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Abstract

The purpose of this paper is to provide a full understanding of the role that the con-

strained generalized continuous algebraic Riccati equation plays in singular linear-quadratic

(LQ) optimal control. Indeed, in spite of the vast literature on LQ problems, only recently

a sufficient condition for the existence of a non-impulsive optimal control has for the first

time connected this equation with the singular LQ optimal control problem. In this paper,

we establish four equivalent conditions providing a complete picture that connects the sin-

gular LQ problem with the constrained generalized continuous algebraic Riccati equation

and with the geometric properties of the underlying system.
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1 Introduction

This paper addresses the continuous-time linear quadratic (LQ) optimal control problem when

the matrix weighting the input in the cost function, traditionally denoted by R, is possibly sin-

gular. This problem has a long history. It has been investigated in several papers and with the

use of different techniques, see [6, 13, 10, 9, 7] and the references cited therein. In particular, in

the classical contributions [6] and [13] it was proved that an optimal solution of the singular LQ

problem exists for all initial conditions if the class of allowable controls is extended to include

distributions. In the discrete time, the solution of regular and singular finite and infinite-horizon

LQ problems can be found resorting to the so-called constrained generalized discrete algebraic

Riccati equation, see [3, 2] and also [11]. A similar generalization has been carried out for the

continuous-time algebraic Riccati equation in [8], where the constrained generalized Riccati

equation was defined in such a way that the inverse of R appearing in the standard Riccati equa-

tion is replaced by its pseudo-inverse. On the other hand, until very recently this counterpart of

the generalized discrete algebraic Riccati equation was only studied without any understanding

of its links with the linear quadratic optimal control problem.

The recent paper [4] was the first attempt to provide a description of the role played by the

constrained generalized continuous algebraic Riccati equation in singular LQ optimal control

problems. Such role does not trivially follow from the analogy with the discrete case, as one can

immediately realize by considering the fact that in the continuous time, whenever the optimal

control involves distributions, none of the solutions of the constrained generalized Riccati equa-

tion is optimizing. In particular, in [4] it was shown that when the continuous-time constrained

generalized Riccati equation possesses a symmetric solution, the corresponding LQ problem

admits a regular (i.e. impulse-free) solution, and an optimal control can always be expressed as

a state-feedback. This is just a single trait of a rich picture where necessary and sufficient con-

ditions for the existence of regular solutions are given in terms of the algebraic and geometric

structures of the underlying system. The purpose of this paper is to provide a full illustration of

this picture which nicely complements the list of possible situations discussed in the pioneering

work [13] (see p. 332).

Notation. The image and the kernel of matrix M are denoted by im M and ker M, respec-

tively; the transpose and the Moore-Penrose pseudo-inverse of M are denoted by MT and M†,

respectively. Given a system in state-space form, we denote by V ? the corresponding largest

output-nulling subspace, by S ? the smallest input containing subspace, and by R? the largest

reachability output-nulling subspace, see [12] for details.
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1.1 Preliminaries

Let Q,A ∈ Rn×n, B,S ∈ Rn×m, R ∈ Rm×m. We make the following standing assumption:

Π
def
=

[
Q S

ST R

]
= Π

T ≥ 0. (1)

Thus, the Popov matrix Π can be factorized in terms of two matrices C ∈ Rp×n and D ∈ Rp×m

as

Π =

[
CT

DT

]
[ C D ]. (2)

We define Σ to be the triple (A,B,Π). The classic LQ optimal control problem associated to Σ

can be stated as follows.

Problem 1 Find a piecewise continuous control input u(t), t ≥ 0, that minimizes the perfor-

mance index

J∞(x0,u) =
∫

∞

0
[ xT(t) uT(t) ]

[
Q S

ST R

][
x(t)

u(t)

]
dt (3)

subject to the constraint

ẋ(t) = Ax(t)+Bu(t), x(0) = x0 ∈ Rn. (4)

We consider u to be a solution of Problem 1 only if the corresponding value of the perfor-

mance index is finite.1

It is well-known that when R is positive definite, an optimal control exists (and is indeed

unique) if and only if there exists a control input for which the performance index J∞ is finite.

