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Abstract

In this paper, based on the traditional method of images, new image principles for two-dimensional (2D) transient diffusion problems

in limited anisotropic and inhomogeneous media are systematically developed. Using these principles for the first time, Green’s functions

for transient diffusion (heat conduction) phenomena for a bimaterial, quartmaterial and a two-layer spaces with limited anisotropic and

inhomogeneous media are presented. The solutions are not only very useful for construction of the inverse and more complex direct

solutions in many domains of applied science but also are the fundamentals for solutions of nonlinear systems which are linear

convertible.
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1. Introduction

The clarity of the expression of physical concepts
generated by the method of images, has prompted its wide
use in mathematical physics and its applications. For
example, in the theory and application of exploration
geophysics, the method plays an important role, as
indicated in the books by Keller and Frischknecht [1] and
Eskola [2]. In electromagnetic theory, the books authored
by Stratton [3] and Lindell [4] employed the method of
images to obtain solutions for electromagnetic fields. In
seismology, the method of images is used to determine the
reflected ray travel times from seismic reflectors as
demonstrated in the book by Cordier [5]. A huge number
of articles in journal publications use the method of images
to construct solutions for specific problems in applied and
engineering related mathematics. For example, the most
recent applications of this method were most likely given
by Tadeu and Simões [6], Enders and Clark [7] and Tadeu
and Simões [8].

In recent decades, the method of images has been
extended from isotropic media to anisotropic media. It
appears that the first publication using the method of
images for anisotropic media was produced in 1974 by
Asten [9], who limited anisotropy to the case with one of
the principal axes parallel to the half-space surface. In
1988, Dellinger and Muir [10] gave a physical model for an
anisotropic half-space image and Uren [11], in 1989,
showed how to locate the image point in elliptically
anisotropic media for seismic shear waves. In 1993, Lindell
et al. [12] discussed the static image principle for
anisotropic half-space problems with perfect electric and
magnetic conductor boundaries. In 1998, Li and Uren [13]
showed mathematically how to locate the anisotropic
reflection images in arbitrarily oriented anisotropic media.
Li and Uren [14,15] then extended the concepts of the
method of images for isotropic media to reflection and
transmission ðR&TÞ in anisotropic media. Li and Stagnitti
[16] extended the method to a case where there was a
right-angled interface between anisotropic media. How-
ever, except for totally reflecting interfaces and totally
absorbing interfaces, all of the above-mentioned applica-
tions of the method of images are used to satisfy the
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boundary conditions of the relevant elliptical partial
differential equations. To the present time, when solving
transient diffusion or heat conduction problems, only the
reflection method of images [17] has been used for
obtaining solutions for a half-space with a total reflection
boundary. In this paper, using the existing method of
images, we will build up principles for the use of the
method of images for transient sources in limited structures
in anisotropic and inhomogeneous diffusion media. Here,
Green’s functions for anisotropic bimaterial and quartma-
terial and two-layer anisotropic spaces are obtained for the
first time.

Finding Green’s functions for certain physical phenom-
ena is one of the fundamental issues in many mathematical
physics computations. Fundamental solutions for transient
diffusion in two-dimensional (2D) or higher dimensional
isotropic media have been known for decades and have
been discussed in many textbooks, such as those by Morse
and Feshbach [18], Hill and Dewynne [19] and Evans [20].
However, it appears that the fundamental solution for
transient diffusion in homogeneous anisotropic whole
space was first published by Chang et al. [21]. An extension
of this solution to half-space anisotropic media was first
reported by Chang [22] using the Fourier transformation
method. Unfortunately, due to the choice of the mathe-
matical expressions in Chang’s paper, the transient solution
was so complex that it is only applicable to the case of an
infinite slab with simple boundary conditions.

In recent years, a number of published papers [23–26]
tackled heat conduction and diffusion problems, by finding
the exact analytical solutions for media with geometrically
simple boundaries. These publications only addressed
steady-state problems. In a very recent study by Kuo and
Chen [27], a transient Green’s function for anisotropic
conduction was given, in which an exponentially graded
conductivity tensor was used to develop Green’s function
in whole and half-spaces.

This present paper is organized as follows. First, the
governing equation for anisotropic diffusion from a point
source function is transformed into the canonical form by
coordinate rotation, translation and stretching. Then the
fundamental solution for anisotropic diffusion is given.
The transient image principle (TIP) for total reflecting and
absorbing boundaries is introduced in Section 3. Green’s
function for transient diffusion in a half-space is then
given. In Section 4, based on the definition of bimaterial
and the application of the TIP for boundaries with
continuous boundary conditions, Green’s function for a
bimaterial is presented. This is followed by Section 5, where
we introduce new concepts, such as front medium (FM),
back media (BM) and diffusion instance (DI), for the
solutions given in Sections 6 and 7. In Section 6, the TIP
for multiple reflection and transmission boundaries is
demonstrated for a two-layer space. New Green’s functions
are given for the parallel layered case. In Section 7, a new
concept called the reverse image source (RIS) for a partially
reflecting and transmitting boundary is introduced, followed

by new Green’s functions for the quartmaterial domain.
Section 8 gives two numerical examples. Finally, Section 9
discusses several generalizations and limitations of the
solutions developed in this paper.

2. Fundamental solution

The fundamental solution for transient diffusion in an
unbounded anisotropic medium was given by Chang et al.
[21]. In this present paper, a different method is employed
to develop the same solution using a clearer and
mathematically simpler mathematical effort.
Transient diffusion due to a source Sðt;x; y;xp; ypÞ in a

2D whole space with an anisotropic diffusive medium is
governed by the following nonhomogeneous PDE,

qu

qt
� r �D � ru ¼ Sðt;x; y;xp; ypÞ. (1)

Here t40 and ðx; y;xp; ypÞ 2 U , where U � R2 is open. The
unknown is u : Ū � ½0;1Þ ! R, and u ¼ uðt; x; yÞ is the
diffusion field function, such as temperature or chemical
concentration in a layered solid. D is the diffusivity tensor
which is symmetric and positive definite. S : U � ½0;1Þ !
R is a source function. If a point source exhibits an
instantaneous spike at time 0, the source function can be
given by,

Sðt;x; y; xp; ypÞ:¼dðtÞdðx� xpÞdðy� ypÞ,

ðx; y;xp; ypÞ 2 R; tX0, ð2Þ

where d represents the delta function, Pðxp; ypÞ; ðxp; ypÞ 2 R,
is the source location. d is called the primary point source
function. However, if the amplitude of a point source is
arbitrarily transient, the delta function for time is replaced
by IðtÞ. If IðtÞ ¼ c, where c is a constant, then the function
is called the primary static source function.
The fundamental solution, of PDE (1) with source

function (2) is subject to the radiation condition (boundary
condition at infinity, uðt; x; yÞjx!�1;y!�1 ¼ 0Þ, and an
initial value condition, ðuðt;x; yÞjt¼0 ¼ 0Þ.

Definition 1 (Fundamental solution). The function

uðt;x; yÞ:¼

0 ðx; yÞ 2 R; to0;ffiffiffiffiffiffiffiffiffiffiffiffi
det½s�

p
4pt

e�Z
2=4t ðx; yÞ 2 R; t40;

8><
>: (3)

is called the fundamental solution of the anisotropic
diffusion governed by PDE (1) with source function (2),
where s is the inverse matrix of diffusivity tensor D. Z is
called anisotropic weighted diffusion time lapse (AWDTL)
given by

Z:¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xp; y� ypÞ � s � ðx� xp; y� ypÞ

q
. (4)

Note that AWDTL means the time lapse in the diffusion
process between the source point Pðxp; ypÞ and the
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observation point ðx; yÞ, and that uðt;x; yÞ is singular at
t ¼ 0 when the point ðx; yÞ ¼ ðxp; ypÞ.

Theorem 1 (Canonical form of the governing equation).
If the governing equation (1) with source function (2) has the

following canonical form:

quðt; ZÞ
qt
�r2uðt; ZÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
det½s�

p
dðtÞdðZÞ ðZ 2 R; tX0Þ, ð5Þ

its fundamental solution is the function given by (3) in which

the Z is defined by (4).

Proof. To prove this theorem, we need to (i) justify that
Eq. (5) is the canonical form of the governing equation (1);
(ii) validate the fundamental solution with its point source
function at any point in R3 in the time domain t40; (iii)
show that the radiation boundary condition is satisfied;
and (iv) show that the zero initial conditions are also
satisfied.

