1	A re-evaluation of the offset in the Australian Height
2	Datum between mainland Australia and Tasmania
3	
4	M.S. FILMER AND W.E. FEATHERSTONE
5	
6	Mick Filmer (corresponding author)
7	Western Australian Centre for Geodesy & The Institute for Geoscience Research,
8	Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia
9	Telephone: +61-8-9266-2218
10	Fax: +61-8-9266-2703
11	Email: M.Filmer@curtin.edu.au
12	
13	Will Featherstone
14	Western Australian Centre for Geodesy & The Institute for Geoscience Research,
15	Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia
16	Telephone: +61-8-9266-2734
17	Fax: +61-8-9266-2703
18	Email: W.Featherstone@curtin.edu.au
19	
20	

21	The adoption of local mean sea level (MSL) at multiple tide-gauges as a zero reference level for the
22	Australian Height Datum (AHD) has resulted in a spatially variable offset between the geoid and the
23	AHD. This is caused primarily by sea surface topography (SSTop), which has also resulted in the
24	AHD on the mainland being offset vertically from the AHD on the island of Tasmania. Errors in MSL
25	observations at the 32 tide-gauges used in the AHD and the temporal bias caused by MSL
26	observations over different time epochs also contribute to the offset, which previous studies estimate
27	to be between $\sim +100$ mm and $\sim +400$ mm (AHD on the mainland above the AHD on Tasmania). This
28	study uses five SSTop models (SSTMs), as well as GNSS and two gravimetric quasigeoid models, at
29	tide-gauges/tide-gauge benchmarks to re-estimate the AHD offset, with the re-evaluated offset
30	between -61 mm and +48 mm. Adopting the more reliable CARS2006 oceanographic-only SSTM, the
31	offset is -12±11 mm, an order of magnitude less than three previous studies that used geodetic data
32	alone. This suggests that oceanographically derived SSTMs should be considered as a viable
33	alternative to geodetic-only techniques when attempting to unify local vertical datums.
34	
35	Keywords: AHD, mean sea level, sea surface topography modelling, vertical datum unification
36	
37	Address correspondence to M.S. Filmer. Email: M.Filmer@curtin.edu.au
38	
39	Introduction
40	The Australian Height Datum (AHD) was established on the Australian mainland (referred to here as
41	AHD(mainland)) from a least-squares adjustment (LSA) of the then-called Australian Levelling
42	Survey in 1971, fixed to mean sea level (MSL; held to zero height) at 30 tide-gauges (Roelse et al.
43	1971). MSL for the AHD(mainland) was observed between 1966 and 1968, but with the exception of
44	the Karumba tide-gauge, where MSL was observed between 1957 and 1960. The AHD was
45	established in Tasmania (referred to here as AHD(Tas)) in 1983 through an LSA of the Tasmanian
46	levelling network fixed to MSL (held to zero height) at two tide-gauges for which MSL was observed
17	for only one whole year in 1972 (ICSM 2006 Chapter 8) Hence the zero-reference level for

AHD(mainland) is observed local MSL for 1966-1968 (Karumba tide-gauge excepted), but the zeroreference level for AHD(Tas) is observed local MSL for 1972.

As such, the AHD(mainland) and AHD(Tas) are technically separate local vertical datums (LVDs) that may be offset vertically from one another. The short period over which MSL was observed at these tide-gauges means that the local MSL estimates at the different tide-gauges are likely to contain biases with respect to the true MSL (see next Section). However, these short-term MSL estimates define the zero-references of the AHD(mainland) and AHD(Tas). It is the offset between these imperfectly determined zero-references that we seek to estimate.

56 Mean sea surface topography (SSTop) is the spatially varying difference between MSL and 57 the geoid (e.g., Mather 1974; 1975; Merry and Vaníček 1983; Pugh 1987; Hipkin 2000), and is 58 probably a larger cause of any AHD(mainland) – AHD(Tas) offset (herein referred to as O_{Tas}) than 59 the short and different periods over which local MSL was observed. We adopt the sign convention 60 that positive O_{Tas} indicates AHD(mainland) is above AHD(Tas). Determining O_{Tas} is further 61 complicated by the variability of SSTop at different locations around the Australian coastline and over 62 different observation epochs (cf. Hamon and Greig 1972; Mitchell 1973; Coleman et al. 1979; Mather 63 1979) (see later). An accurate determination of O_{Tas} is needed if AHD(mainland) and AHD(Tas) are 64 to be unified into any single national vertical datum, although in this study, we are not officially 65 unifying AHD(mainland) and AHD(Tas), but testing the methodology and currently available datasets 66 (see Data and Methods Section).

While most estimates of LVD offsets are made using geodetic methods (e.g., Rummel and
Teunissen 1988; Catalao and Sevilla 2009; Zhang et al. 2009; Amos and Featherstone 2009; Ardalan
et al. 2010), or (geodetic) SSTop modelled from satellite altimetry-derived mean sea surface (MSS)
minus gravimetric geoid models at tide-gauges (e.g., Fenoglio and Groten 1995), this study also uses
SSTop values modelled only from oceanographic information (Section 3), which is rarely used to
estimate LVD offsets (cf. Merry and Vaníček 1983).

Three previous estimates of O_{Tas} have been made by Rizos et al. (1991), Rapp (1994) and Featherstone (2000) using GPS (Global Positioning System) and quasi/geoid models of varying vintage and quality.

76 1) Rizos et al. (1991) used GPS-observed ellipsoid heights (h) and height anomalies (ζ) 77 computed from the OSU89A global gravitational model (Rapp and Pavlis 1990) to degree and order 78 360, augmented by local terrestrial gravity observations to add the high-frequency component of ζ . 79 Rizos et al. (1991) used three tide-gauge benchmarks (TGBMs) located on the Victorian coastline at 80 Point Lonsdale, Portland and Lakes Entrance, and three on the northern Tasmanian coastline at 81 Stanley, Burnie and Low Head (cf. Figure 1). The AHD height (H) used at each TGBM is dependent 82 on the levelling connecting the TGBM to the AHD tide-gauges where the AHD zero-reference was 83 defined (see Section 3 for the discussion on levelling errors). Rizos et al.'s (1991) estimate of O_{Tas} 84 was ~+100 mm, although this was later revised up to ~+400 mm (Featherstone 2000). No error 85 estimates were provided.