This is a very mild condition that admits an elegant characterization in terms of the system

matrices (see Remark 1 below). If R is only positive semidefinite, in general Problem 1 does not

admits solutions. In fact, to guarantee existence, we need to consider a relaxed problem where

the control input can contain distributions (Dirac delta distributions and its derivatives). To see

this fact, consider the simple case where n = m = 1, A = S = R = 0, Q = B = 1. In this case,

the feedback control uk(t) = −k x(t), k ≥ 0, generates the performance index J∞(x0,uk) =
x2

0
2k .

Clearly, for any given x0, J∞(x0,uk) can be made arbitrarily close to 0 by suitably choosing the

constant k to be sufficiently large. In this case 0 is not the minimum but only the infimum of the

values of the performance index as the control input u(t) varies among piecewise continuous

functions. On the other hand if we are allowed to resort to distributional control input, it is easy

1We make this remark since, if the cost is unbounded for every control, one might alternatively say that all

controls are optimal since they all lead to the same value of the performance index.
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to see that the infimum is indeed a minimum as it can be attained by taking u(t) = −x0δ (t),

with δ (t) being the Dirac delta distribution.

We shall investigate the conditions under which Problem 1 admits solutions (which are, by

definition, non-impulsive) in the general case where R is allowed to be singular. To this end a

key role will be played by the following matrix equation

X A+AT X− (S+X B)R† (ST+BTX)+Q = 0. (5)

Eq. (5) is often referred to as the generalized continuous algebraic Riccati equation GCARE(Σ),

and represents a generalization of the classic continuous algebraic Riccati equation CARE(Σ)

X A+AT X− (S+X B)R−1 (ST+BTX)+Q = 0, (6)

arising in infinite-horizon LQ problems since in the present setting R is allowed to be singular.

Eq. (5) along with the additional condition

kerR⊆ ker(S+X B), (7)

is usually referred to as constrained generalized continuous algebraic Riccati equation, and is

denoted by CGCARE(Σ). Observe that from (1) we have kerR ⊆ kerS, which implies that (7)

is equivalent to kerR⊆ ker(X B).

The following notation is used throughout the paper. We denote by G def
= Im − R†R the

orthogonal projector that projects onto kerR. Moreover, we consider a non-singular matrix

T = [ T1 | T2 ] where imT1 = imR and imT2 = imG, and we define B1
def
= BT1 and B2

def
= BT2.

Finally, to any X = XT ∈ Rn×n we associate the matrices

QX
def
= Q+ATX +X A, SX

def
= S+X B, (8)

KX
def
= R† (ST +BT X) = R† ST

X , AX
def
= A−BKX , (9)

ΠX
def
=

[
QX SX

ST
X R

]
. (10)

The CGCARE(Σ) is strictly connected to the LMI

ΠX ≥ 0. (11)

Indeed, by taking the generalized Schur complement of R in ΠX , is is easy to see that (11) is

equivalent to the constrained generalized continuous algebraic Riccati inequality CGCARI(Σ)

X A+AT X− (S+X B)R† (ST+BTX)+Q≥ 0, kerR⊆ ker(S+X B) (12)

and the symmetric solutions of CGCARE(Σ) are indeed the solutions of LMI (11) for which the

rank of ΠX is minimum.
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2 Main result

The main result of this paper is the following theorem, whose proof will be developed in several

steps in the sequel.

Theorem 1 The following statements are equivalent:

(A) For every x0 ∈ Rn, Problem 1 has a solution;

(B) There exists a symmetric and positive semidefinite solution of CGCARE(Σ);

(C) There exists a symmetric solution of CGCARE(Σ), and for each x0 ∈ Rn, there exists u0(t)

such that J∞(x0,u0) is finite;

(D) For any factorization (2), the subspaces S ? and R? of the quadruple (A,B,C,D) coincide,

and for each initial state x0 ∈ Rn, there exists u0(t) such that J∞(x0,u0) is finite.