(i) Apply the following standard rotation and translation
coordinate transformations for (1),

x1 ¼ a11ðx� xpÞ þ a12ðy� ypÞ,

x2 ¼ a21ðx� xpÞ þ a22ðy� ypÞ, ð6Þ

and let the term with q2u
qx1 qx2

in the left-hand side of (1)
be zero. Then (1) with source function (2) becomes

quðt; x1; x2Þ
qt

� l1
q2uðt; x1; x2Þ

qx21
þ l2

q2uðt; x1; x2Þ

qx22

 !

¼ dðtÞdðx1Þdðx2Þ ðx1; x2Þ 2 R; t40, ð7Þ

where l1 and l2 are eigenvalues of the tensor D, and
D ¼ ak;ilkaj;k. Now introduce two new variables which
stretch the coordinate system in the x1 and x2
directions

x1 ¼ Z1
ffiffiffiffiffi
l1

p
; x2 ¼ Z2

ffiffiffiffiffi
l2

p
. (8)

Then (7) becomes (see p. 309 [28])

quðt; Z1; Z2Þ
qt

�
q2uðt; Z1; Z2Þ

qZ21
þ

q2uðt; Z1; Z2Þ
qZ22

� �

¼
1ffiffiffiffiffiffiffiffiffi
l1l2
p dðtÞdðZ1ÞdðZ2Þ

ðZ1; Z2Þ 2 R; t40. ð9Þ

Using the property of matrix symmetry, the relation
1

l1l2
¼ det½s� ¼ det½D�1� is obtained. It is obvious that

(9) and (5) are the same thing, the solution for the two
being [29]

uðt; Z1; Z2Þ ¼

0 ðZ1; Z2Þ 2 R; to0;ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðsÞ

p
4pt

e�ðZ
2
1
þZ2

2
Þ=4t ðZ1; Z2Þ 2 R; t40:

8><
>:

(10)

We see that (10) is the same as (3) with Z2 ¼ Z21 þ Z22.
From (6) and (8), it follows from noting si;j ¼

ak;il
�1
k aj;k that

jZj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s11ðx� xpÞ

2
þ s22ðy� ypÞ

2
þ 2s12ðx� xpÞðy� ypÞ

q
.

(11)

Thus, (4) follows readily.
(ii) We consider the source point ðx ¼ xp; y ¼ ypÞ, and the

surrounding field (any point except the source point in
the medium) separately. In the surrounding field, the
right side of (1) is zero. Substitute (10) for u in the left-
hand side of (1), and we see that the left side of (1) is
also zero when tX0. Thus, (10) is valid in the field of
surrounding the source point. At the point ðxp; ypÞ,
when tX0, we start from (5), which is obtained by
coordinate rotation, translation and stretching of (1).
Consider a small circular region G of radius e51
around the point ð0; 0Þ in the coordinate system
ðZ1; Z2Þ. It is the point ðxp; ypÞ in ðx; yÞ coordinate
system. Because of the circular symmetry in the 2D
domain, (5) can be written in the form

qu

qt
�

q2u
qZ2
þ

1

Z
qu

qZ

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
det½s�

p
dðZÞdðtÞ ðZ 2 R; tX0Þ.

(12)

Integrate (12) over the circle G and the time domain
T ¼ ð0; tÞ. This givesZ Z

G

Z
T

ð�Duþ utÞdtdS ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
det½s�

p
. (13)

The first term of the left-hand side of (13) can be
computed using Gauss’ theorem, producingZ Z

G

divFdS ¼

Z
C

ðF � nÞdc, (14)

where F is a 2D vector field in the planar domain G

having area element dS, and boundary C with arc
element dc, and outward unit normal n. The integral
(14) is computed within the interior of a circle of
radius � centered at the origin (in ðZ1; Z2) coordinate
system). Thus,Z Z

G�

�DudS ¼

Z
C

�uZ dc. (15)

Using the solution (10), by setting F ¼ ,u within (15)
and letting dc � rdy in the circle of radius e, we obtainZ

C

�uZ dc ¼

Z ffiffiffiffiffiffiffiffiffiffiffiffi
det½s�

p
e�Z

2=4tZ
8pt2

dc

¼

Z 2p

0

ffiffiffiffiffiffiffiffiffiffiffiffi
det½s�

p
e�e

2=4te2

8pt2
dy

¼

ffiffiffiffiffiffiffiffiffiffiffiffi
det½s�

p
e�e

2=4te2

4t2
. ð16Þ

ARTICLE IN PRESS
P. Li, K.L. Teo / Engineering Analysis with Boundary Elements 32 (2008) 251–266 253



Author's personal copy

When we integrate (16) for t on ð0; tÞ, the first term of
the left-hand side of (13) becomesZ Z

G

Z
T

�DudtdS ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
det½s�

p
e�e

2=4t, (17)

lim
e!0

ffiffiffiffiffiffiffiffiffiffiffiffi
det½s�

p
e�e

2=4t ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
det½s�

p
. (18)

Since 0oeo1

lim
t!0

ffiffiffiffiffiffiffiffiffiffiffiffi
det½s�

p
e�e

2=4t ¼ 0. (19)

Substituting (10) for u in the second term of the left-
hand side of (13), we haveZ Z

G

Z
T

ut dtdS

¼

Z Z
G

Z
T

ffiffiffiffiffiffiffiffiffiffiffiffi
det½s�

p
e�Z

2=4tZ2

16pt3
�

ffiffiffiffiffiffiffiffiffiffiffiffi
det½s�

p
e�Z

2=4t

4pt2
dtdS.

ð20Þ

Let dS � 1
2
Z2 dy in the circle of radius e with t on ð0; tÞ.

Then,Z t

0

Z p

0

ffiffiffiffiffiffiffiffiffiffiffiffi
det½s�

p
e�Z

2=4tZ2ð�4tþ Z2Þ
32pt3

dydt

¼

Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffi
det½s�

p
e�Z

2=4te2ð�4tþ e2Þ
18t3

dt

¼
2 det½s� e�e

2=4te2

9t

" #t¼t

t¼0

. ð21Þ

Since 0oeo1, we have

lim
t!0

2 det½s� e�e
2=4te2

9t
¼ lim

t!0

2 det½s� e�e
2=4te2

9t
¼ 0. (22)

Thus, (21) is zero, the governing equation (1) with the
source function (2) is satisfied.

When the observation point ðx; yÞ goes to infinity ðx!1
and/or y!1), the AWDTL must be infinite. One can
clearly see that the solution (10) goes to zero if the AWDTL
goes to infinity. It is obvious that when t! 0 the solution
(10) is zero. Thus, conditions (iii) and (iv) are justified. &

3. TIPs for half-space

Consider a half-space, where the diffusion governing
equation (1) with the source function (2) is subject to the
following first or second boundary condition on the surface
given by (23) or (24):

uðt; x; yÞjy¼f ðxÞ ¼ 0 ðx 2 R; t40Þ, (23)

or

½ruðt;x; yÞ � s � rðy� f ðxÞÞ�y¼f ðxÞ 	 0 ðx; y 2 R; t40Þ,

(24)

where y ¼ f ðxÞ is the 2D surface function of the half-space
and n is the normal to the surface y ¼ f ðxÞ. Also, the
radiation boundary conditions uðt;x; yÞjx!�1;y!1 ¼ 0,
and initial condition uðt;x; yÞjt!0 ¼ 0, have to be satisfied,
where ðx; yÞ 2 R; t40.
When the first boundary condition (23) is imposed on the

surface of the half-space, it is then called a total absorption
boundary or total absorber for the transient diffusion field.
However, when in the same space, a transient diffusion
field u satisfies the second boundary condition (24), the
interface is called a total diffusion reflection boundary,
total diffusion reflector or diffusion barrier.

Definition 2 (Reflection or absorption image). Suppose a
point Pðxp; ypÞ and a straight line y ¼ bxþ c are located in
an anisotropic diffusion medium with inverse diffusivity
tensor s, and that a point Rðxr; yrÞ can be found such that
the following identical relation

jZpjy¼bxþc 	 jZrjy¼bxþc; (25)

is satisfied, where Zp is the AWDTL between the point P

and the field observation point ðx; yÞ, and Zr is the AWDTL
between the point R and the same field point ðx; yÞ. Then,
the point R is called either a reflection or an absorption
image (RAI) of P, subject to the surface boundary
condition on the straight line y ¼ bxþ c. If P is a primary
diffusion source point, then R is called the RAI source
point of P.

