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ABSTRACT 

The Southern Granulite Terrane in southern India preserves evidence for regional-scale high 

to ultrahigh temperature metamorphism related to the amalgamation of the supercontinent 

Gondwana. Here we present accessory mineral (zircon and monazite) geochronological and 

geochemical datasets linked to the petrological evolution of the rocks as determined by phase 

equilibria modelling. The results constrain the duration of high to ultrahigh temperature 

(>900 °C ) metamorphism in the Madurai Block to be c. 40 Ma with peak conditions achieved 

c. 60 Ma after the formation of an orogenic plateau related to the collision of the 

microcontinent Azania with East Africa at c. 610 Ma. A 1D numerical model demonstrates that 

the attainment of temperatures >900 °C requires that the crust be moderately enriched in 

heat producing elements and that the duration of the orogenic event is sufficiently long to 

allow conductive heating through radioactive decay. Both of these conditions are met by the 

available data for the Madurai Block. Our results constrain the length of time it takes for the 

crust to evolve from collision to peak P–T (i.e. the prograde heating phase) then back to the 

solidus during retrogression. This evolution illustrates that not all metamorphic ages date 

sutures. 

 

Keywords: Phase equilibria modelling; U–Pb geochronology;  High temperature 

metamorphism; Gondwana supercontinent; southern India. 
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1. Introduction 

The Southern Granulite Terrane (SGT) in peninsular India is characterised by the occurrence 

of high to ultrahigh temperature (>900 °C) metamorphic assemblages over a length scale of 

~500 km, in which elevated temperatures persisted for up to 100 Ma (Cawood and Buchan, 

2007; Collins et al., 2014; Collins et al., 2008; Santosh et al., 2006; Santosh et al., 2003). The 

lack of any geological input of heat from mantle-derived magmas requires an alternative heat 

source that was long-lived.  

There are currently two competing hypotheses to account for the source of heat 

needed to generate UHT metamorphic conditions on a regional scale. Brown (2007) has 

suggested that UHT metamorphism may record closure and thickening of continental back arc 

basins, which are characterised by regions of thinned lithosphere.  In this scenario, the 

extreme metamorphic temperatures are due to high mantle heat flow prior to orogenesis, 

which are enhanced by thickening of the hot crustal column during orogenesis. The most 

likely tectonic setting for inversion of a back-arc basin is continental accretion and collision at 

a magmatic arc, which is consistent with the observation that UHT metamorphism is 

generated during periods of continental assembly (Brown, 2007; Clark et al., 2014).  Another 

plausible, but less well understood, mechanism suggests that the crust can be heated to UHT 

conditions by the radioactive decay of heat producing elements (HPE) (Chamberlain and 

Sonder, 1990; Clark et al., 2011; Goffe et al., 2003; Huerta et al., 1998; McKenzie and Priestley, 

2008). In this scenario, high temperatures are the result of heat generated within the 

thickened crustal column during collisional orogenesis. The numerical models of McKenzie 

and Priestley (2008) suggest that the attainment of UHT conditions requires crust with higher 

than average concentrations of HPE(>2 µW-3) (Vila et al., 2010) that is subsequently 

thickened (a thickening factor of three times in their model) during orogenesis and requires 
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an incubation time on the order of 60 My (their figure 8).  A current natural example of this 

scenario might be the Himalayan collision system, in which metamorphosed crustal xenoliths 

sourced from the deep crust of the Tibetan Plateau underwent UHT metamorphism at mid 

crustal depths (Hacker et al., 2000). The metamorphism associated with large scale collisional 

systems has previously been investigated through the application of 2D numerical models 

(Beaumont et al., 2010; Beaumont et al., 2001; Beaumont et al., 2004; Faccenda et al., 2008b; 

Gerya and Meilick, 2011; Jamieson and Beaumont, 2011; Jamieson et al., 2010; Lexa et al., 

2011). The results of these studies suggest that elevated temperatures can be achieved in the 

orogenic core, where crustal material remains buried for extended periods of time.  

The aim of this paper is to investigate the heat source required by the occurrence of 

regional-scale high temperature metamorphism in the Southern Granulite Terrane through 

the application of in situ microprobe dating techniques and a better understanding of the links 

between accessory mineral growth and the evolution of the major silicate mineral 

assemblages (Buick et al., 2010; Clark et al., 2009a; Degeling et al., 2001; Fraser et al., 1997; 

Kelly and Harley, 2005; Kelsey et al., 2008; Kelsey et al., 2007; Korhonen et al., 2013; 

Korhonen et al., 2011; Yakymchuk and Brown, 2014). We constrain the duration of UHT 

metamorphism in the Southern Granulite Terrane through the application of U-Pb 

geochronometers (monazite and zircon) coupled with the pressure-temperature evolution as 

constrained using phase equilibria modelling, and propose a viable scenario for heating crust 

to high or ultra-high temperatures on an orogenic scale. 