If any of these conditions holds an optimal solution can be obtained by static state feedback and

is therefore in C∞[0,∞).

Remark 1 Existence, for each x0, of a control function u0(t) such that J∞(x0,u0) is finite is a

very natural condition. Its testability, however, is not obvious. It has been shown in [5] that

such condition is equivalent to the following neat and easily testable geometric condition:

V ?+R(A,B)+Xstab = Rn,

where V ? is the largest output-nulling subspace of the quadruple (A,B,C,D), R(A,B) is the

reachable subspace (i.e., the smallest A-invariant subspace containing the range of B), and Xstab

is the A-invariant subspace corresponding to the asymptotically stable uncontrollable eigenval-

ues of A (so that, in other words, the sum R(A,B)+Xstab is the stabilizable subspace of the

pair (A,B)).

3 Ancillary results and proof of main result

The main result of [4], which we now recall, establishes that when CGCARE(Σ) admits at

least one symmetric solution, and the performance index can be rendered finite with a certain

control function for every initial state, the corresponding LQ optimal control problem admits

impulse-free controls.

Proposition 1 Suppose CGCARE(Σ) admits symmetric solutions, and that for every x0 there

exists an input u(t) ∈ Rm, with t ≥ 0, such that J∞(x0,u) in (3) is finite. Then:
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• A solution X = XT ≥ 0 of CGCARE(Σ) is obtained as the limit of the time varying matrix

generated by integrating (forward in time) the matrix differential equation

Ẋ(t) = X(t)A+AT X(t)− (S+X(t)B)R† (ST +BTX(t))+Q (13)

with the zero initial condition X(0) = 0.

• The value of the optimal cost is xT
0 X x0.

• X is the smallest positive semidefinite solution of CGCARE(Σ).

• The set of all optimal controls minimizing the cost in (3) can be parameterized as

u(t) =−R†ST
X x(t)+Gv(t), (14)

where v(t) is an arbitrary piecewise continuous function.

It is easy to see that Proposition 1 proves that the implications (C)⇒ (B) and (C)⇒ (A) in

Theorem 1 hold true. The following Proposition shows that (B) ⇒ (C) as well. The idea of

the proof is the same of the case R > 0, but it requires some additional care in dealing with the

matrix products.

Proposition 2 If there exists a symmetric positive semidefinite solution X =XT≥ 0 of CGCARE(Σ),

then for all initial states x0 ∈ Rn, there exists u0(t) such that J∞(x0,u0) is finite.

Proof: Let u0(t) = −R† ST
X x(t), where we recall that SX = S +X B. We can write the state

equation as ẋ(t) = AX x(t), where AX = A−BR† ST
X . This obviously implies that x(t) = eAX t x0.

Consider the finite-horizon performance index: we have

JT (x0,u0)
def
=
∫ T

0
[ xT(t) uT(t) ]

[
Q S

ST R

][
x(t)

u(t)

]
dt

=
∫ T

0
xT(t)[ In −SX R† ]

[
Q S

ST R

][
In

−R† ST
X

]
x(t)dt

=
∫ T

0
xT(t)

(
Q−SX R†ST

X +SX R† BT X +X BR† ST
X

)
x(t)dt

=
∫ T

0
xT(t)

(
−X A−AT X +SX R† BT X +X BR† ST

X

)
x(t)dt

=
∫ T

0
xT

0 eAT
X t(−X AX −AT

X X
)

eAX tx0 dt

=
∫ T

0
xT

0

d
dt

(
−eAT

X tX eAX t)x0 dt

= xT
0

(
X− eAT

X T X eAX T)x0 ≤ xT
0 X x0.
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Hence, JT (x0,u0) is bounded; moreover, it is clearly a nondecreasing function of T . Thus the

limit for T going to infinity of JT (x0,u0) exists and is also bounded from above by the same

bound.