Lemma 1 (The location of RAI point). Consider an aniso-

tropic diffusion medium with the inverse diffusivity tensor

s ¼ s11
s12

s12
s22

h i
. Suppose that a diffusion point source is

located at the point Pðxp; ypÞ. Then, the location of its RAI

point created by reflection at the interface y ¼ bxþ c is

given by

xr ¼
xpðs11 � b2s22Þ � 2ðc� ypÞðbs22 þ s12Þ

s11 þ bð2s12 þ bs22Þ
,

yr ¼
2ðcþ bxpÞðs11 þ bs12Þ þ ypðb

2s22 � s11Þ

s11 þ bð2s12 þ bs22Þ
. ð26Þ

Proof. Considering s ¼ s11
s12

s12
s22

h i
, Pðxp; ypÞ and Rðxr; yrÞ,

and noting (11), the following two AWDTLs are obtained:

Zp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rp � s � rp
p

,

Zr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rr � s � rr

p
, ð27Þ

where rp ¼ ðx� xp; y� ypÞ and rr ¼ ðx� xr; y� yrÞ. Sub-

stituting (27) for Zp and Zr in (25), noting y ¼ bxþ c, the

following equations are obtained:

ðxp � xrÞðxp þ xrÞs11 þ ð�2cyp þ y2
p þ 2cyr � y2

r Þs22

� 2ðcðxp � xrÞ � xpyp þ xryrÞs12 ¼ 0,

ðxp � xrÞs11 þ bðyp � yrÞs22

þ ðbðxp � xrÞ þ yp � yrÞs12 ¼ 0. ð28Þ

Solving (28) for xr and yr, we obtain (26). &
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Remarks. (i) From (26), it can be seen that the RAI
location is complex and affected by every parameter of the
point source, medium tensor and interface line system.
However, if the interface is a horizontal line y ¼ c, (26)
becomes

xr ¼
2ð�cþ ypÞs12

s11
þ xp,

yr ¼ 2c� yp, ð29Þ

where xr is affected by the distance from the source point to
the interface y ¼ c and ratio s12

s11
. In this case, yr is

independent of the diffusivity tensor. Moreover, if the
diffusivity tensor is a diagonal matrix in which s12 ¼ 0, (29)
becomes

xr ¼ xp,

yr ¼ 2c� yp. ð30Þ

We see that the RAI location is independent of the tensor
of the medium containing the source. It depends only on
the position of the source with respect to the interface. (ii)
The position of the RAI created by the interface shown in
Fig. 1 is always in the second medium.

Theorem2 (Green0s functions for half � space with totally
reflecting or totally absorbing). Consider a point source

with source function (2) located in an anisotropic half-space,
with the surface boundary defined by y ¼ bxþ c, and the

inverse diffusive tensor s ¼ s11
s12

s12
s22

� �
which is symmetric

and positive definite in the half-space. If the surface is a total

reflector and the diffusion governing PDE is given by (1) with

source function (2), then Green’s function for the half-

space is

uðt; x; y; xp; ypÞ:¼

ffiffiffiffiffiffiffiffiffiffiffiffi
det½s�

p
4pt

ðe�Z
2
p=4t þ e�Z

2
r=4tÞ

ðx; y;xp; ypÞ 2 R; tX0. ð31Þ

If the surface is a total absorber with the same governing

PDE (1) and source function (2), Green’s function for the

half-space is

uðt; x; y; xp; ypÞ:¼

ffiffiffiffiffiffiffiffiffiffiffiffi
det½s�

p
4pt

ðe�Z
2
p=4t � e�Z

2
r=4tÞ

ðx; y;xp; ypÞ 2 R; tX0. ð32Þ

Here, Zp and Zr are given in (27) in which the source point is

given by (26), (29) or (30) depending on the interface and

tensor conditions.

Proof. To prove this theorem, we need to justify the
solution to (i) the governing equation (1), (ii) the boundary
condition (24) and (iii) the initial condition ðuðt;x; yÞjt¼0 ¼
0Þ are satisfied.

(i) From Theorem (1), we can see that the governing
equation (1) is satisfied. This is because the solutions
given by (31) and (32) are actually the superposition of
two fundamental solutions with primary and reflection
and transmission image (RTI) sources, respectively.

(ii) For convenience, let y ¼ c. Then, the surface boundary
conditions become

uðt;x; yÞjy¼c ¼ 0 ðx 2 R; t40Þ, (33)

½ruðt;x; yÞ � s � rðy� cÞ�y¼c 	 0 ðx; y 2 R; t40Þ. (34)

Noting (27) and (29) then substituting (31) and (32),
respectively, for u in the first and the second equations
of (34), we can see that the boundary conditions are
satisfied. When x!�1 and/or y!1; Zp and Zr

goes to infinity and when (31) and (32) go to zero we
see that the radiation boundary condition is also
satisfied.

(iii) It is obvious that when t! 0, the solutions (31) and
(32) go to zero. &

4. TIPs for bimaterial

Both reflection and transmission ðR&TÞ occur when a
diffusion field encounters a boundary across which
temperature and heat flux are continuous. If a diffusion
field is initiated by a point source, the boundary with
continuous boundary conditions causes the creation of a
reflection image and a transmission image of the source, so
that its boundary conditions are satisfied. In this section,
we will examine this issue.
Suppose that a diffusion field encountering an interface

satisfies the following two identical conditions,

u1ðt;x; yÞjy¼bxþc 	 u2ðt;x; yÞjy¼bxþc (35)

and

½ru1ðt; x; yÞ � s1 � rðy� ðbxþ cÞÞ�y¼bxþc

	 ½ru2ðt;x; yÞ � s2 � rðy� ðbxþ cÞÞ�y¼ðbxþcÞ, ð36Þ

then this interface is called a boundary with continuous
boundary conditions to the diffusion field. These two
conditions are called continuous boundary conditions
subject to the governing equation (1), where u1 and u2

are respectively the diffusion field functions (temperature)
in the first and second media, and y ¼ bxþ c is the
equation to the interface between these two media. If a
space is composed of two anisotropic media bonded along
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y ¼ bxþ c in a 2D space, the anisotropic tensors for the
two half-spaces are s1 and s2 and the bonded interface is a
boundary with continuous boundary conditions. This
physical model is called a bimaterial space as shown in
Fig. 2.

Definition 3 (RTIs). Suppose a bimaterial is described by
the two anisotropic inverse diffusivity tensors s1 and s2
with limitation ðs1Þ11 ¼ ðs2Þ11, a point Pðxp; ypÞ ðxp; yp 2 RÞ

which is located in the first medium of the bimaterial space,
and a straight line y ¼ bxþ c which is the bimaterial
interface with the continuous boundary conditions.
Further, suppose that we can find two points Rðxr; yrÞ

and Tðxt; ytÞ ðxr; yr;xt; yt 2 RÞ which satisfy the following
identical relations:

jZpjy¼bxþc 	 jZrjy¼bxþc (37)

and

jZpjy¼bxþc 	 jZtjy¼bxþc. (38)

Then, Rðxr; yrÞ is called the reflection image point of
Pðxp; ypÞ subject to the boundary function y ¼ bxþ c,
while Tðxt; ytÞ is called the transmission image point of
Pðxp; ypÞ subject to the same boundary function. Here,

Zp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rp � s1 � rp
p

;

Zr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rr � s1 � rr
p

;

Zt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rt � s2 � rt
p

8><
>: (39)

are AWDTL from points Pðxp; ypÞ;Rðxr; yrÞ and
Tðxt; ytÞ, respectively, to the field observation point
ðx; yÞ, where rp ¼ ðx� xp; y� ypÞ; rr ¼ ðx� xr; y� yrÞ

and rt ¼ ðx� xt; y� ytÞ. If Pðxp; ypÞ is a primary source
point, then Rðxr; yrÞ and Tðxt; ytÞ are called the reflection
and transmission image (RTI) source points of Pðxp; ypÞ,
respectively.

Lemma 2 (RTI location). In a bimaterial anisotropic diffu-

sion space with inverse diffusivity tensors s1 and s2 in the

first and second media respectively, if a point source Pðxp; ypÞ

is located in the first medium, the locations of its reflection

Rðxr; yrÞ and transmission Tðxt; ytÞ image source points

subject to the interface y ¼ c which is a boundary with

continuous boundary conditions, are given by

xr ¼ 2a1ðyp � cÞ þ xp,

yr ¼ 2c� yp ð40Þ

and

xt ¼ b12ðyp � cÞ þ xp,

yt ¼ g12ðyp � cÞ þ c, ð41Þ

where

a1 ¼
ðs1Þ12
ðs1Þ11

,

b12 ¼
ðs1Þ12
ðs1Þ11

�
ðs2Þ12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðs1Þ

2
12 þ ðs1Þ11ðs1Þ22

q
ðs1Þ11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðs2Þ

2
12 þ ðs1Þ11ðs2Þ22

q ,

g12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðs1Þ

2
12 þ ðs1Þ11ðs1Þ22

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðs2Þ

2
12 þ ðs1Þ11ðs2Þ22

q .