2) Rapp (1994) used GPS observations and a combination of the JGM-2 (Nerem et al. 1994; degrees 2 to 70) and OSU91A (Rapp et al. 1991; degrees 71 to 360) global gravitational models from unspecified locations distributed across Australia (85 on the mainland, four on Tasmania) as part of a global study, calculating O_{Tas} to be ~+300 mm. Again, no error estimates were provided, but this estimate is likely to have a larger error than Rizos et al.'s (1991) estimate because the high-frequency component of ζ was not modelled. However, Rapp's (1994) study does not account for the spatial variation of O_{Tas} (cf. Featherstone 2000).

3) Featherstone (2000) conducted a study similar to Rapp (1994), but using 1,013 co-located GPS-AHD heights and the AUSGeoid98 regional geoid model (Featherstone et al. 2001) across Australia, finding O_{Tas} to be +260±330 mm. However, due to the ~1 m north-south slope in the AHD(mainland) (e.g., Featherstone 2004, 2006), and ~0.5 m regional distortions in the AHD (e.g., Filmer and Featherstone 2009), the estimate of O_{Tas} was highly dependent on the location of the GPS stations used (Featherstone 2000). In addition to the nation-wide study that produced a spatially

- 99 variable O_{Tas} , Featherstone (2000) attempted to replicate the study of Rizos et al. (1991). This used a
- subset of 13 GPS-AUSGeoid98 stations along the northern Tasmanian coastline and six along the

101 Victorian coastline, estimating O_{Tas} to be +(120±120) mm.

102 Thus, two definitions of O_{Tas} have been used: i) the mean offset for the two entire datums 103 (Rapp 1994; Featherstone 2000); and ii) the mean offset between the Victorian and northern 104 Tasmanian coastlines (Rizos et al. 1991; Featherstone 2000).

105

106 **Definition of O**_{Tas}

107 The spatially variable non-alignment of the AHD with the geoid makes any estimate of O_{Tas} 108 problematic. There are numerous reasons why local MSL is offset from the geoid by different 109 amounts at the different tide-gauges used to define the AHD. SSTop comprises most of this offset, 110 hence the use of modelled SSTop as an estimate of O_{Tas} . However, there are other errors that 111 contribute to this offset, including the short and different tide-gauge observation periods of MSL, tide-112 gauge malfunction, poor siting of the tide-gauge (e.g., near rivers or in estuaries), vertical movement 113 of the land/structure to which the tide-gauge is fixed (e.g., tectonic motion), spatially variable sea 114 level change, and medium/long period atmospheric or oceanographic events.

115 As it is difficult to reliably quantify error contributions from each of these sources, crude 116 estimates have to be made. The pole tide has a Chandler period of 433 days, so can affect the one-117 year MSL observations in AHD(Tas), but its amplitude is only ~10 mm (Currie 1975). The lunar 118 perigee tide has a period of 8.85 years, which can bias three- and one-year MSL observations and has 119 a maximum amplitude of ~ 20 mm. The lunar node tide has a period of 18.61 years, which is the 120 recommended period for tide-gauge observation of MSL to capture the full tidal signature (e.g., 121 Featherstone and Kuhn 2006). However, the magnitude of error resulting from the time-limited MSL 122 observations and its effect on the AHD is not clear (Dando and Mitchell 2010). Vaníček (1978) 123 modelled a maximum nodal tide of ~20 mm at several northern US sites, but Amin (1993) observed a

maximum nodal tide amplitude of up to 47 mm in northern Australia, with Shaw and Tsimplis (2010)
observing a maximum amplitude of ~50 mm at an eastern Atlantic tide-gauge. However, Amin
(1993) found the nodal tide to decrease for observations in south west Australia, suggesting that the
nodal tide may only bias the AHD MSL observations along the southern coast of Australia by ~20
mm.

Mitchell (1973) investigated possible errors in AHD MSL observations, noting that several types of faults in the automatic tide-gauges could cause errors. Some are difficult to discover or quantify, although Mitchell (1973, p. 154) estimates that these errors may amount to a few tens of mm, but are site-dependent. The placement of AHD tide-gauges near rivers, so that the outflow of freshwater affects MSL was also identified by Easton (1968), Easton and Radok (1970), Mitchell (1973) and Morgan (1992). The AHD tide-gauges used in this study comprise: Point Lonsdale, Port Fairy, Burnie and Hobart (Figure 1).

136 The Point Lonsdale tide-gauge was at the entrance to a bay and installed near the end of a 137 jetty. The Port Fairy tide-gauge was located at the end of a breakwater but only 100 m from the mouth 138 of a river (Easton 1968). No detailed location information is available on the Hobart and Burnie tide-139 gauges, but it is likely that they are located in harbours as both are port cities. Easton and Radok 140 (1970) summarise AHD tide-gauges during the 1966-1968 period, commenting that Point Lonsdale 141 was an excellent tide-gauge installation, but that Port Fairy had some data gaps and was not 142 adequately checked, and Burnie was not checked regularly. Hobart appears to have adequate records. 143 MSL from the non-AHD tide-gauges of Portland, Lorne and Stony Point in Victoria, and Devonport 144 and Spring Bay in Tasmania (Figure 1) were not used in the AHD definition. These additional tide-145 gauges/TGBMs are used to add redundancy for the tests in Section 3 but observed MSL was not used. 146 Therefore, MSL errors at these non-AHD locations are not relevant to this study.

Local MSL adopted for the AHD will contain MSL observation errors, but the observed
values are what define the AHD zero-reference. These errors are likely to be higher for the two
Tasmanian AHD tide-gauges, as these used only one year of observation. In addition, the

150 AHD(mainland) adopted 1966-1968 local MSL while AHD(Tas) adopted 1972 local MSL. Hence,

151 the true value of O_{Tas} will be contaminated by errors in MSL observations at the different tide-gauges

and any variation in MSL from the 1966-1968 and 1972 epochs. However, as O_{Tas} is a relative value,

any errors common to mainland and Tasmanian tide-gauges will cancel (e.g., systematic sea-level

154 change).