The classical papers on singular LQ optimal control [6, 13] make the strong assumption

of stabilizability of the pair (A,B), even when the problem is formulated without a stability

constraint on the state trajectory, just to the end of ensuring the convergence of the integral in

the cost function. We want to remove this conservative assumption, and only ask for the very

weak requirement that there exists a control function that renders the value of the cost function

finite. The following classical result will be of key importance to accomplish this task. For the

proof of such a result we refer the reader to [12, Lemma 10.11] (see also [12, Theorem 10.9])

where, however, it is assumed that S = 0 and R = I. It is immediate to generalize this proof

to our case, by considering a preliminary state feedback u(t) = −R−1STx(t)+R−1w(t), where

w(t) is an auxiliary input. This preliminary transformation normalizes R to the identity and

reduces S to zero.

Lemma 1 Consider a regular LQ problem, i.e., with R = RT > 0. If for every x0 ∈ Rn there

exists a control function u(t) ∈ Rm, with t ≥ 0, such that J∞(x0,u) is finite, then there exist

solutions X = XT ≥ 0 of CARE(Σ). Among such solutions there is a smallest one X and the

optimal control is given by u∗(t) =−R−1(ST +BT X)x(t).

As already observed, Proposition 1 shows that the existence of symmetric positive semidefi-

nite solutions of CGCARE(Σ) guarantees that the associated LQ optimal control problem admits

an impulse-free solution.

For the converse implication we need a preliminary lemma.

Lemma 2 Assume that for every x0 ∈ Rn, Problem 1 admits a solution. Then, there exists an

optimal control u∗ that can be written as a static state feedback

u∗(t) =−K x(t). (15)

Proof: To show this result we invoke [13, Theorem 2]. There are, however, two delicate issues.

First, [13, Theorem 2] was proved under the assumption of stabilizability of the pair (A,B).

We observe, however, that this assumption was only introduced to the end of exploiting [13,

Proposition 10], dealing with the regular case, as taken from [6, Theorem 6.1]. Lemma 1 above

generalizes [13, Proposition 10] by just requiring the weaker assumption that the performance

index J∞(x0,u) can be rendered finite from any initial condition x0 with a suitable control func-

tion u(t), in place of the stabilizability of the pair (A,B). Therefore, the proof of [13, Theorem

2] can be carried out verbatim with just the assumption of the existence of a control that renders

J∞(x0,u) finite for any x0 ∈Rn. The second delicate point (that we initially missed and that was
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pointed out to us by an anonymous reviewer) is that [13, Theorem 2] only provides an optimal

solution that can be written as the sum of a part generated by static state feedback and an impul-

sive part and this does not rule out the possibility that the only optimal regular solutions are not

of the form of static state feedback. To overcome this difficulty, we need to enter in the proof of

[13, Theorem 2]. The key idea of that proof is to consider a part of the state — x5 in the notation

of [13] — to be unconstrained (so that it can be considered as an auxiliary control input). With

this relaxation the problem becomes regular so that a unique optimal solution exists. Therefore,

equations (9) and (10) in [13], need to be satisfied by any optimal solution. If an optimal control

exists that does not contain impulses, equation (10) of [13] implies that x5 cannot be present.

Therefore, it becomes apparent that equation (9) of [13] together with u′∗2 = 0 is an optimal

solution in the form of state feedback.

Proposition 3 Assume that for every x0 ∈Rn, Problem 1 admits a solution. Then, CGCARE(Σ)

admits a symmetric positive semidefinite solution.

Proof: In view of Lemma 2, we can assume that an optimal control of the form (15) exists.