Here, in a1; b12 and g12 the subscripts ‘‘1’’ and ‘‘2’’ represent

the first and second media respectively, and ‘‘12’’ represents a

transition from the first medium to second medium.

Proof. The proof for the location of the reflection image
(40) is the same as what is given in Lemma 1. Hence, we
will now only give the proof for the transmission image
location. Considering Pðxp; ypÞ and Tðxt; ytÞ, where for
convenience y ¼ c, and substituting the expression of Zp

and Zt given by (39) into the identity relation (38),
we obtain

2xpðs1Þ11 � 2xtðs1Þ11 � 2hðs1Þ12 þ 2ypðs1Þ12
þ2hðs2Þ12 � 2ytðs2Þ12 ¼ 0;

�x2
pðs1Þ11 þ x2

t ðs1Þ11 þ 2hxpðs1Þ12 � 2xpypðs1Þ12

�h2
ðs1Þ22 þ 2hypðs1Þ22 � y2

pðs1Þ22 � 2hxtðs2Þ12

þ2xpypðs2Þ12 þ h2
ðs2Þ22 � 2hytðs2Þ22 þ y2

t ðs2Þ22 ¼ 0:

8>>>>>>><
>>>>>>>:

(42)

Solving (42) for xt and yt, gives (41). &

Remarks. From the above two sections, we find that: (i) for
a total reflector, only one image of the source is generated.
However, at a conductive boundary, there are two image
sources produced, the reflection and transmission images;
(ii) the coordinates of the reflection image are dependent on
the location of the primary point source, the reflection
boundary function and the diffusivity tensor of the medium
containing the source. However, if the inverse diffusivity
tensor is a diagonal matrix and the boundary with
continuous boundary conditions is a horizontal interface,
the coordinates of the image of the source are only
dependent on the position of the source point.

Theorem 3 (Green0s function for bimaterial). Consider a

bimaterial space with two inverse diffusivity tensors, s1 ¼
ðs1Þ11
ðs1Þ12

ðs1Þ12
ðs1Þ22

h i
and s2 ¼ ðs2Þ11

ðs2Þ12
ðs2Þ12
ðs2Þ22

h i
, respectively, with the

condition that in the first and second half-space media

ðs1Þ11 ¼ ðs2Þ11. A boundary with continuous boundary

conditions is located at y ¼ c, and a primary point source

with source function (2) is located in the first anisotropic
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Fig. 2. Bimaterial space with source and its images.
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medium. The diffusion governing equation (1) is subject to

initial conditions:

u1ðt;x; yÞjt!0 ¼ 0,

u2ðt;x; yÞjt!0 ¼ 0, ð43Þ

continuous boundary conditions:

u1ðt;x; yÞjy¼c ¼ u2ðt; x; yÞjy¼c, (44)

½ru1ðt;x; yÞ � s1 � rðy� cÞ�y¼c 	 ½ru2ðt; x; yÞ � s2 � rðy� cÞ�y¼c,

(45)

and radiation boundary conditions:

u1ðt;x; yÞjx!�1;y!1 ¼ 0,

u2ðt;x; yÞjx!�1;y!�1 ¼ 0.

Green’s functions for this bimaterial space are

u1ðt;x; y;xp; ypÞ:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½s1�

p
4pt

ðe�Z
2
p=4t þ y12 e�Z

2
r=4tÞ,

u2ðt;x; y;xp; ypÞ:¼W12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½s2�

p
4pt

e�Z
2
t =4t,

ðx; y;xp; ypÞ 2 R; t40, ð46Þ

where u1 and u2 are the diffusion fields in the first and second

media respectively, y12 and W12 are called reflection and

transmission coefficients from medium I to medium II

respectively, which are given by

y12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½s2�

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½s1�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½s2�

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½s1�

p ,

W12 ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½s1�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½s2�

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½s1�

p , ð47Þ

while Zp; Zr and Zt are given in (39). We refer to the medium

containing the source as the source medium.

Proof. The proof is similar to the proof given for Theorem 2.
We also need to demonstrate that (i) the governing
equation (1) with source function (2) is satisfied; (ii) the
initial conditions (43) are satisfied; and (iii) the boundary
conditions (44) and (45) are satisfied. However, the proof
for (i) and (ii) are basically the same as that given for
Theorem 2. It suffices to justify that boundary conditions
(44) and (45) are applicable.

Substituting the coordinates of the reflection point given
in (40) for ðxr; yr) into Zr given in (39), the coordinates of
the transmission points given in (41) for ðxt; yt) into Zt

given in (39), and then substituting (39) into (46) for Z2p; Z
2
r

and Z2t , we obtain a full expression for the solution to the
bimaterial diffusion problem. Substituting this full expres-
sion (46) for u1 and u2 in boundary condition (44), yields,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðs1Þ

2
12 þ ðs1Þ11ðs1Þ22

q
þ y12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðs1Þ

2
12 þ ðs1Þ11ðs1Þ22

q
� W12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðs2Þ

2
12 þ ðs1Þ11ðs2Þ22

q
	 0. ð48Þ

Then, by substituting the same full expression (46) for u1

and u2 in the boundary condition (45), the following

relation is obtained:

2ð�1þ y12 þ W12Þ 	 0. (49)

To solve (48) and (49) for y12 and W12, we obtain the
solution (47). &

Remarks. (i) From the above two sections, it can be seen
that the reflection coefficient y12 depends on the type of
reflection boundary conditions. When the boundary is a
total reflector, y12 is equal to 1 (31). When the boundary is
a total absorber, y12 is equal to �1 (32). However, if the
boundary is a boundary with continuous boundary
conditions where partial reflection and transmission occur,
the value of y12 is given by the first expression of (47).
(ii) W12 represents the transmission coefficient. (iii) Both
coefficients depend only on the bimaterial diffusivity
tensors and are independent of the source point locations.

5. Medium formation and DI for 2D space

Developing an analytical solution for 2D space is very
difficult when the geometrical structure of the interface
within inhomogeneous media is complex. Imposing limita-
tions on the media, however, may allow analytical
solutions to be derived. The TIP method given in this
paper can be used to construct analytical solutions for
more complex media than in the introduction given in the
first section. However, this method is directly dependent on
how the geometrical structure of the interface formation in
a space is described mathematically. With different
mathematical descriptions of the same medium formation,
we obtain different mathematical expressions for the
solution. Concerning this property of the analytical
solutions, a suitable description of the media is briefly
introduced by the following two definitions and the simple
space given in Fig. 3. In this example, the space in Fig. 3
consists of four 2D rectangular media where the contin-
uous boundary conditions apply on the interfaces between
the media. We assign ‘‘NM’’ to represent the Nth medium
number and ‘‘NB’’ to represent the Nth boundary number.
It is clear that the space has 4 media and 12 boundaries
with continuous boundary conditions.

Definition 4 (Front medium and back media). If a med-
ium is bound by simple connected straight lines and is
acted on by a source, it is called a front medium (FM) with
respect to the source. Simple connected boundaries refer to
those boundaries which consist of straight lines such that
for any arbitrary straight line starting from the source and
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Fig. 3. A space with four 2D rectangles.
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passing into an adjoining medium, only one boundary
intersection occurs. In other words, when a geometrical
source of illumination is located at the position of the
source, and every boundary is fully illuminated by it, then
these boundaries are simply connected. All other directly
joining media which are illuminated by such a geometrical
source of illumination are called back media (BM).

Remark. In the case of boundaries that extend to infinity
surrounding a space, this definition of BM is still valid
under the assumption that these infinite boundaries will
meet at infinity. It can be easily derived that a reflection
image’s FM is its primary source’s FM, and that the
transmission image’s FM is the BM of the primary source
subject to the concerning boundary. As we can see in
Fig. 3, if medium 2 is acted on by source sðxs; ysÞ boundary
segments ðNB ¼ 11; 5; 9; 4Þ are illuminated, so medium 2 is
called FM and media 0 (represents the medium surround-
ing the four 2D square media), 1 and 4 are called BM of the
source. If medium 1 were to contain source sðxs; ysÞ the FM
is medium 1 and the BM are media 0, 2 and 3.

Definition 5 (Diffusion instance). A matrix characterizing a
source is called a diffusion instance (DI). It must have seven
elements fAmp, SLC, SLN, NMM, NBM, BIM, BMMg.
Here Amp denotes amplitude of the source; SLC denotes
the source location coordinates; SLN is a NM that represents
the medium in which the source is located; NMM is a matrix
that consists of the NM representing the medium that has
been acted on by the source; NBM is a matrix consisting of
the NBs which refer to the boundaries that produce the
source; BIM is a matrix consisting of NBs, which correspond
to the boundaries that are illuminated by the source; and
BMM is a matrix which contains the NMs that refer to the
BM of the illuminated boundaries by the source.