155 Strictly, O_{Tas} should only be estimated between AHD tide-gauges (or closely connected 156 TGBMs) where the AHD is defined with respect to local MSL, and thus less sensitive to levelling 157 errors. This is because the AHD zero-reference is defined only at AHD tide-gauges, so any point afar 158 from the AHD tide-gauge is subject to errors in the levelling. However, due to the spatial variability 159 of SSTop, O_{Tas} will still depend on which AHD tide-gauges are selected (cf. Featherstone 2000). An 160 examination of modelled SSTop (see next Section) indicates that its spatial variability along the 161 Victorian and northern Tasmanian coastlines is no more than ~20 mm, with levelling between tide-162 gauges and reasonably close TGBMs containing relatively small errors (details later). Thus, using 163 non-AHD tide-gauges to provide redundancy, and therefore a more reliable estimate of O_{Tas} , should 164 be beneficial, i.e., by reducing the influence of site-dependent errors on estimated O_{Tas} .

165 We first define O_{Tas} as the mean difference between SSTop along the Victorian and northern 166 Tasmanian coastlines at five Victorian tide-gauges or their TGBMs (Portland, Port Fairy, Lorne, Point 167 Lonsdale, and Stony Point; Figure 1) and two northern Tasmanian tide-gauges or their TGBMs 168 (Burnie and Devonport; Figure 1). This O_{Tas} definition is later refined with two additional tide-169 gauges in southern Tasmania (Hobart and Spring Bay; Figure 1) used to determine if there is any 170 north-south slope in AHD(Tas), as there is in AHD(mainland) (Featherstone 2000; 2004; 2006). If no AHD(Tas) slope is detected, Hobart and Spring Bay will be used to add redundancy to the O_{Tas} 171 172 estimate.

179 The SSTop models (SSTMs) used comprise: CSIRO Atlas of Regional Seas 2006 (CARS2006;

180 Ridgway et al. 2002; an oceanographic-only model); Rio05 combined mean dynamic topography

181 (Rio05 CMDT; Rio and Hernandez 2004; a combined geodetic-oceanographic model); GRACE

182 Gravity Model 02 dynamic ocean topography (GGM02 DOT; Tapley et al. 2003; 2005; a geodetic-

183 only model); a second DOT model from GRACE/JPL (<u>http://grace.jpl.nasa.gov/data/dot/</u>)

184 DOT_DNSC08 MSS-EGM08_gau_ave_111km_dpc.txt (herein referred to as JPL08; available at

185 <u>ftp://podaac.jpl.nasa.gov/pub/tellus/dot/200808/;</u> a geodetic-only model); and the Danish National

186 Space Centre 2008 MDT (DNSC08 MDT; Andersen and Knudsen 2009; a geodetic-only model).

187	The GNSS (Global Navigation Satellite Systems) h at tide gauges or their TGBMs come from
188	a nation-wide set of 1,052 3D GNSS geodetic coordinates (Hu 2009, supplied by Geoscience
189	Australia; N. Brown 2009, pers. comm.) in the International Terrestrial Reference Frame 2005
190	(ITRF2005; Altamimi et al. 2007) at epoch 2000. The two quasigeoid models used are the
191	gravimetric component of the regional AUSGeoid09 model (AGQG09; Featherstone et al. 2011) and
192	the EGM2008 global gravitational model (Pavlis et al. 2008).
193	The estimated standard deviation (STD; 1 σ) for most GNSS h at TGBMs (σ_h) is ~±5 mm, but
194	reaches ±16 mm for Devonport TGBM (Brown 2009, pers. comm.). Estimating errors for the other
195	data is more problematic, because there are no formal error estimates for AGQG09 or CARS2006,
196	and although EGM2008 commission error over Australia is shown to be ~50 mm (Pavlis et al. 2008),
197	determining the omission error is more difficult. Featherstone et al. (2011) found that the 'fit' of
198	AGQG09 at ~1000 GNSS points to a LSA of the ANLN fixed at 32 AHD tide-gauges to SSTop-
199	corrected MSL was ±130 mm. However, this value is a coarse estimate for all Australia, and may be
200	inflated by levelling errors and GNSS h blunders (e.g., antenna height errors) so is likely to be an

201 upper estimate for the TGBMs used in this study. Quasigeoid modelling in coastal regions is

202 problematic, due mostly to sparse gravity coverage, errors in satellite-altimeter-derived gravity

anomalies close to the coast and steep geoid gradients at some coastal boundaries (e.g., Hipkin 2000).

Even allowing for this, we "guesstimate" that AGQG09 (and also assumed for EGM2008) STD at the

205 TGBMs (σ_{ζ}) for this study is ~±100 mm.

No formal CARS2006 error estimate is available, but Rio and Hernandez (2005) estimate that Rio05 has an RMS of $\pm(100 - 140)$ mm in areas of strong currents and $\pm(40 - 50)$ mm in low variability regions. From this, we suggest that an error of $\sim \pm 100$ mm is possible for Rio05 and CARS2006 in coastal regions, with GGM02 error perhaps $\sim \pm 150$ mm. Andersen and Knudsen (2009) estimate an approximate error of $\pm(90 - 120)$ mm for DNSC08 MDT, but have found outliers of up to 0.80 m compared to tide-gauges in the UK, suggesting that high-frequency noise can degrade DNSC08 MDT in coastal regions.

213 Two methods to estimate O_{Tas} are used; one using the SSTMs and the other using TGBM h 214 (h_{TGBM}) and ζ at the TGBM (ζ_{TGBM}) . These are independent methods, thus adding to the veracity of 215 the results compared to the previous GNSS-quasigeoid-only assessments (cf. Rizos et al. 1991; Rapp 216 1994; Featherstone 2000).