We re-write (3) as

J∞(x0,u) =
∫

∞

0
yT(t)y(t)dt, (16)

where y(t) =C x(t)+Du(t) can be considered as a fictitious output function obtained by factor-

izing the Popov Π matrix as in (2). The closed-loop system that corresponds to the application

of the optimal control (15) is {
ẋ(t) = (A−BK)x(t)

y(t) = (C−DK)x(t)
(17)

Let AK
def
= A−BK and CK

def
=C−DK. The optimal state is x(t) = eAK t x0, and the corresponding

output is y(t) =CK eAK t x0. Thus, the optimal cost is given by

J∞(x0,u∗) = xT
0

[∫
∞

0
eAT

K t CT
K CK eAK t dt

]
x0.

Let r be the rank of R. Consider a basis of the input space such that D = [ D1 0 ] and B =

[ B1 B2 ], where D1 is of full column-rank r. In this basis, we have R =
[

R1 0
0 0

]
and S =

[ S1 0 ], where R1 ∈ Rr×r is invertible and S1 has r columns. Let us now consider x0 ∈ imB2.

Using a control u◦ =
[

0r

u◦2

]
such that u◦2(t) is allowed to contain impulses (i.e., Dirac deltas and

its derivatives in the distributional sense), the state can be instantaneously driven to the origin,

i.e., x(0+) = 0, and J∞(x0,u∗) = 0 because in this basis the second block of components of the

control law are not weighted in the performance index. Thus, imB2 ⊆ ker(CK eAK t), so that

CK eAK t B2 = 0 ∀ t ≥ 0, (18)
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which means that the transfer function CK (s In − AK)
−1 B2 is zero. Let x0 ∈ Rn, and u∗ be

a corresponding optimal control. Let u∗ be partitioned as u∗(t) =
[u∗1(t)

u∗2(t)

]
, conformably with

the decomposition of the input space. Then, given any δ u2(t), we can define the new input

ũ∗(t) def
=
[ u∗1(t)

u∗2(t)+δ u2(t)

]
. Thus, (18) guarantees that yx0,u∗(t) = yx0,ũ∗(t), where yx0,u∗(t) is the

output that corresponds to x0 and u∗ while yx0,ũ∗(t) is the one that corresponds to x0 and ũ∗,

this in turn implies that J? def
= J(x0,u∗) = J(x0, ũ∗). Hence, the (regular) LQ problem for the

quadruple (A,B1,C,D1), i.e., the one consisting of the minimization of the performance index

Ĵ(x0,u1)
def
=
∫

∞

0

[
xT(t) uT

1(t)
][ Q S1

ST
1 R1

][
x(t)

u1(t)

]
dt

subject to the constraint ẋ(t) =Ax(t)+B1 u1(t) and x(0) = x0, admits solutions for all x0, and the

corresponding optimal cost coincides with the optimal cost of the original LQ problem, which

is Ĵ(x0,u∗1) = J?. On the other hand, as already observed, since R1 = DT
1D1 is positive definite,

this LQ problem for the quadruple (A,B1,C,D1) is regular. The fact that it admits solutions for

all x0 implies that the corresponding algebraic Riccati equation

X A+AT X− (CTD1 +X B1)(DT
1D1)

−1(DT
1C+BT

1X)+CTC = 0 (19)

admits a solution X = XT ≥ 0, and J? = xT
0 X x0. Thus,

X =
∫

∞

0
eAT

K t CT
KCK eAK t dt. (20)

We can re-write (19) in the form

X A+AT X− [ CTD1 +X B1 X B2 ]

[
DT

1D1 0

0 0

][
DT

1C+BT
1X

BT
2X

]
+CTC = 0,

which is exactly the original GCARE(Σ)

X A+AT X− (CTD+X B)(DTD)†(DTC+BTX)+CTC = 0.