Remarks. (i) DI is an abstraction drawn from the physical
process of a source in a diffusion medium, leading to
mathematical expressions for the solution of multi-media
diffusion problems with a point source. Consider the
application of the definition to the space given in Fig. 3.
Amp is the source amplitude, of the primary source, which
is given by the source function in the governing PDE. For
the RTI source, the amplitude is given by the R&T
coefficients that are presented in the following two sections.
For the primary source, the SLC are given by the location
of the source as ðxs; ysÞ. For RTIs, the reflection and
transmitted image locations are determined by the source
location such as (40) and (41). If the SLC are known, the
SLN is defined automatically. Always, for a primary
source, NMM has one element which is the SLN. However,
for RTI sources NMM has more than one element, for
example, if the source s is an RTI source in Fig. 3, NMM
could be a matrix, (1, 4), which means the source causes
diffusion into media 1 and 4 at the same time. We can see
that if the point source s in Fig. 3 is an RTI, then this RTI
can be produced by multiple boundaries. For example, if s

in Fig. 3 is a reflection image source which can be produced

by boundary 4 and 7, then the NBM is a matrix, (4,7). It is
obvious that BIM is a matrix which contains all FM’s BNs
when the s is primary source, however, when a source is not
given primarily its BIM’s elements are dependent on the
R&T process of the space concerned. In the given space as
shown in Fig. 3, if the s is a transmission image source
located in medium 2 the matrix BIM could be (5,6,10,12)
and is not (11,1,7,2). As we can see from the definition that
BMM is a companion matrix of BIM, when the BIMs is
(6,8,11) the source’s BMM is ð1; 0; 0Þ in Fig. 3. (ii) From the
definition, we can see that DI can represent all kinds of
sources, such as primary, reflection and transmission image
sources. So from now on, there is no difference between the
terms ‘‘source’’ and ‘‘DI’’. (iii) If DI refers to a primary
source, we assign pDI to represent it. Sometimes we also
use rDI and tDI to represent, respectively, reflection and
transmission image sources.

6. TIPs for two-layer space

Consider a two-layer space that has two parallel interfaces,
where the first is a total reflector located at y ¼ 0 and the
second is a boundary with continuous boundary conditions
located at y ¼ c as shown in Fig. 4. Let the reflector NB ¼ 1
and for the boundary with continuous boundary conditions
NB ¼ 2, and the NM for the top layer as 1 and for the lower
medium infinite extent as 2. In this section we will deal with
the TIPs in this two layer-space composed anisotropic media.
Green’s function will be given and the new concepts of
reflection and transmission streams (RTS) and the functions
of the streams will be introduced.

Definition 6 (R& T streams; stream matrix and stream
function). An RTS is a set of consecutive DIs obtained
from a pair of interfaces. The DI’s SLC increasingly away
from a pair of interfaces by the same amount with each
previous DI, and where the amplitude changes in the same
proportion each time, each with the same NMM and the
same NBM. The stream matrix (SM) contains the streams
for the whole concerning space.
The following function is called the R&T stream

function,

sf ½t;x; y; i; j; k�:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det½si�

p
4pt

Xnk

l¼1

cjkl e
�H2

ijkl=4t,

ðx; yÞ 2 R; ði; j; kÞ 2 Z; t40, ð50Þ
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Fig. 4. Two-layer anisotropic space.
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where i refers to NM; cjkl is Amp of the lth DI in the kth
stream of the jth stream matrix, nk is the length of the kth
stream which can be finite or infinite; and H2

ijkl is given by,

H2
ijkl :¼fx� xjkl

s ; y� yjkl
s g � si � fx� xjkl

s ; y� yjkl
s g,

ðx; yÞ 2 R; ði; j; k; lÞ 2 Z. ð51Þ

Here xjkl
s and yjkl

s are SLCs for the lth DI in the kth stream
of the jth SM.

Lemma 3 (RTSs for a two� layer space). In a two-layer

space such as that given in Fig. 4, when the source is located

in the first layer, the RTSs are given in the space as follows:

s11 ¼ fy
i
12; fxp þ 2a1ðyp þ icÞ;�yp � 2icg,

� 1; f1g; f1g; f2; 1g; f2; 0gg ði ¼ 0; 1; 2; 3; . . .Þ, ð52Þ

s12 ¼ fy
i
12; fxp � 2ia1c; yp þ 2icg,

2; f1g; f2g; f1; 2g; f0; 2gg ði ¼ 1; 2; 3; . . .Þ, ð53Þ

s13 ¼ fy
i
12W12; fxp þ 2ðci þ ypÞa1 � ðcþ 2ci þ ypÞb12,

c� ðcþ 2ci þ ypÞg12g;�2; f2g; f2g; f2g; f1gg

ði ¼ 0; 1; 2; 3; . . .Þ, ð54Þ

s14 ¼ fy
i
12; fxp þ 2ica1; yp � 2icg,

� 1; f1g; f1g; f2; 1g; f2; 0gg ði ¼ 1; 2; 3; . . .Þ, ð55Þ

s15 ¼ fy
i
12; fxp þ 2ðyp � icÞa1;�yp þ 2icg,

2; f1g; f2g; f1; 2g; f0; 2gg ði ¼ 1; 2; 3; . . .Þ, ð56Þ

s16 ¼ fy
i
12W12; fxp þ 2cia1 þ ð�c� 2ci þ ypÞb12; c

þ ð�cð1þ 2iÞ þ ypÞg12g;�2; f2g; f2g; f2g; f1gg

ði ¼ 0; 1; 2; 3; . . .Þ, ð57Þ

pDI ¼ f1; fxp; ypg; 1; f1g; f0g; f1; 2g; f0; 2gg. (58)

When the source is located in the second layer, there are

three streams:

s21 ¼ fy
i
12W21; fxp þ ð�cþ ypÞb21
þ 2a1ðcþ ci þ ð�cþ ypÞg21Þ,

� cð1þ 2iÞ þ ðc� ypÞg21g;�1; f1g; f1g; f2; 1g; f2; 0gg

ði ¼ 0; 1; 2; 3; . . .Þ, ð59Þ

s22 ¼ fy
i
12;W21; fxp � 2cia1 þ ð�cþ ypÞb21; cþ 2ci

þ ð�cþ ypÞg21g; 2; f1g; f2g; f1; 2g; f0; 2gg

ði ¼ 0; 1; 2; 3; . . .Þ, ð60Þ

s23 ¼ fy
i
12W12W21; fxp þ ð�cþ ypÞb21 þ b12ð�2cð1þ iÞ

þ ðc� ypÞg21Þ þ 2a1ðcð1þ iÞ

þ ð�cþ ypÞg21Þ; cþ g12ð�2cð1þ iÞ

þ ðc� ypÞg21Þg;�2; f2g; f2g; f2g; f1gg

ði ¼ 0; 1; 2; 3; . . .Þ, ð61Þ

with two additional DIs:

pDI ¼ f1; fxp; ypg; 2; f2g; f0g; f2g; f1gg, (62)

rDI ¼ fy21; f2a2ðyp � cÞ þ xp; 2c� ypg,

� 2; f2g; f2g; f2g; f1gg, ð63Þ

where

g21 ¼ 1=g12,

y21 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½s1�

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½s2�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½s2�

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½s1�

p ,

W21 ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½s2�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½s2�

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½s1�

p ,

b21 ¼
ðs2Þ12
ðs2Þ11

�
ðs1Þ12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðs2Þ

2
12 þ ðs2Þ11ðs2Þ22

q
ðs2Þ11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðs1Þ

2
12 þ ðs2Þ11ðs1Þ22

q .

Note. For calculating the diffusion field, the pDI given
by (58) is included in the stream s12 in which the first term is
a pDI and i starts from 0 instead of 1.