217 Method 1: The SSTM LVD unification method computes differences between geodetically 218 and oceanographically modelled SSTop values at the Victorian and Tasmanian tide-gauges in Figure 219 1. SSTop values were extrapolated to the tide-gauge positions from the various SSTM grids using 220 tensioned splines in the GMT package (Smith and Wessel 1990; Wessel and Smith 1998). The mean 221 of the differences (Victoria minus Tasmania) for each SSTM is adopted as the O_{Tas} estimate, with the 222 standard deviation (STD) used as a proxy for the standard error for each. As such, this error estimate 223 ignores errors in the SSTM values themselves and their extrapolation to the tide-gauges or TGBMs, 224 also noting that SSTop is difficult to model oceanographically in the coastal zone (e.g., Merry and 225 Vaníček 1983; Hipkin 2000; Dunn and Ridgway 2002).

226 Method 1 assumes that O_{Tas} comprises only SSTop and is estimated by modelled mean 227 SSTop. It excludes any errors in the AHD MSL observations (e.g., Coleman et al. 1979; Mitchell 228 1973) (cf. previous Section) that may contaminate the true value of O_{Tas} . As such, the error estimates 229 quoted herein (Tables 1 and 2) are the relative errors between modelled mean SSTop at the location of 230 the tide-gauges used. SSTop is also temporally variable so that the epoch for each data set (e.g., 231 CARS2006 contains oceanographic data from the last 50 years and Rio05 contains satellite altimetry 232 data between 1993-1999) do not exactly coincide with the mean SSTop in 1966-1968 or 1972. 233 However, it is currently not possible to estimate this error reliably (cf. Dando and Mitchell 2010). 234 Method 2: The GNSS-quasigeoid LVD unification method first computes the AHD offset 235 (O_{AHD}) from the quasigeoid model at the tide-gauge or TGBM (cf. Featherstone 2000) (1)

236 $O_{AHD} = (h_{TGBM} - \zeta_{TGBM}) - H_{TGBM}$

237 where H_{TGBM} is the AHD normal-orthometric height of the TGBM. It is assumed that O_{AHD} at the 238 closest AHD tide-gauge is the same as (or very close to) O_{AHD} at the TGBM. For the AHD tide-239 gauges in Victoria (Point Lonsdale and Port Fairy) and Tasmania (Burnie and Hobart), the distance 240 between the TGBM and the tide-gauge is generally <2 km (cf. Hipkin et al. 2004). However, TGBMs 241 for non-AHD tide-gauges (Lorne, Stony Point, Portland, Devonport and Spring Bay) are considerably 242 further from the AHD tide-gauges and thus depend upon the levelling connection. For third-order levelling, the STD will propagate according to $4.2\sqrt{d}$ mm (cf. Kearsley et al 1993; Filmer and 243 244 Featherstone 2009; Filmer et al. 2011) where d is the distance between the AHD tide-gauge and 245 TGBM.

246 For example, the distance between the Portland TGBM and Port Fairy AHD tide-gauge is ~70 247 km, while Port Lonsdale AHD tide-gauge to Lorne and Stony Point TGBMs is ~100 km, resulting in 248 STDs for the AHD height at the TGBMs of ± 35 mm and ± 42 mm, respectively. The distances 249 between the Burnie AHD tide-gauge and Devonport TGBM and Hobart AHD tide-gauge and Spring 250 Bay TGBM are also ~70-100 km, so a maximum STD estimate for AHD heights at TGBMs (σ_H) of 251 ± 40 mm appears reasonable. Thus, using the linear propagation of independent variances, an estimate of total O_{AHD} error could be as large as ±108 mm computed as $\sqrt{\sigma_h^2 + \sigma_\zeta^2 + \sigma_H^2}$, where σ_h is ±10 mm, 252 253 σ_{ζ} is ±100 mm, and σ_{H} is ±40 mm.

254 O_{AHD} is thus an estimate of SSTop at the tide-gauge, with O_{Tas} then computed as the average 255 of the differences between O_{AHD} at the Victorian and Tasmanian TGBMs. Because O_{Tas} is a relative 256 rather than absolute value, it is likely that the error in GNSS- ζ estimated O_{Tas} may be somewhat less 257 than ± 108 mm, as any long-wavelength errors in AGQG09 and EGM2008 may be common to the 258 Tasmanian and Victorian tide-gauges. It is also assumed that the quasigeoid is coincident with the 259 geoid and the levelled AHD normal-orthometric height is coincident with a normal height (and thus 260 compatible with the quasigeoid) (cf. Filmer et al. 2010), which is a reasonable assumption given the 261 low-lying topography close to the coasts.

262	Unlike the SSTM estimate of O_{Tas} , any MSL errors at AHD tide-gauges, or levelling errors
263	between non-AHD TGBMs and AHD tide-gauges will contaminate the GNSS-quasigeoid-implied
264	O_{Tas} through O_{AHD} (Equation 1). The GNSS-quasigeoid method is essentially the same as that used
265	by Rizos et al. (1991), Rapp (1994) and Featherstone (2000), and thus subject to largely the same
266	error sources. The GNSS-quasigeoid-implied O_{Tas} is, in theory, most likely to replicate 'true' O_{Tas}
267	than the SSTM method because it includes the MSL observation errors at the AHD tide-gauges, and
268	also the temporal effect of using MSL from different epochs. However, it remains to be seen whether
269	the quasigeoid models will have the necessary accuracy for this method to be sufficiently reliable.
270	The SSTM method relies on the assumption that O_{Tas} is predominately SSTop, and that MSL errors
271	at AHD tide-gauges and the different epochs make only a minor contribution to O_{Tas} .
272	O_{Tas} is first estimated using five Victorian (Portland, Port Fairy, Point Lonsdale, Lorne and
273	Stony Point) and two northern Tasmanian (Burnie and Devonport) tide-gauges for both SSTM and
274	GNSS-quasigeoid methods (10 differences). Subsequently, differences between SSTop at Burnie and
275	Devonport tide-gauges, and two southern Tasmanian tide-gauges (Spring Bay and Hobart) are used to
276	determine whether there is any north-south slope in the AHD(Tas) (cf. Featherstone 2004, 2006). The
277	absence of any statistically significant north-south AHD(Tas) slope (see next Section) suggests that an
278	O_{Tas} estimate using all four Tasmanian tide-gauges (Figure 1) can be used to provide additional
279	redundancy (20 versus 10 differences), for both the GNSS-quasigeoid method (Equation 1), and the
280	SSTM method.