Thus, X =XT≥ 0 is a solution of GCARE(Σ). Moreover, from (18) we have imB2⊆ ker(CK eAK t)

for all t ≥ 0, which, together with (20), yields imB2 ⊆ kerX . It is easy to see that this means

that kerR⊆ ker(S+X B). Indeed, in the chosen basis this subspace inclusion reads as

im

[
0

I

]
= ker

[
DT

1 D1 0

0 0

]
⊆ ker[ C D1 +X B1 X B2 ]

= ker[ C D1 +X B1 0 ],

which is certainly satisfied. Thus, X is also a symmetric and positive semidefinite solution of

CGCARE(Σ).
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Notice that the previous Proposition proves the implication (A)⇒ (B) of Theorem 1. As a

byproduct, in the so-called cheap case, i.e. when R = 0, we have the following

Corollary 1 Let R = 0. If Problem 1 admits a solution for any initial condition x0 then the

optimal cost is zero: J?(x0) = 0 for each x0 ∈ Rn.

3.1 Geometric conditions

So far, we have proved that the statements (A), (B) and (C) in Theorem 1 are equivalent. In this

section, we focus our attention on condition (D) of the same theorem, and we show that it is

also equivalent to the other three conditions.

Consider the quadruple (A,B,C,D), where C and D are matrices of suitable sizes such that

(2) holds.

Proposition 4 Let CGCARE(Σ) admit a solution X = XT. Then, S ? = R?.

Proof: Let X = XT be a solution of CGCARE(Σ). Observe also that CGCARE(Σ) can be

re-written as {
X A0 +AT

0 X−X BR† BT X +Q0 = 0

kerR⊆ ker(X B)
(21)

where A0
def
= A−BR†ST and Q0

def
= Q−SR†ST. Recall that G = Im−R†R, so that B2 = BG, and

(21) becomes {
X A0 +AT

0 X−X BR† BT X +Q0 = 0

X BG = 0
(22)

It is easy to see that kerX ⊆ kerQ0. Indeed, by multiplying the first of (22) on the left by ξ T and

on the right by ξ , where ξ ∈ kerX , we get ξ T Q0 ξ = 0. However, Q0 is positive semidefinite,

being the generalized Schur complement of Q in Π. Hence, Q0 ξ = 0, which implies kerX ⊆
kerQ0. Since X BG = 0, we get also Q0 BG = 0. By post-multiplying the first of (22) by a

vector ξ ∈ kerX we find X A0 ξ = 0, which says that kerX is A0-invariant. This means that kerX

is an A0-invariant subspace containing the image of BG. Then, the reachable subspace of the

pair (A0,BG), denoted by R(A0,BG), which is the smallest A0-invariant subspace containing

the image of BG, is contained in kerX , i.e., R(A0,BG) ⊆ kerX . Therefore also R(A0,BG) ⊆
kerQ0. Notice that Q0 can be written as CT

0 C0, where C0
def
=C−DR†ST. Indeed,

CT
0 C0 = CTC−CTDR†ST−SR†DT C+SR†DTDR†ST

= Q−SR†S−SR†ST +SR†ST = Q0.

Consider the two quadruples (A,B,C,D) and (A0,B,C0,D). We observe that the second is ob-

tained directly from the first by applying the feedback input u(t) =−R†Sx(t)+v(t). We denote
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by V ?, R? the largest output-nulling and reachability subspace of (A,B,C,D), and by S ?

the smallest input-containing subspace of (A,B,C,D). Likewise, we denote by V ?
0 , R?

0 , S ?
0

the same subspaces relative to the quadruple (A0,B,C0,D). Thus, V ? = V ?
0 , R? = R?

0 , and

S ? = S ?
0 . The first two identities are obvious, since output-nulling subspaces can be made in-

variant under state-feedback transformations and reachability is invariant under the same trans-

formation. The third follows from [12, Theorem 8.17]. There holds R? = R(A0,BG). Indeed,

consider a state x1 ∈ R(A0,BG). There exists a control function u driving the state from the

origin to x1, and we show that this control keeps the output at zero. Since im(BG) = B kerD,

such control can be chosen to satisfy Du(t) = 0 for all t ≥ 0. Moreover, as we have already

seen, from Q0 =CT
0 C0 and R(A,BG) = R(A0,BG) we have C0 R(A0,BG) = 0 since R(A,BG)

lies in kerQ0. Therefore, the output is identically zero. This implies that R(A0,BG) ⊆ R?.