Proof. Because some of this proof was given in the
previous sections, we only outline the proof here. When
the point source is located in the first medium, the diffusion
field encounters the upper total reflector and the lower
boundary with continuous boundary conditions in Fig. 4.
Considering only the upper boundary effect as the first step
of the RTS, the point source Pðxp; ypÞ initiates reflection
streams (52), (53) and (54) as indicated by Ri; ri and Ti of
Fig. 5, respectively. Applying the half-space reflection
theorem, Theorem 2, and reflection image point (29) for the
total reflector at the first reflection we have the first (where
i ¼ 0) DI in stream (52), see R0 in Fig. 5. Then, with this
reflection image as a source and applying (40), (41) and (47)
for the lower boundary, the first DIs in streams (53) (where
i ¼ 1) and (54) (where i ¼ 0) are given. These are also
indicated by r1 and T0 in Fig. 5. Further, using the first DI
of (53) as a new source and applying Theorem 2 and
reflection image point (29) again for the upper reflector, we
obtain the second DI of stream (52) (where i ¼ 1) which is
indicated by R1 in Fig. 5. Then, by using this reflection
image as a source and applying (40), (41) and (47) for lower
boundary again, the second DIs in streams (53) (where
i ¼ 2) and (54) (when i ¼ 1) are obtained. At this point we
use the second DI of (53) as a source Pðxp; ypÞ and generate
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the upper total reflection image (29), lower reflection (40)
and transmission (41) images, and the coefficient correction
relation (47) repetitively. Hence we obtain the whole
streams (52), (53) and (54).

In Fig. 6 we consider the lower boundary effect at the
first step in the reflection stream, the point source Pðxp; ypÞ

initiates reflection streams (55), (56) and (57) as indicated,
respectively, by ri; Ri and Ti. It is exactly the same as the
above process for streams (52)–(54), except for the first
step, where we apply (40), (41) and (47) for the lower
boundary instead.

When the point source is located in the second medium,
the diffusion field acts to the lower boundary first, as
shown in ri; Ri and Ti of Fig. 7. This boundary then
produces a reflection image given by (63) and a transmis-
sion image as shown by the first DI in (60) (where i ¼ 0).
We use this transmission image as a point source in the first
medium to repeat the exact same process as for streams
(52)–(54). Then, we derive streams (59)–(61). &

Remark. In TIP applications, the use of the R&T streams
is a very effective way to resolve the huge number of R&T

images which originate from complex domains and higher
dimensional diffusion problems. We can treat streams with
huge numbers of DIs as a point source in a diffusion
domain with complex boundaries. Unfortunately, based on
the definition of the streams given in Definition 6, there are
still a few DIs that cannot be included in the R&T streams,
such as those defined by (62) and (63). These DIs are
normally the main contributors, such as pDI and the first
rDIs or tDIs, to the concerned diffusion field when
compared with others included in the R&T streams. From
Definition 6 we see that when the primary source is located
in medium 1, the SM is:

sm1 ¼ fs11; s12; s13; s14; s15; s16g. (64)

On the other hand, when the primary source is located in
medium 2, the SM is:

sm2 ¼ fs21; s22; s23g. (65)

Theorem 4 (Green0s function for two� layer space). Con-

sider a two-layer space with two inverse diffusivity tensors

s1 ¼ ðs1Þ11
ðs1Þ12

ðs1Þ12
ðs1Þ22

h i
and s2 ¼ ðs1Þ11

ðs2Þ12
ðs2Þ12
ðs2Þ22

h i
in first and

second layers, respectively. Then it has a total reflector at

y ¼ 0 and a boundary with continuous boundary conditions

located at y ¼ c. When u1 and u2 are, respectively, diffusion

fields in first and second layered media, the diffusion

governing equation (1) with source function (2) is subject to

the following initial conditions:

u1ðt;x; yÞjt!0 ¼ 0,

u2ðt;x; yÞjt!0 ¼ 0,

top total reflection boundary condition:

½ru1ðt; x; yÞ � s1 � rðy� cÞ�y¼0 	 0, (66)

continuous boundary conditions:

u1ðt; x; yÞjy¼c 	 u2ðt;x; yÞjy¼c, (67)

½ru1ðt; x; yÞ � s1 � rðy� cÞ�y¼c 	 ½ru2ðt; x; yÞ � s2 � rðy� cÞ�y¼c,

(68)

and radiation boundary conditions:

u1ðt;x; yÞjx!�1 ¼ 0,

u2ðt;x; yÞjx!�1;y!þ1 ¼ 0.

When a point source with function (2) is located in the first

anisotropic medium, Green’s functions for this two-layer

space are

u1ðt; x; yÞ:¼
X4
k¼1

sf ½t;x; y; 1; 1; k� ðx; yÞ 2 R; t40 (69)

u2ðt; x; yÞ:¼
X2
k¼1

sf ½t;x; y; 2; 1; k� ðx; yÞ 2 R; t40, (70)

where the function sf is definite in (50). Eq. (69) is the

solution of the diffusion field in layer 1, where the respective

streams for the stream functions are (52), (53), (55) and (56).
Eq. (70) is the solution of the diffusion field in layer 2, where

the corresponding streams for the stream functions are (54)
and (57).

When a point source with source function (2) is located in

the second anisotropic medium, Green’s functions for this

two-layer space are

u1ðt; x; yÞ:¼
X2
k¼1

sf ½t;x; y; 1; 2; k� ðx; yÞ 2 R; t40, (71)

u2ðt; x; yÞ:¼sf ½t;x; y; 2; 2; 3� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½s1�

p
4pt

ðe�Z
2
p=4t þ y21 e�Z

2
r =4tÞ

ðx; yÞ 2 R; t40, ð72Þ
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Fig. 6. RTS for down reflection with source location in medium 1. Fig. 7. RTS with source location medium 2.
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where (71) is the solution for the diffusion field in layer 1, in

which the corresponding streams for the stream functions are

(59) and (60). Function (72) is the solution of the diffusion

field in layer 2, the corresponding stream for the stream

function is (61), and the two single DIs which contribute to

the last term of (72) are the primary source (62) and the first

reflection image source (63).

Proof. Similar to those given in previous sections, the
following three aspects need to be confirmed. (i) Satisfying
the governing equation. From (1), we see that at any point
of the medium the governing equation must be zero, except
for the primary source point Pðxp; ypÞ. As we can see from
the RTSs given in Lemma 3 this condition has been
satisfied. (ii) The boundary conditions are naturally
satisfied. This is because R&T processes are initiated by
satisfying the boundary conditions given in (66)–(68) and
the RTSs are produced by repetitively satisfying the
boundary conditions of y ¼ 0 and y ¼ c. (iii) The initial
condition for the solution of a point source diffusion has
been already justified in Section 3. Green’s function for the
two-layer diffusion space is a superposition of all the
contributions of the DIs to the diffusion field given in
streams (52)–(63). &

7. TIPs for quartmaterial

Up to now in this paper we have considered whole, half-
space, bimaterial and two-layer space anisotropic transient
diffusion problems. However, for more complex boundary
problems, the present principles of R&T image for
anisotropic diffusion may not be sufficient. For example,
in the last section, we considered two parallel-boundaries
diffusion problems, in which the reflection images of the
first boundary are always treated as a primary sources for
the second boundary. If the two boundaries are not
parallel, then what is the R&T process? And how are the
DIs organized in RTSs and further in SMs? In this section,
we use a quartmaterial space as shown in Fig. 8 which is
quite simple, but is sufficient in presenting a new concept,
called reverse images, that can be employed to easily obtain
solutions for more complex boundary value problems.

The quartmaterial is composed of four anisotropic
media bonded along two straight and perpendicular lines
(for convenience, we use x ¼ 0 and y ¼ 0) in a 2D space,
and the bonded four interfaces are boundaries with
continuous boundary conditions. The four anisotropic

tensors for the quartmaterial are s1 ¼ ðs1Þ11
ðs1Þ12

ðs1Þ12
ðs1Þ22

h i
, s2 ¼

ðs2Þ11
ðs2Þ12

ðs2Þ12
ðs2Þ22

h i
, s3 ¼ ðs3Þ11

ðs3Þ32
ðs3Þ12
ðs3Þ32

h i
and s4 ¼ ðs4Þ11

ðs4Þ12
ðs4Þ12
ðs4Þ22

h i
.

The four media and four boundaries are numbered as
shown in Fig. 8.

Definition 7 (Reverse image source). If a DI is in a space,
whose SLN is not in BMM, then we name this image
source a reverse image source (RIS), with the exception of
pDI. In other words, if a source acts on a medium but it
cannot illuminate the boundaries of the medium, then this
image source is an RIS of the medium.

Remarks. (i) As we have already discussed in previous
sections, R&T images are determined by identities of
AWDTL from a given boundary and an existing primary
source. However, a reverse image is basically a ‘‘fake’’
primary source that is determined based on a given image
(reflection or transmission) source subject to an alternative
boundary. (ii) The concept of the RIS is an important
component in tackling diffusion problems in a complex
space with multi-media and multi-boundaries. To con-
veniently show this concept here, we use four simple
diffusion anisotropies in a quartmaterial as given in the
following theorem.