281

282 Results and Discussion

283 Estimates of O_{Tas} using five Victorian tide-gauges and two northern Tasmanian tide-gauges are

shown in Table 1. O_{Tas} (represented by the means in Table 1) varies depending on the data used, but

is between -58 mm (Rio05) and +48 mm (JPL08). Recall that a positive value indicates that

286 AHD(mainland) is above AHD(Tas) and vice versa. The smaller STDs for CARS2006-, Rio05-,

287 GGM02- and JPL08-derived O_{Tas} indicate that these results are more reliable, although this could

288 also be interpreted as the smoothness of the SSTMs rather than their precision. The STDs for O_{Tas} 289 are much less than the ± 100 mm STD 'guesstimates' for the individual SSTM values at tide-gauges, 290 suggesting that the redundancy from using five Victorian and two Tasmanian tide-gauges has 291 provided a more reliable O_{Tas} , but also that the SSTMs have generally performed better than could be 292 expected from their 'guesstimated' formal errors. O_{Tas} from DNSC08 MDT of -20 mm is similar to 293 the other SSTM-based estimates, but the larger STD of ± 145 mm (cf. Andersen and Knudsen's (2009) 294 error estimate of \pm (90-120) mm) indicate that this SSTM is not suitable for estimating O_{Tas} because it 295 appears to contain a lot of noise in these coastal regions.

296

		S	GNSS-quasigeoid method				
Statistic	CARS2006	Rio05	GGM02	JPL08	DNSC08	AGQG09	EGM2008
Mean or O_{Tas}	-3	-58	+42	+48	-20	-12	-33
Max	+7	-31	+49	+77	+147	+67	+78
Min	-12	-81	+33	+18	-306	-90	-167
STD	±6	±17	±6	±24	±145	±52	±78
В-Н	-22	-1	-15	-30	-8	+53	+42

297

302

303 From Table 1, the AGQG09- and EGM2008-implied O_{Tas} (-12±52 mm and -33±78 mm, 304 respectively) are within the range of the SSTM-implied O_{Tas} estimates, but exhibit relatively large 305 STDs (excepting the noisy DNSC08 MDT). These GNSS-quasigeoid estimates may be contaminated 306 by one, more or all of *h*, ζ , MSL and levelling errors (discussed above), in addition to temporal errors 307 caused by the combination of datasets and models generated during different epochs. It is not 308 possible to determine whether the relatively large STDs for AGQG09- and EGM2008-implied O_{Tas} 309 (although less than the estimated formal error of ±108 mm for O_{AHD} at each TGBM) can be attributed 310 to AGQG09 and EGM2008 alone, or also to h, ζ , MSL and H errors (the so-called separation 311 problem; cf. Featherstone 2004), but it does appear that AGQG09 is slightly superior to EGM2008 in 312 the Bass Strait region if only because it shows a lower STD.

313 The bottom row of Table 1 (B-H) gives the height difference between the Hobart and Burnie 314 tide-gauges, which are \leq 30 mm in magnitude for all SSTMs, indicating Hobart to be higher than 315 Burnie for the SSTM method. However, the GNSS-quasigeoid method indicates that Burnie is higher 316 than Hobart by ~ 50 mm. This is enigmatic, as the different methods give opposing conclusions as to 317 the direction of any north-south slope in the AHD(Tas). For verification, these values were compared 318 with the levelled height difference (from a minimally constrained LSA of the Tasmanian levelling 319 network fixed at Hobart), which gives a value of $-(38 \pm 44)$ mm (Hobart higher than Burnie), thus 320 supporting the SSTM over the GNSS-quasigeoid estimates, although acknowledging that the STD of 321 the levelled difference between Hobart and Burnie also allows a zero value. Since the quasigeoid is 322 difficult to model in the coastal zone, it is likely that errors in EGM2008 and AGQG2009 swamp any 323 reliable determination, especially for such a small sample size.

If it is assumed, based on the relatively small Burnie to Hobart height differences (Table 1), that AHD(Tas) does not contain a demonstrable north-south slope, all four Tasmanian tide-gauges (Figure 1) may be used to re-compute O_{Tas} . Using the additional tide-gauges increases the sample size slightly and perhaps so the reliability of the O_{Tas} estimate. Table 2 indicates that there are only minor differences when compared with Table 1 (O_{Tas} and STDs decrease in some cases), further suggesting that O_{Tas} is closer to zero than the previous geodetic-only estimates, but also that using different tide-gauges/TGBMs in this region have only a small effect on the computed O_{Tas} .

331 To test if the differences using non-AHD TGBMs/tide-gauges with AHD tide-gauges 332 significantly affect O_{Tas} estimates, O_{Tas} was re-computed using only three AHD tide-gauges (Point

333 Lonsdale, Port Fairy, and Burnie) and compared to O_{Tas} in Table 1. With the exception of DNSC08 334 MDT (+67 mm different) and EGM2008 (+30 mm different), AHD-only O_{Tas} were found to be <10 335 mm different (in magnitude) to O_{Tas} in Table 1 using non-AHD tide-gauges/TGBMs with AHD tidegauges. This indicates that using additional non-AHD tide-gauges/TGBMs in the O_{Tas} calculation 336 does not significantly change the theoretically 'pure' O_{Tas} defined at only AHD tide-gauges, but adds 337 338 to the reliability of the estimate because of a slightly larger sample size. It also suggests that DNSC08 339 MDT and EGM2008 are less reliable than the other datasets used to model SSTop, noting that 340 DNSC08 MDT is based on EGM2008 (Andersen and Knudsen 2009).

