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Abstract

In this paper, the bandwidth resource allocation strategy is considered for traffic
systems of complex networks. with a finite resource of bandwidth, an allocation
strategy with preference parameter α is proposed considering the links importance.
The performance of bandwidth allocation strategy is studied for the local routing
protocol and the shortest path protocol. When important links are slightly favored
in the bandwidth allocation, the system can achieve the optimal traffic performance
for the two routing protocols. For the shortest path protocol, we also give a method
to estimate the network traffic capacity theoretically.
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1 Introduction

Dynamical properties of network traffic have attracted much devotion from
physical and engineering communities. The prototypes studied include the
transfer of packets in the Internet, the flying of airplanes between airports, the
motion of vehicles in urban network, the migration of carbon in bio-systems,
and so on. Since the discovery of Small-World phenomenon [1], and Scale-Free
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property [2], it is widely proved that the topology and degree distribution of
networks have profound effects on the processes taking place on these net-
works, including traffic flow [3–6].

In the past few years, the phase transition phenomena [7–11], the scaling of
traffic fluctuations [12–15] and the routing strategies [16–36] of traffic dy-
namics have been widely studied. However, the link’s bandwidth are usually
assumed to be infinity in most studies of network traffic properties and rout-
ing strategies. On the contrary, many real transportation and communication
systems have different bandwidth for links. Meanwhile, with the same rout-
ing protocol, the network capacity can be very different when the links are
with different bandwidth [37]. To alleviate traffic congestion, people usually
increase links’ bandwidth or router’s capacity. Therefore, the following ques-
tion should be important: with a finite total resource of bandwidth, how to
allocate the bandwidth so that the network capacity can be maximal?

In this paper, we will investigate this question for traffic flow of complex net-
works. We consider two types of routing protocols: the local routing protocol
and the shortest path routing protocol. For a given resource of bandwidth, we
introduce an allocation strategy based on the product of end nodes’ degree of
links: pij = ki×kj. By simulation and analytical estimation, we show that the
network’s traffic capacity can be optimized when the links with bigger pij are
with slightly more bandwidth.

The paper is organized as follows. In the following section, the network model,
traffic model and bandwidth allocation strategy are introduced. Section 3 gives
the simulation results and some theoretical estimation of network capacity
using the proposed bandwidth allocation strategy. The paper is concluded in
the last section.

2 The Models

Recent studies indicate that many communication systems such as the Internet
and the World Wide Web are not homogeneous as random or regular networks,
but heterogeneous with a degree distribution following the power-law distribu-
tion P (k) = k−γ. The Barabási-Albert (BA) model [2] is a well-known model
which can generate networks with a power-law degree distribution. Without
loss of generality, we construct the underlying network structure with the BA
network model. In this model, starting from m0 fully connected nodes, a new
node with m edges m ≤ m0 is added to the existing graph at each time step ac-
cording to preferential attachment, i.e., the probability

∏
i of being connected

to the existing node i is proportional to the degree ki of the node.
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The bandwidth Dij of link lij is the maximal number of packets that can pass
from node i to node j through the link per time step. For the convenience of
theoretical estimation, this paper considers traffic flow on directed networks
so that Dij may be different from Dji. Previous studies usually consider that
the link’s bandwidth is infinite [16–35]. This is not in consistence with real
situations. In fact, link bandwidth often restricts the performance of the net-
worked system. The packets can not be forwarded smoothly through the links
so that they accumulate in the node’s queue. This mechanism causes the net-
work system to congest. With a finite resource of bandwidth, a good allocation
strategy for the resource is important.

Here we propose a conceptual bandwidth resource allocation strategy and
study its effects on the local routing protocol and the shortest path protocol.
The bandwidth allocation strategy can be formulated as:

Dij =
(kikj)

α

∑N
i=1,j=1,i6=j Aij(kikj)α

D, (1)

where Aij is adjacency matrix of network, ki and kj are the degrees of node i
and node j respectively, α is a tunable parameter, N is the size of network,
and D is the total resource of bandwidth. We use the product of end nodes’
degrees of a given link (pij = ki × kj) to denote the importance of the link.
When α > 0, the links with bigger pij will have larger bandwidth, and vise
versa. When α = 0, Eq.(1) reproduces the model that all links have the
same bandwidth. The total resource of bandwidth should be calculated as
D =

∑N
i=1,j=1,i6=j AijDij. If all links have the same bandwidth of 1.0, the total

resource will be D = 〈k〉N , with 〈k〉 as the network’s average degree of nodes.
Without loss of generality, we set D = 〈k〉N in the following study.