Theorem 5 (DIs in a quartmaterial space). A quartmater-

ial space has four inverse diffusivity tensors s1 ¼ s11
0

0
s22

h i
,

s2 ¼ s33
0

0
s22

h i
, s3 ¼ s33

0
0
s44

h i
and s4 ¼ s11

0
0
s44

h i
. If a

primary source Pðxp; ypÞ is located in the first medium of a

quartmaterial as shown in Fig. 8, then all the DIs for medium

1 through to medium 4 are given as follows:

DI11:¼f1; fxp; ypg; 1; f1g; f0g; f1; 2g; f4; 2gg, (73)

DI12:¼

ffiffiffiffiffiffiffi
s44
p

�
ffiffiffiffiffiffiffi
s22
pffiffiffiffiffiffiffi

s22
p

þ
ffiffiffiffiffiffiffi
s44
p ; fxp;�ypg;

�

4; f1g; f1g; f1; 2g; f4; 2g

�
, ð74Þ

DI13:¼

ffiffiffiffiffiffiffi
s33
p

�
ffiffiffiffiffiffiffi
s11
pffiffiffiffiffiffiffi

s11
p

þ
ffiffiffiffiffiffiffi
s33
p ;

�

f�xp; ypg; 2; f1g; f2g; f2; 1g; f2; 4g

�
, ð75Þ

DI14:¼
ð
ffiffiffiffiffiffiffi
s11
p

�
ffiffiffiffiffiffiffi
s33
p
Þð
ffiffiffiffiffiffiffi
s22
p

�
ffiffiffiffiffiffiffi
s44
p
Þ

ð
ffiffiffiffiffiffiffi
s11
p

þ
ffiffiffiffiffiffiffi
s33
p
Þð
ffiffiffiffiffiffiffi
s22
p

þ
ffiffiffiffiffiffiffi
s44
p
Þ
; f�xp;�ypg;

�

3; f1g; f1; 2g; f2; 1g; f2; 4g

�
, ð76Þ
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DI21:¼
2
ffiffiffiffiffiffiffi
s11
pffiffiffiffiffiffiffi

s11
p

þ
ffiffiffiffiffiffiffi
s33
p ;

xp
ffiffiffiffiffiffiffi
s11
pffiffiffiffiffiffiffi
s33
p ; yp

� �
;

�

1; f2g; f2g; f2; 3g; f1; 3g

�
, ð77Þ

DI22:¼
�2

ffiffiffiffiffiffiffi
s11
p
ð
ffiffiffiffiffiffiffi
s22
p

�
ffiffiffiffiffiffiffi
s44
p
Þ

ð
ffiffiffiffiffiffiffi
s11
p

þ
ffiffiffiffiffiffiffi
s33
p
Þð
ffiffiffiffiffiffiffi
s22
p

þ
ffiffiffiffiffiffiffi
s44
p
Þ
;

xp
ffiffiffiffiffiffiffi
s11
pffiffiffiffiffiffiffi
s33
p ;�yp

� �
;

�

4; f2g; f2; 3g; f3; 2g; f3; 1g

�
, ð78Þ

DI31:¼
4
ffiffiffiffiffiffiffi
s11
p ffiffiffiffiffiffiffi

s22
p

ð
ffiffiffiffiffiffiffi
s11
p

þ
ffiffiffiffiffiffiffi
s33
p
Þð
ffiffiffiffiffiffiffi
s22
p

þ
ffiffiffiffiffiffiffi
s44
p
Þ
;

xp
ffiffiffiffiffiffiffi
s11
pffiffiffiffiffiffiffi
s33
p ;

yp

ffiffiffiffiffiffiffi
s22
pffiffiffiffiffiffiffi
s44
p

� �
;

�

1; f3g; f4; 3g; f3; 4g; f2; 4g

�
, ð79Þ

DI41:¼
2
ffiffiffiffiffiffiffi
s22
pffiffiffiffiffiffiffi

s22
p

þ
ffiffiffiffiffiffiffi
s44
p ; xp;

yp

ffiffiffiffiffiffiffi
s22
pffiffiffiffiffiffiffi
s44
p

� �
;

�

1; f4g; f1g; f1; 4g; f1; 3g

�
, ð80Þ

DI42:¼ �
2
ffiffiffiffiffiffiffi
s22
p
ð
ffiffiffiffiffiffiffi
s11
p

�
ffiffiffiffiffiffiffi
s33
p
Þ

ð
ffiffiffiffiffiffiffi
s11
p

þ
ffiffiffiffiffiffiffi
s33
p
Þð
ffiffiffiffiffiffiffi
s22
p

þ
ffiffiffiffiffiffiffi
s44
p
Þ
; �xp;

yp

ffiffiffiffiffiffiffi
s22
pffiffiffiffiffiffiffi
s44
p

� �
;

�

2; f4g; f1; 4g; f4; 1g; f3; 1g

�
. ð81Þ

Proof. It is known from previous sections that R&T

images are produced by boundaries with continuous
boundary conditions, with their locations determined by
identities of anisotropic weighted distances on the bound-
ary. For this quartmaterial space, the following 16
identities must be satisfied:

jZð1Þp jy¼0 	 jZ
ð1Þ
r jy¼0; jZ

ð1Þ
p jy¼0 	 jZ

ð4Þ
t jy¼0, (82)

jZð1Þp jx¼0 	 jZ
ð1Þ
r jx¼0; jZ

ð1Þ
p jx¼0 	 jZ

ð2Þ
t jx¼0, (83)

jZð2Þp jy¼0 	 jZ
ð2Þ
r jy¼0; jZ

ð2Þ
p jy¼0 	 jZ

ð3Þ
t jy¼0, (84)

jZð2Þp jx¼0 	 jZ
ð2Þ
r jx¼0; jZ

ð2Þ
p jx¼0 	 jZ

ð1Þ
t jx¼0, (85)

jZð3Þp jy¼0 	 jZ
ð3Þ
r jy¼0; jZ

ð3Þ
p jy¼0 	 jZ

ð2Þ
t jy¼0, (86)

jZð3Þp jx¼0 	 jZ
ð3Þ
r jx¼0; jZ

ð3Þ
p jx¼0 	 jZ

ð4Þ
t jx¼0, (87)

jZð4Þp jy¼0 	 jZ
ð4Þ
r jy¼0; jZ

ð4Þ
p jy¼0 	 jZ

ð1Þ
t jy¼0, (88)

jZð4Þp jx¼0 	 jZ
ð4Þ
r jx¼0; jZ

ð4Þ
p jx¼0 	 jZ

ð3Þ
t jx¼0, (89)

where

Zð1Þp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rp � s1 � rp
p

; Zð2Þp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rp � s2 � rp
p

; Zð3Þp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rp � s3 � rp
p

; Zð4Þp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rp � s4 � rp
p

;

Zð1Þr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rr � s1 � rr
p

; Zð2Þr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rr � s2 � rr
p

; Zð3Þr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rr � s3 � rr
p

; Zð4Þr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rr � s4 � rr
p

;

Zð1Þt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rt � s1 � rt
p

; Zð2Þt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rt � s2 � rt
p

; Zð3Þt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rt � s3 � rt
p

; Zð4Þt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rt � s4 � rt
p

,

and where rp ¼ fxp; ypg; rr ¼ fxr; yrg and rt ¼ fxt; ytg. Each

DI’s contribution to the diffusion field of the space, umn,
must satisfy the following corresponding continuous

boundary conditions given that m represents a medium
number and n represents a DI number in the medium m:

u1;iðt;x; yÞjy¼0 	 u4; jðt; x; yÞjy¼0, (90)

½ru1;iðt;x; yÞ � s1 � ry�y¼0 	 ½ru4; jðt;x; yÞ � s4 � ry�y¼0, (91)

u1;iðt;x; yÞjx¼0 	 u2; jðt;x; yÞjx¼0, (92)

½ru1;iðt;x; yÞ � s1 � rx�x¼0 	 ½ru2; jðt;x; yÞ � s2 � rx�x¼0,

(93)

u2;iðt;x; yÞjy¼0 	 u3; jðt; x; yÞjy¼0, (94)

½ru2;iðt;x; yÞ � s2 � ry�y¼0 	 ½ru3; jðt;x; yÞ � s3 � ry�y¼0, (95)

u3;iðt;x; yÞjx¼0 	 u4; jðt;x; yÞjx¼0, (96)