	SSTM method					GNSS-quasigeoid method	
Statistic	CARS2006	Rio05	GGM02	JPL08	DNSC08	AGQG09	EGM2008
Mean or O_{Tas}	-12	-61	+32	+32	-33	+6	-33
Max	+7	-31	+49	+77	+147	+119	+120
Min	-26	-92	+8	-15	-352	-90	-167
STD	±11	±17	±12	±28	±145	±61	±77

341

342**Table 2.** Statistics for O_{Tas} (in mm) between five Victorian and four Tasmanian tide-gauges (cf. Figure 1) for343five SSTM and two GNSS-quasigeoid estimates. Positive O_{Tas} indicates that AHD(mainland) is above344AHD(Tas).

later revised up to ~+400 mm, no error estimates were given. However, the estimate of Featherstone (2000) allows probabilistically for a zero value for O_{Tas} , which is also possible from this reevaluation, but also backed up by the additional independent use of oceanographic SSTM values (Tables 1 and 2).

357 The differences among the previous studies are likely to be caused by a combination of 358 quasigeoid modelling errors, which are problematic in the coastal zone, GNSS h, levelling and SSTM 359 errors. However, the values from this study (compared to Rizos et al. 1991; Rapp 1994; Featherstone 360 2000) are likely to be the result of recent improvements in quasigeoid modelling (e.g., Pavlis et al. 361 2008; Featherstone et al. 2011), Australian GNSS h datasets (e.g., Hu 2009; Brown et al. 2011), and 362 SSTMs (e.g., Ridgway et al. 2002; Dunn and Ridgway 2002). Importantly, the SSTM methods 363 (excepting the noisy DNSC08 MDT) give lower STDs than the GNSS-quasigeoid methods (Tables 1 364 and 2), indicating them to be the better source of information for unifying LVDs.

365 Therefore, the problem now reduces to which SSTM to use to compute an acceptable O_{Tas} . 366 CARS2006 provides the most reliable estimate of SSTop differences at the tide-gauges because of its 367 tailored computation methods in coastal regions (Dunn and Ridgway 2002), as well as it being 368 independent of geodetic data. CARS2006 is a purely oceanographic SSTM, whereas the other 369 SSTMs used here assimilate (Rio05) or use solely geodetic data (GGM02 DOT, JPL08, DNSC08 370 MDT). However, the SSTM-implied O_{Tas} do not include errors in the AHD MSL observations at 371 tide-gauges, or the temporal bias between the Victorian and Tasmanian tide-gauges that is embedded 372 in the actual value for O_{Tas} , although the relatively good agreement among these independent 373 methods suggest that SSTop subsumes the other errors that may affect O_{Tas} . CARS2006 (using five 374 Victorian and four Tasmanian tide-gauges) suggests that O_{Tas} is $-(12\pm11)$ mm (AHD(mainland)) 375 below AHD(Tas)), although this does permit a zero offset in probability, as did the study of 376 Featherstone (2000).

377

378

379 Conclusion

380 We have used five SSTMs and GNSS and two quasigeoid models to reassess the offset between the 381 AHD(mainland) and AHD(Tas), showing O_{Tas} to range between – (61±17) mm and +(48±24) mm 382 when using height differences between five Victorian tide-gauges and first two, then four Tasmanian 383 tide-gauges. A positive value indicates that the AHD(mainland) is above the AHD(Tas). The O_{Tas} 384 derived from the gravimetric quasigeoid models are deemed less reliable than from the SSTMs 385 because (i) they contradict the levelled height difference between Burnie and Hobart, (ii) give 386 consistently higher STDs than the SSTMs (suggesting noisier data), and (iii) the geoid is notoriously 387 difficult to model in the coastal zone, principally because of the lack of terrestrial and marine gravity 388 data. CARS2006 provides the best SSTM estimate of O_{Tas} -(12±11 mm), because it uses totally 389 independent oceanographic data, provides a better agreement with the levelled height difference 390 between Burnie and Hobart and generally has the smallest STD. Although CARS2006 does not 391 account for any MSL observation error at the AHD tide-gauges, this appears to be largely subsumed 392 with O_{Tas} coming primarily from SSTop. It is recommended that CARS2006 (or its successors) is 393 used to unify the mainland and Tasmanian levelling networks in the development of any new 394 levelling-based Australian vertical datum. While the Burnie-Hobart SSTM-based O_{Tas} estimate is 395 opposite to and one order of magnitude smaller than previous geodetic-only estimates, both allow 396 probabilistically for a near-zero value for O_{Tas} . Nevertheless, it has been shown that oceanographic 397 SSTMs are now a realistic alternative or complement to geodetic-only methods for LVD unification.

398

399 Acknowledgements

400 Mick Filmer received financial support from an Australian Postgraduate Award, Curtin University's

401 The Institute for Geoscience Research (TIGeR) and the CRC for Spatial Information. Will

402 Featherstone was the recipient of an Australian Research Council Professorial Fellowship (project

403 number DP0663020). The views expressed herein are those of the authors and are not necessarily

404 those of the ARC or the CRC for Spatial Information. We would like to thank Geoscience Australia

- 405 for supplying the GNSS dataset and Dr Xiaoli Deng (University of Newcastle) for supplying us with
- 406 CARS2006 (data originally from CSIRO Marine Laboratories) and Rio05 (AVISO). We also
- 407 acknowledge DNSC (DNSC08 MDT), NASA/JPL (JPL08, GGM02 DOT) and NGA (EGM2008) for
- 408 their freely available datasets. We would also like to thank the three anonymous reviewers and editor
- 409 for their comments on this manuscript. This is TIGeR publication number XX.
- 410