The traffic model is described as follows. At each time step, there are R packets
generated in the system, with randomly chosen sources and destinations. One
node i can deliver at most Ci packets to its neighboring nodes, and Ci depends
on the sum of link bandwidths connecting to its neighbors: Ci = ΣN

j=1AijDij.
Once a packet arrives at its destination, the packet will be removed from
the system. The queue length of each node is assumed to be unlimited and
the first in first out rule (FIFO) is applied to all queues. In this paper, we
investigated two routing protocols: the shortest path protocol and the local
routing protocol. In the local routing protocol, the packets are delivered by
the local information of link bandwidth. In each time step, each node per-
forms a local search among its neighbors. If a packet’s destination is found
within the searched area, it is delivered directly to its target. Otherwise, the
packet is delivered to a neighboring node j with probability depending on the
corresponding link’s bandwidth:

Pi→j =
Dij

ΣN
j=1AijDij

(2)
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where Dij is the bandwidth of the link pointing from node i to node j, the
sum runs over all neighbors of node i. This local routing protocol reflects that
the packets are forwarded according to the links’ bandwidth.

3 Simulation and analysis

The simulations are carried out on Barabási-Albert (BA) scale-free networks
with size N = 1000 and parameters m0 = m = 4. In order to describe the
phase transition of traffic flow in the network, we use the order parameter [8]:

η(R) = lim
t→∞

〈∆Np〉
R∆t

(3)

where ∆Np = Np(t+∆t)−Np(t), 〈...〉 indicates the average over time windows
of width ∆t, and Np(t) is the number of data packets within the network
at time t. With increasing packet generation rate R, there will be a critical
value of Rc which characterizes the phase transition from free flow (η = 0)
to congestion (η > 0). In the free flow state (R < Rc), due to the balance
of created and removed packets, 〈∆Np〉 = 0 and η = 0. When R > Rc, the
packets accumulate continuously in the network, and η becomes a constant
larger than zero. Because the packets are congested, they will pile up in the
network and the system will collapse ultimately. Therefore Rc is the maximal
generating rate under which the system can maintain its normal and efficient
functioning. The network’s overall capacity can be measured by the maximal
generating rate Rc at the phase transition point.

We first investigate the bandwidth allocation strategy Equ.(1) for the local
routing protocol. Figure 1(a) shows the evolution of total packet number Np

for different packet generating rate R with network size N = 1000, average
degree 〈k〉 = 8 and routing preference α = 0. When R ≤ Rc = 67, the
evolution of Np will reach a balance state, while Np will increase without
bound when R = 68 > Rc. Figure 1(b) shows the order parameter η vs R
with α = 0. One can see that η = 0 for R ≤ 67 and η > 0 for R > 67. So
the network capacity is Rc = 67 under this bandwidth allocation strategy of
α = 0. We also show the scaling of Rc with network size N in fig.1(c).

In Fig.2, we investigate the network’s capacity Rc for different values of α. The
network’s capacity Rc reaches maximum when α = 0.5. This indicates that
one should allocate more bandwidth for the links with bigger value of pij. In
Fig.3(a), the evolution of hub node’s traffic load is investigated with α = 0.1,
0.5 and 0.7 respectively. The traffic load of node i is defined as Li/Ci, with
Li denoting the queue length in node i and Ci denoting the delivery capacity
of node i. Here, the hub node is defined as the node having the largest traffic
load. One can see that, when α = 0.1 and 0.7, the hub node is congested that

4



Fig. 1. (Color online.) (a) Evolution of packet number Np with different packet
generation rate R; (b) Order parameter η vs R; (c) Rc vs N . Other parameters are
network size N = 1000, average degree 〈k〉 = 8, bandwidth resource D = 8000, and
routing preference α = 0.

Fig. 2. (Color online.) The network capacity Rc vs the tunable parameter α. As is
shown, the network capacity Rc can reach the optimum when α = 0.5. Network size
is N = 1000, average degree is 〈k〉 = 8, and total bandwidth resource is D = 8000.
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Fig. 3. (Color online.) (a) Evolution of hub node’s traffic load for α = 0.1, 0.5 and 0.7
with R = 75; (b) The probability distribution of packet’s travelling time in free-flow
state (R = 60 < Rc) with α = 0.5; (c) The probability distribution of packets’
waiting time in free-flow state (R = 60 < Rc) with α = 0.5. Other parameters are
network size N = 1000, average degree 〈k〉 = 8, and total resource of bandwidth
D = 8000.

traffic load increases without bound. However, when α = 0.5 the traffic load of
hub node can reach a balance state, indicating that it is still in free-flow state.
Thus the bandwidth allocation with α = 0.5 can achieve a larger network
capacity.