However, the reachability subspace of (A0,B,C0,D) cannot be greater than R(A0,BG), since

DTC0 = DT(Im−D(DTD)†DT)C = 0. Therefore, such control must necessarily render the output

non-zero. The same argument can be used to prove that S ? = R(A0,BG), where distributions

can also be used in the allowed control, since R(A,BG) represents also the set of states that are

reachable from the origin using distributions in the control law [12, p. 183]. Hence, S ? = R?.

Remark 2 Proposition 4 proves a stronger result than the implication of (C)⇒ (D) in Theorem

1. On the other hand, it is easy to see that the converse of Proposition 4 does not hold in general.

Indeed, consider an LQ problem where A =
[

0 0
0 1

]
, B =

[
0
1

]
, Q =

[
1 0
0 0

]
, and S = R = 0, so

that C = [ 1 0 ] and D = 0. In this case, it is found that V ? = S ? = R? = span
{[

0
1

]}
.

Moreover, the CGCARE(Σ) reduces to the Lyapunov equation X A+AT X +Q = 0. Partitioning

X as X =
[ x1 x2

x2 x3

]
, the Lyapunov equation becomes

[
1 x2
x2 2x3

]
= 0, which clearly does not admit

solutions. However, in this example the state dynamics are ẋ1(t) = 0 and ẋ2(t) = x2(t)+ u(t)

and the performance index is J∞(x0,u) =
∫

∞

0 x2
1(t)dt, which is not finite if x1(0) 6= 0.

The following result shows that (D)⇒ (A), completing the proof of Theorem 1.

Proposition 5 Let S ?=R?, and assume that for every initial condition x0 there exists a control

u such that J∞(x0,u) is finite. Then, there exists a non-impulsive optimal control.

Proof: Let S ? =R?. Consider the decomposition in [13, p. 328]. If S ? =R?, the fourth and
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the fifth block components of the state disappear, and the system dynamics reduce to
ẋ1(t)

ẋ2(t)

ẋ3(t)

 =


A11 0 0

A21 A22 0

0 A32 A33




x1(t)

x2(t)

x3(t)

+


B11

B12

B13

u′1(t)+


0

0

B23

u′2(t)

y1(t) = u′1(t)

y2(t) = [ C21 0 0 ]

 x1(t)
x2(t)
x3(t)

 .
In view of [13, Theorem 2], the only part of the state where there may be distributions in the

optimal control is the third. On the other hand, the third block of coordinates of this basis span

R?. This implies that x3 is arbitrary, in the sense that it is not penalized in the performance

index. Thus, an optimal control such that there are distributions in x3 continues to be optimal

even when such distributions are removed. Therefore, the optimal control can be rendered

regular.

Remark 3 For a more intuitive understanding of Condition (D), we observe that under this con-

dition the linear system described by the quadruple (A,B,C,D) does not have zeros at infinity.

To see this fact, we refer to [1, Theorem 4] where the orders of the zeros at infinity are shown

to be related to the spaces S i ⊆S ?, i = 1,2, . . . (that form an increasing sequence converging

to S ? in a finite number of steps). Under condition (D), S i ⊆ S ? = R? ⊆ V ?, so that an

immediate consequence of [1, Theorem 4] is that the linear system described by the quadruple

(A,B,C,D) does not have zeros at infinity.

4 Concluding remarks

In this paper, a full picture has been drawn illustrating the relationship that exists between the

solvability of the so-called constrained generalized Riccati equation and the existence of non-

impulsive optimal controls of the associated infinite-horizon LQ problem. This link has been

examined both from an algebraic and a geometric angle. Now that this relationship has been

clarified and explained, an important direction of future research aims at obtaining a full char-

acterization of the set of solutions of the CGCARE that parallels the discrete time counterpart

in [2, 3].
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