411 References

- Altamimi, Z., X. Collileux, J. Legrand, B. Garayt, and C. Boucher. 2007. ITRF2005: A new release of
 the International Terrestrial Reference Frame based on time series of station positions and Earth
- 414 Orientation Parameters. *Journal of Geophysical Research*, 112:B09401.
- 415 doi:10.1029/2007JB004949.
- Amin, M. 1993. Changing mean sea level and tidal constants on the west coast of Australia.
 Australian Journal of Marine and Freshwater Research. 44(6):911-925. doi:10.1071/MF9930911.
- Amos, M.J. and W.E. Featherstone. 2009. Unification of New Zealand's local vertical datums:
 iterative gravimetric quasigeoid computations. *Journal of Geodesy*. 83(1):57-68. doi:
 10.1007/s00190-008-0232-y.
- Andersen, O.B. and P. Knudsen. 2009. DNSC08 mean sea surface and mean dynamic topography
 models. *Journal of Geophysical Research*. 114:C11001. doi:10.1029/2008JC005179.
- Ardalan, A.A., Karimi, R. and M. Poutanen. 2010. A bias-free geodetic boundary value problem
 approach to height datum unification. *Journal of Geodesy*. 84(2):123-134. doi: 10.1007/s00190-009-0348-8.
- Brown, N.J., W.E. Featherstone, G. Hu and G.M. Johnston. 2011. AUSGeoid09: a more direct and
 more accurate method of converting ellipsoidal heights to AHD heights. *Journal of Spatial Science*. 56(1): 27-37. doi: 10.1080/14498596.2011.580498.
- 429 Catalao, J. and M.J. Sevilla. 2009. Mapping the geoid for Iberia and the Macaronesian Islands using
 430 multi-sensor gravity data and the GRACE geopotential model. *Journal of Geodynamics*. 48(1):6431 15. doi: 10.1016/j.jog.2009.03.001.
- 432 Coleman, R., C. Rizos, E.G. Masters, and B. Hirsch. 1979. The investigation of the sea surface slope
 433 along the north eastern coast of Australia. *Australian Journal of Geodesy, Photogrammetry and*434 *Surveying*. 31:686-99.
- Currie, R.G. 1975. Period, Q_p and the amplitude of the pole tide. *Geophysical Journal of the Royal Astronomical Society*. 43(1):73-86. doi:10.1111/j.1365-246X.1975.tb00628.x.
- 437 Dando, N.J. and W. Mitchell. 2010. Reconciling height datums in Australia: the bathymetric
 438 component. Final report for the Co-operative Research Centre for Spatial Information CRC-SI
 439 Project 1.14. Geoscience Australia, Catalogue no. 70624,
- 440 http://www.ga.gov.au/cedda/publications/47.
- Dunn, J.R. and K.R. Ridgway. 2002. Mapping ocean properties in regions of complex topography.
 Deep-Sea Research I. 49(3):591-604. doi:10.1016/S0967-0637(01)00069-3.
- Easton, A.K. 1968. A handbook of selected Australian tide gauges. Survey Paper 6, Horace Lamb
 Centre for Oceanographical Research, Flinders University, Adelaide, Australia.

- 445 Easton, A.K. and R. Radok. 1970. Tidal programme 1966-1967. Memorandum 5, Horace Lamb 446 Centre for Oceanographical Research, Flinders University, Adelaide, Australia.
- 447 Featherstone, W.E. 2000. Towards the unification of the Australian Height Datum between mainland 448 and Tasmania using GPS and AUSGeoid98. Geomatics Research Australasia. 73:33-54.
- 449 Featherstone, W.E. 2004. Evidence of a north-south trend between AUSGeoid98 and the AHD in 450 southwest Australia. Survey Review. 37(291):334-343.
- 451 Featherstone, W.E. 2006. Yet more evidence for a north-south slope in the Australian Height Datum. 452 Journal of Spatial Science. 51(2): 1-6.
- 453 Featherstone, W.E. and M. Kuhn. 2006. Height systems and vertical datums: a review in the 454 Australian context. Journal of Spatial Science. 51(1): 21-42.
- 455 Featherstone, W.E., J.F. Kirby, A.H.W. Kearsley, J.R. Gilliland, G.M. Johnston, J. Steed, R. Forsberg, 456 and M.G. Sideris. 2001. The AUSGeoid98 geoid model of Australia: data treatment, computations 457 and comparisons with GPS-levelling data. Journal of Geodesy. 75(5-6):313-330. doi:10.1007/s001900100177. 458
- 459 Featherstone, W.E., J.F. Kirby, C. Hirt, M.S. Filmer, S.J. Claessens, N. Brown, G. Hu, and G.M. 460 Johnston. 2011. The AUSGeoid09 model of the Australian Height Datum. Journal of Geodesy. 461 85(3):133-150. doi: 10.1007/s00190-010-0422-2.
- 462 Fenoglio, L. and E. Groten. 1995. Mean sea level determination in small ocean basins from altimetry 463 and tide-gauge data. Manuscripta Geodaetica. 20(6):394-407.
- 464 Filmer, M.S. and W.E. Featherstone. 2009. Detecting spirit-levelling errors in the AHD: recent 465 findings and some issues for any new Australian height datum. Australian Journal of Earth 466 Sciences. 56(4):559-569. doi:10.1080/08120090902806305.
- 467 Filmer, M.S., W.E. Featherstone, and M. Kuhn. 2010. The effect of EGM2008-based normal, normal-468 orthometric and Helmert orthometric height systems on the Australian levelling network. Journal 469 of Geodesy. 84(8): 501-513. doi: 10.1007/s00190-010-0388-0.
- 470 Filmer, M.S., W.E. Featherstone, and S.J. Claessens. 2011. Upgrading a local vertical datum from a 471 combined adjustment of a levelling network, a sea surface topography model, GNSS and 472 quasigeoid. Journal of Geodesy (submitted).
- 473 Hamon, B.V. and M.A. Greig. 1972. Mean sea level in relation to geodetic land levelling around 474 Australia. Journal of Geophysical Research. 77(36):7157-7162. doi:10.1029/JC077i036p07157.
- 475 Hipkin, R. 2000. Modelling the geoid and sea-surface topography in coastal areas. Physics and 476 Chemistry of the Earth (A). 25(1):9-16. doi:10.1016/S1464-1895(00)00003-X.
- 477 Hipkin, R., K. Haines, C. Beggan, R. Bingley, F. Hernandez, J. Holt, and T. Baker. 2004. The geoid 478 EDIN2000 and the mean sea surface topography around the British Isles. Geophysical Journal 479 International. 157(2):565-577. doi:10.1111/j.1365-246X.2004.01989.x.
- 480 Hu, G. 2009. Analysis of regional GPS campaigns and their alignment to the International Terrestrial 481 Reference Frame (ITRF). Journal of Spatial Science. 54(1):15-22.
- 482 ICSM. 2006. Geocentric Datum of Australia Technical Manual. Version 2.3(1), Inter-Governmental 483 Committee on Surveying and Mapping, Canberra, Australia 484
- http://www.icsm.gov.au/icsm/gda/gdatm/gdav2.3.pdf.
- 485 Kearsley, A.H.W., Z. Ahmad, and A. Chan. 1993. National height datums, levelling, GPS heights and 486 geoids. Australian Journal of Geodesy, Photogrammetry and Surveying. 59:53-88.
- 487 Mather, R.S. 1974. On the solution of the geodetic boundary value problem for the definition of sea 488 surface topography. Geophysical Journal of the Royal Astronomical Society. 39(1):87-109. 489 doi:10.1111/j.1365-246X.1974.tb05441.x.