Then we investigate the probability distribution of the travelling time and the
waiting time in the free-flow state. Packet’s travelling time and waiting time
are important factors for characterizing the network’s behavior. The travelling
time is the time that a packet spends travelling from source to destination,
and the waiting time is the time that a packet waits in the queue of a node.
Figure 3(b) shows that the distribution of travelling time roughly follows a
power law. Most packets can arrive at their destinations in a short time while
some packets need to spend very long time. Figure 3(c) shows that the waiting
time also roughly follows a power law.

Next, we investigate the bandwidth allocation strategy Eq.(1) for the shortest
path routing protocol. For the shortest path protocol, we can calculate the
node’s or link’s betweenness (Bi or Bij), which is the number of shortest
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paths passing through node i or link lij. If every node in the system has
the same delivering capacity and every link has an infinite bandwidth, traffic
congestion will firstly appear on the node with largest betweenness. So the
network’s traffic capacity Rc can be estimated as [22]:

Rc =
N(N − 1)

Bmax

, (4)

where Bmax is the maximum node’s betweenness in the system, and N(N −1)
is the total number of paths between nodes in the system. In the following, we
propose a similar method to estimate the network’s capacity with variation
of link bandwidth. Considering the bandwidth allocation strategy of Equ.(1),
we introduce an efficient betweenness Beff

ij for link lij:

Beff
ij =

Bij

Dij

(5)

For the shortest path routing strategy, traffic congestion will firstly occur on
the link with the largest efficient betweenness. Therefore, following Eq.(4), Rc

can be estimated as:

Rc =
N(N − 1)

Beff
max

(6)

where Beff
max is the largest efficient betweenness of links.

Figure 4 shows the simulation results and theoretical estimation of network
capacity Rc vs the bandwidth allocation parameter α under the shortest path
protocol. The theoretical estimation results are calculated by Eq.(6). One can
see that the theoretical results are in good agreement with simulation. When
α = 0.35, the network capacity Rc reaches the optimum.

For the shortest path protocol, if the efficient betweenness of link lij (pointing
from node i towards node j) is the largest in the system, the packets will firstly
accumulate in node i and node i should be considered as the hub node. In
Fig.5(a), the evolution of traffic load on hub node is shown with different values
of α. With packet generating rate R = 900 and total bandwidth D = 8000,
the traffic load can reach a balance state when α = 0.35, while it increases
without bound with other parameters. So the bandwidth allocation strategy
with α = 0.35 can reduce the traffic load on the hub node and thus increase the
network capacity. Figure 5(b) and (c) shows the the probability distribution of
packets’ travelling time and waiting time respectively in a free-flow state (R =
600 < Rc) with α = 0.35. One can see that the probability of travelling time
approximately follows a Poisson distribution. This behavior is quite different
from that of local routing protocol. The probability of packets’ waiting time
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Fig. 4. (Color online.) Simulation and theoretical estimation of network capacity Rc

vs tunable parameter α for the shortest path routing protocol. Network capacity Rc

reaches optimum when α = 0.35. Network size N = 1000, average degree 〈k〉 = 8,
and total resource of bandwidth is D = 8000.

Fig. 5. (Color online.) (a) The evolution of traffic load in the hub node with different
α with the shortest path protocol; (b) The probability distribution of travelling
time in the free state with α = 0.35; (c) The probability distribution of waiting
time in free state with α = 0.35. Other parameters are total resource of bandwidth
D = 8000, network size N = 1000 and average degree 〈k〉 = 8.
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follows a pow-law distribution. But the maximum values of both travelling
time and waiting time are much less than those of local routing protocol.
Although the local routing protocol can forward the packets without knowing
the whole system’s topological information, its routing cost is much higher
than that of shortest path protocol.

4 Conclusion

In summary, we have investigated the link’s bandwidth allocation strategy for
the local routing and the shortest path protocols. It is found that with a finite
resource of link’s bandwidth, one should slightly allocate more bandwidth re-
source to the links with bigger value of ki × kj. By simulation, the optimal
value of bandwidth allocation preference parameter α is sought out: α = 0.5
for the local routing protocol, and α = 0.35 for the shortest path protocol.
For the shortest path protocol, we introduce a value of efficient betweenness
for the links. Considering that traffic congestion will appear on the link with
the largest efficient betweenness, we can estimate the network’s capacity the-
oretically. The estimation results are in good agreement with the simulations.

This investigation may be helpful for designing realistic communication net-
work like the Internet, the urban transportation systems, the wireless sensor
network, the airway network, and so on.
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