
the prediction of Biot’s theory, and found an excellent agree-
ment in a wide frequency range. This is not surprising in the
light of the results of Schoenberg and Sen (1986) and Molotkov
and Bakulin (1998), who showed analytically that, in the case
of low viscosity B=V/`¿ 1, the exact constitutive equations
for a solid/fluid layered medium represent a partial case of
anisotropic Biot’s equations.

Materials with multiple length scales

All the results discussed above are valid for a medium with a
single characteristic length parameter (layer thickness for ide-
alized solid/fluid layered system, characteristic grain or pore
size for a three-dimensional porous medium). However, it
is known that many porous rocks have a wide spectrum of
grain/pore sizes and heterogeneities of various scales. More-
over, it has been shown for some models of porous materials
that the presence of more than one length parameter may have

a significant impact on the elastic wave propagation. Two such
models are of particular interest:

1) Porous medium with pores which have small aspect ra-
tio ν¿ 1. A pore with a low aspect ratio can be roughly
characterized as having two characteristic sizes: length
d and thickness νd¿ d. A material containing such thin
pores (or thin as well as rounded pores) is believed to ex-
hibit so-called local-flow (squirt) attenuation mechanism
associated with the wave-induced flow of the pore fluid
within a thin pore (or from a compliant thin pore into
a less compliant spherical pore) and vice versa. Accord-
ing to various analyses (Mavko and Nur, 1975; O’Connell
and Budiansky, 1977; Jones, 1986), the characteristic fre-
quency of the squirt mechanism can be written as

ωSQ= G

η
ν3, (30)

where G is the characteristic elastic modulus (of the solid
or fluid). Clearly, ωSQ as given by equation (30) resem-
bles ωV [equation (22)], but can be shifted substantially
towards low frequencies. From this perspective, one can
formally say that the squirt mechanism represents the
classical viscoelastic mechanism shifted towards low fre-
quencies by the presence of pores with very low aspect
ratio. Clearly, this frequency shift invalidates the rigid
relationship (24) between the characteristic frequencies.
Understanding the role of the squirt mechanism requires
a detailed and rigorous analysis of the relationship be-
tween various attenuation mechanisms and their char-
acteristic frequencies in the media with low-aspect-ratio
pores.

2) Macroscopically inhomogeneous porous medium, i.e.,
a micro-porous medium with some macroscopically
heterogeneous structure. Examples of such media in-
clude a randomly layered porous medium (Gurevich
and Lopatnikov, 1995; Gelinsky et al., 1998), a porous
medium with macroscopic inclusions (Gurevich et al.,
1998), and a double-porosity medium (Auriault and
Boutin, 1994). Any such medium is characterized by two
characteristic length parameters: a characteristic pore
size d and a characteristic size bÀ d of the macroscopic
heterogeneities (layers, inclusions, fractures). Macro-
scopic heterogeneity of these media causes an additional
viscosity-related attenuation mechanism, associated with
the flow of the pore fluid from more compliant to less
compliant areas (or from the pores into fractures) and
vice versa. This mechanism can also be described as the
conversion of the fast wave energy into Biot’s slow wave
(by macroscopic heterogeneities), and a subsequent rapid
dissipation of the latter. The characteristic frequency of
this mechanism can be written as

ωM ∼ G

η

(
d

b

)2

(31)

[note the similarity with equation (30)]. Depending on b,
the characteristic frequency ωM can be much lower than
bothωB andωV , sometimes to such an extent that the seis-
mic frequencies of 20–100 Hz can no longer be considered
low frequencies with respect to ωM . Furthermore, such a
medium is characterized by two scattering frequencies,
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which are associated with two characteristic length pa-
rameters d and b, respectively. Clearly, a rigid relationship
between the characteristic frequencies for macroscopi-
cally inhomogeneous porous media is no longer relevant.
Analysis of the characteristic frequencies of the dominant
attenuation mechanisms in heterogeneous porous media
can be found in Gurevich et al. (1997), Gelinsky et al.
(1998), and Shapiro and Mueller (1999).

CONCLUSIONS

Waves in periodic layered systems at low frequencies have
been studied using an asymptotic analysis of Rytov’s exact
dispersion equations. This analysis leads to asymptotic low-
frequency dispersion equations. For a shear wave with the di-
rections of propagation and of particle motion in the bedding
plane, the dispersion equation yields the low-frequency atten-
uation (inverse quality factor) as a sum of two terms which
are both proportional to frequency ω but have different de-
pendencies on viscosity η: one term is proportional to ω/η,
the other to ωη. The low-frequency dispersion equation for
compressional waves allows for the propagation of two waves
which correspond to Biot’s fast and slow waves. Attenuation
of the fast wave has the same two-term structure as that of the
shear wave. The slow wave is a rapidly attenuating diffusion-
type wave, whose squared complex velocity again consists
of two terms, which scale with iω/η, and iωη. For all three
waves, the terms proportional to η are responsible for the vis-
coelastic phenomena (viscous shear relaxation), whereas the
terms proportional to η−1 account for the visco-inertial (poroe-
lastic) mechanism of Biot’s type.

The characteristic frequencies of viscoelastic ωV , poroe-
lastic ωB, and scattering ωR attenuation mechanisms obey
the relation ωVωB=ω2

R, which explains why the viscoelastic
and poroelastic mechanisms are usually treated separately in
the context of macroscopic theories that imply ω¿ωR. The
poroelastic mechanism dominates over the viscoelastic one
when the frequency-independent parameter B=ωB/ωV =
12η2/µρ f h2

f ¿ 1, and vice versa. However, this balance can be
changed by the presence in the medium of two or more scales
of heterogeneity.
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