- Mather, R.S. 1975. On the evaluation of sea surface topography using geodetic techniques. *Bulletin Géodésique*. 115(1):65-82. doi:10.1007/BF02523944.
- 492 Mather, R. S. 1979. The analysis of GEOS3 altimeter data in the Tasman and Coral Seas. *Journal of Geophysical Research*. 84(B8):3853-3866.doi:10.1029/JB084iB08p03853.
- Merry, C. L. and P. Vaníček. 1983. Investigation of local variations of sea-surface topography.
 Marine Geodesy. 7(1-4):101-126. doi:10.1080/15210608309379477.
- 496 Mitchell, H. L. 1973. Relations between mean sea level and geodetic levelling in Australia.
 497 UNISURV Report S-9. University of New South Wales, Sydney, Australia.
- Morgan, P. 1992. An analysis of the Australian Height Datum: 1971. *The Australian Surveyor*.
 37(1):46-63.
- Nerem, R.S. et al. 1994. Gravity model development for TOPEX/Poseidon Joint Gravity Model-1
 and Model-2. *Journal of Geophysical Research Oceans*. 99(C12):24421-24447.
 doi:10.1029/94JC01376.
- Pavlis, N.K., S.A. Holmes, S.C. Kenyon, and J.K. Factor. 2008. An Earth gravitational model to
 degree 2160: EGM2008. Presented at EGU-2008, Vienna, Austria, April 13-18. http://earth info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08 wgs84.html.
- Pugh, D. 1987. *Tides, Surges and Mean Sea-level*. Chichester, New York, Brisbane, Toronto,
 Singapore: John Wiley.
- Rapp, R.H. 1994. Separation between reference surfaces of selected vertical datums. *Bulletin Géodésique*. 69(1):26-31. doi: 10.1007/BF00807989.
- Rapp, R.H. and N.K. Pavlis. 1990. The development and analysis of geopotential coefficient models
 to spherical harmonic degree 360. *Journal of Geophysical Research*. 95(B13):21885-21911. doi:
 10.1029/JB095iB13p21885.
- Rapp, R.H., Y.M. Yang and N.K. Pavlis. 1991. The Ohio State 1991 geopotential and sea surface
 topography harmonic coefficient models. Report 410, The Ohio State University, Columbus, USA.
- Ridgway, K.R., J.R. Dunn, and J.L. Wilkin. 2002. Ocean interpolation by four-dimensional weighted
 least squares-application to the waters around Australasia. *Journal of Atmospheric and Oceanic Technology*. 19(9):1357-1375.
- Rio, M.H. and F. Hernandez. 2004. A mean dynamic topography computed over the world ocean
 from altimetry, in situ measurements, and a geoid model. *Journal of Geophysical Research*.
 109:C12032. doi:10.1029/2003JC002226.
- Rizos, C., R. Coleman, and N. Ananga. 1991. The Bass Strait GPS survey: preliminary results of an
 experiment to connect Australian height datums. *Australian Journal of Geodesy, Photogrammetry and Surveying*. 55:1-25.
- Roelse, A., H.W. Granger, and J.W. Graham. 1971. The adjustment of the Australian levelling survey
 1970-1971. Technical Report 12, Division of National Mapping, Canberra, Australia.
- Rummel, R. and P. Teunissen. 1988. Height datum definition, height datum connection and the role of
 the geodetic boundary value problem. *Bulletin Géodésique*. 62(4):477-498. doi:
 10.1007/BF02520239.
- Shaw, A.G.P. and M. N. Tsimplis. 2010. The 18.6 yr nodal modulation in the tides of Southern
 European coasts. *Continental Shelf Research*. 30(2):138-151. doi:10.1016/j.csr.2009.10.006.
- Smith, W.H.F and P. Wessel 1990. Gridding with continuous curvature splines in tension.
 Geophysics. 55(3):293-305. doi: 10.1190/1.1442837.
- Tapley, B.D., D.P. Chambers, S. Bettadpur, and J.C. Ries. 2003. Large scale ocean circulation from
 the GRACE GGM01 geoid. *Geophysical Research Letters*. 30(22):2163-2166.
- 535 doi:10.1029/2003GL018622.

- Tapley, B., J. Ries, S. Bettadpur, D. Chambers, M. Cheng, F. Condi, B. Gunter, Z. Kang, P. Nagel, R.
 Pastor, T. Pekker, S. Poole, and F.Wang. 2005. GGM02 An improved Earth gravity field model
- from GRACE. Journal of Geodesy. 79(8):467-478. doi:10.1007/s00190-005-0480-z.
- Vaníček, P. 1978. To the problem of noise reduction in sea-level records used in vertical crustal
 movement detection. *Physics of the Earth and Planetary Interiors*. 17(3):265-280.
 doi:10.1016/0031-9201(78)90041-9.
- Wessel, P. and W.H.F. Smith 1998. New, improved version of Generic Mapping Tools released. *EOS*,
 Transactions, American Geophysical Union. 79(47):579.
- 544 Zhang, L., F. Li, W. Chen, and C. Zhang. 2009. Height datum unification between Shenzhen and
- Hong Kong using the solution of the linearized fixed gravimetric boundary value problem. *Journal of Geodesy*. 83(5):411-417. doi:10.1007/s00190-008-0234-9.