½ru3;iðt;x; yÞ � s3 � rx�x¼0 	 ½ru4; jðt;x; yÞ � s4 � rx�x¼0,

(97)

where i and j are the DI numbers for the corresponding
medium.
As we can see, DI11 is a pDI. Because the primary source

has an amplitude of one unit and is located in the first
medium, the elements AMP, SLC, SLN and NMM of DI11
are 1, ðxp; ypÞ, 1 and f1g, respectively. According to the
definition, it is easy to obtain NBM ¼ f0g, BIM ¼ f1; 2g
and BMM ¼ f4; 2g.
Using identities given by (82), the SLCs of DI12 and DI41

are obtained. Using continuous boundary conditions (90)
and (91), amplitudes in DI12 and DI41 are obtained. DI12 is
the reflection DI of DI11, so its NMM is the same as DI11,
however DI41 is the transmission DI of DI11, its NMM ¼

f4g which is BM of DI11 subject to boundary 1. It is
obvious that the SLN for DI12 is 4, and for DI41 is 1.
Because DI12 and DI41 are, respectively, the reflection
and transmission on boundary 1, NBM in DI12 and DI41
are the same as f1g. Due to DI12 being the reflection of
DI11 with its SLN ¼ 4, the BIM must be f1; 2g. Because
DI41 is the transmission of DI11, its BIM must be f1; 4g.
The definition for BMM is subject to BIM, so the values
for BMM in DI12 and DI41 are f4; 2g and f1; 3g,
respectively. Following this analysis process exactly and
using identities given by (83) and boundary conditions (92)
and (93), the DI pair, DI13 and DI21, can be easily
confirmed.
From Definition 7, we see that DI14;DI22;DI31 and DI42

are RISs and they are produced by two different methods,
each with a two-step R&T process. The first method for
DI14, is reflecting DI11 through boundary 1 and then
reflecting again by boundary 2. The second method is
reflecting DI11 through boundary 2 and then reflecting
again by boundary 1. In these two methods, the reflection
identities (82) and (83), and continuous boundary condi-
tions (90)–(93) are applied, and the elements of each DI are
set out accordingly based on the definition of DI. Similarly,
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DI31 is a two-way and two-step transmission, DI22 and
DI42 are two-way reflections and transmissions. All the
remaining identities and boundary conditions are applied,
and the values of the elements in the DIs are con-
firmed. &

Theorem 6 (Green0s function for a quartmaterial space).
Consider a quartmaterial space as shown in Fig. 8 has four

inverse diffusivity tensors s1 ¼ s11
0

0
s22

h i
, s2 ¼ s33

0
0
s22

h i
,

s3 ¼ s33
0

0
s44

h i
and s4 ¼ s11

0
0
s44

h i
in each of the four

media. A point source Pðxp; ypÞ is located in the first medium

and the two straight perpendicular separating lines are x ¼ 0
and y ¼ 0 as shown in Fig. 8. If diffusion fields for these four

media are u1; u2; u3 and u4 respectively, then the diffusion

governing equation (1) with source function (2) is subject to

the continuous boundary conditions (90)–(97), as well as the

following radiation boundary conditions:

u1ðt;x; yÞjx!1;y!1 ¼ 0, (98)

u2ðt;x; yÞjx!�1;y!1 ¼ 0, (99)

u3ðt;x; yÞjx!�1;y!�1 ¼ 0, (100)

u4ðt;x; yÞjx!1;y!�1 ¼ 0, (101)

and the following initial conditions:

u1ðt;x; yÞjt!0 ¼ 0, (102)

u2ðt;x; yÞjt!0 ¼ 0, (103)

u3ðt;x; yÞjt!0 ¼ 0, (104)

u4ðt;x; yÞjt!0 ¼ 0. (105)

Green’s functions for medium 1 through to medium 4 are

given as follows:

u1½t;x; y�:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½s1�

p
4pt

X4
k¼1

c1k e
�H2

1k=4t ðx; yÞ 2 R; t40,

(106)

u2½t;x; y�:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½s2�

p
4pt

X2
k¼1

c2k e
�H2

2k=4t ðx; yÞ 2 R; t40,

(107)

u3½t;x; y�:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½s3�

p
4pt

c31 e
�

H2
31
4t ðx; yÞ 2 R; t40, (108)

u4½t;x; y�:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½s4�

p
4pt

X2
k¼1

c4k e
�H2

4k=4t ðx; yÞ 2 R; t40,

(109)

where cik is Amp of the kth DI in the ith medium, and H2
ik is

given by

H2
ik:¼fx� xik

s ; y� yik
s g � si � fx� xik

s ; y� yik
s g, (110)

where xik
s and yik

s are SLCs for the kth DI in the ith medium.

The proof for this solution is similar to those given in
previous sections, and is not repeated here.

Remarks. We see that the RIS plays a very important role
in a quartmaterial space, where all the two-step and two-
way R&Ts are coincided in a medium. This coincided RIS
can satisfy all boundary conditions for a medium. We also
can see that these RISs satisfy the boundary conditions of
one medium, but are located in another, for example, DI22
satisfies boundary conditions for medium 2 while its
location is in medium 4.

8. Numerical examples

Green’s functions developed in Sections 4 and 5 were
implemented using Mathematica 5.1 on a personal

ARTICLE IN PRESS

-10

0

10
x

0

15

30

y

0

0.006

-10

0

10x
0

15

30

y

0

0.006

u

u

-10

0

10x
0

15

30

y

0

0.006

u

Fig. 9. Diffusion in a two-layer space initiated by a transient source

located in the second layer at position ð0; 15:0mÞ. The boundary between

the two layers is at y ¼ 10:0m: (a) h 10; t 2; (b) h 10; t 3 and (c) h 10; t 5.
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computer. Accurate numerical calculations of a diffusion
field in two dimensions were obtained within minutes, once
the relevant equations were established.

Figs. 9(a), (b) and (c) show diffusion field (temperature)
distributions in a 2D two-layer space at times t ¼ 2, 3 and
5 s, respectively, arising from a point transient source (delta
function). This source is located in the second layer at
(0, 15.0m) with the boundary with continuous boundary
conditions at y ¼ 10:0m, and where the inverse diffusive
tensors (W/mK) are s1 ¼ 0:3

�0:2
�0:2
0:21

	 

and s2 ¼ 0:3

0:2
0:2
0:25

	 

in the first and second media, respectively.

Figs. 10(a), (b) and (c) show the diffusion field (temp-
erature) distributions at times t ¼ 2; 3 and 5 s. A point
source is located in the first layer at ð0; 14:9mÞ with the
boundary with continuous boundary conditions at

y ¼ 15:0m. The inverse diffusive tensors are s1 ¼ 0:3
0:2

0:2
0:25

	 


and s2 ¼ 0:3
�0:2

�0:2
0:21

	 

in first and second media, respec-

tively. We can now clearly see the anisotropic effects on the
diffusion fields.
Figs. 11 and 12 show the diffusion field distributions in a

2D quartmaterial space where a point source located in the
first medium at point ð1:0; 1:0mÞ, with the boundaries with
continuous boundary conditions x ¼ 0 and y ¼ 0. The

inverse diffusive tensors are s1 ¼
1
8
0

0
1
2

� �
, s2 ¼

5
8
0

0
1
2

� �
,

s3 ¼
5
8
0

0
1
16

� �
and s4 ¼

1
8
0

0
1
16

� �
. Fig. 11(a)is a diffusion

field distribution with a combination of inverse diffusive
tensors fs1; s2; s3; s4g in the first to fourth media,
respectively. Fig. 11(b) is a diffusion field distribution
when the inverse diffusive tensors from medium 1 through
to medium 4 are s2; s3; s4 and s1, respectively. Fig. 12(a) is
a diffusion field distribution where the four media inverse
diffusive tensors are given in the first to fourth media by
s3; s4;s1 and s2, respectively. Fig. 12(b) is a diffusion field
distribution with a combination of inverse diffusive tensors
fs4; s1;s2;s3g in the first to fourth media, respectively. We
can clearly see that the different combinations of the source
location and the inverse diffusive tensors have very
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different distributions to the diffusion field in the
quartmaterial space.

9. Conclusion

In this paper, the following new concepts were intro-
duced: (i) diffusion instances and their physical interpreta-
tions; (ii) reflection and transmission streams; and (iii)
reverse images. They are the fundamental bases for the
theory of transient image principles used in the computa-
tion of mathematical physics with multi-media and multi-
boundaries.

The static image method applies to elliptical PDEs, while
the transient image method applies to hyperbolic PDEs.
For solutions in a space with boundaries with continuous
boundary conditions, the static image method primarily
deals with isotropic problems, and then may be extended to
anisotropic cases, whereas the transient image method
deals with limited anisotropic cases first and then enables
the solution of the isotropic problems to be done in the
future.

By imposing limits on the anisotropy of media, solutions
to transient diffusion become possible. This does enable

more general solutions to be obtained which would
otherwise not be obtainable.
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