 

2. Geological setting 

The Southern Granulite Terrane, together with central and eastern Madagascar and Sri Lanka, 

is considered to form part of the microcontinent of Azania, a terrane that was located between 
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East Africa (the Congo Craton) and Greater India (the Dharwar Craton) during the 

amalgamation of Gondwana (Fig 1a-d; Collins and Pisarevsky, 2005). The collision of Azania 

with East Africa was preceded by the docking of a juvenile intra-oceanic arc, comprised of the 

Vohibory succession (Collins et al., 2012; Emmel et al., 2008; Jöns and Schenk, 2008) in 

Madagascar and the Eastern Granulites in Tanzania (Möller et al., 1998), with the Tanzania 

Craton (part of the Congo Craton). Although it is difficult to constrain precisely the timing of 

this collision, the rocks of the Eastern Granulites and western Madagascar contain 9-12 kbar 

metamorphic rocks that have ages that range from 655 – 610 Ma (Jöns and Schenk, 2008; 

Möller et al., 2000) (Fig. 2a, b). The collision, recording the closure of the backarc basin that 

separates the juvenile rocks of the Vohibory succession (Collins et al., 2012; Emmel et al., 

2008) from Azania, followed shortly afterwards at c. 620 Ma, and was accompanied by the 

intrusion of syn-tectonic stratiform granitoids (de Wit et al., 2001; Meert et al., 2003; Nedelec 

et al., 1995).  Collision of Azania with East Africa resulted in the development of a large 

orogenic plateau composed of thickened Proterozoic crust (Fig. 2c; Collins et al., 2014; 

Santosh et al., 2009), within which the rocks of central and eastern Madagascar and the 

Trivandrum and Madurai Blocks in India underwent a protracted history of high to ultrahigh 

temperature metamorphism (Fig. 3) with ages of metamorphism ranging between 580 and 

510 Ma (Cawood and Buchan, 2007; Collins et al., 2008; Collins et al., 2007b). 

The final collision in this part of Gondwana is thought, by some, to record the 

amalgamation of Greater India with East Africa at 530 Ma along what is now called the 

Palghat Cauvery Shear System (PCSS; Fig. 2d; Clark et al., 2009b; Collins et al., 2007a; Santosh 

et al., 2009). This suture zone has been traced into Madagascar along the Betsimsaraka Suture 

zone (Collins, 2006; Collins et al., 2007a; Collins et al., 2003). In the PCSS this area is 

comprised of reworked Proterozoic crust (Clark et al., 2009a; Collins et al., 2007b), 

Neoproterozoic oceanic crust (Santosh et al., 2010; Santosh et al., 2012; Yellappa et al., 2010) 
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and high-pressure and ultrahigh temperature metamorphic rocks (Clark et al., 2009a; Collins 

et al., 2007a; Kelsey et al., 2006; Nishimiya et al., 2010; Sajeev et al., 2009; Shimpo et al., 

2006). Metamorphism and deformation in the PCSS post-date the metamorphic peak 

experienced by the rocks further to the south that formed part of the Azania microcontinent. 

However, the nature of this suture zone is debated, and recent papers by Tucker et al (2011a; 

2011b; 2014) and Boger et al. (2014), focusing mainly on the Madagascan extension of the 

suture, consider it to be a zone of intracontinental reworking of Palaeoproterozoic rocks that 

make up the southern margin of Greater India.  

 

2.1 Madurai Block  

The central and southern Madurai Block, lying to the south of the PCSS (Fig. 1c, d), is 

dominated by charnockite massifs with Sm-Nd and Rb-Sr whole rock model ages in the range 

1340-3170 Ma(Bartlett et al., 1998; Bhaskar Rao et al., 2003; Brandt et al., 2014; Plavsa et al., 

2012; Plavsa et al., 2014). The charnockites are well exposed in the Kodiakanal massif where 

they structurally underlie metasedimentary gneisses that dominate exposed rocks to the 

south and east. The metasedimentary units, which are the focus of this study, contain detrital 

zircons with U-Pb age spectra that constrain the deposition of their protoliths to after ~1700 

Ma (Collins et al., 2007b) and, for some rocks, possibly as late as the mid-Neoproterozoic 

(Collins et al., 2007b). Ray et al. (2003; 2008) have documented the volumetric heat 

production from a range of lithologies within the SGT, obtaining values that range from 1.8-

5.5 µWm-3 for the igneous and metasedimentary lithologies that comprise the bulk of the 

currently exposed SGT. The dominant lithologies in the southern part of the SGT are 

migmatitic metapelitic gneisses (khondalites and leptynites), which have average heat 
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production values > 3 µWm-3; the igneous rocks (charnockites and granites) have lower heat 

production values typically between 1.5  and 2.5 µWm-3.  

The metamorphic evolution of metasedimentary lithologies from the Madurai Block 

have been the focus of a number of studies, due largely to the reported occurrence of 

diagnostic ultrahigh temperature metamorphic assemblages from a number of localities 

(Braun et al., 2007; Brown and Raith, 1996; Mohan and Windley, 1993; Raith et al., 1997; 

Sajeev et al., 2001, 2004; Sajeev et al., 2006; Tateishi et al., 2004). The peak metamorphic 

conditions inferred for the UHT rocks in the SGT are in the range 7-13 kbar and 900-1150 °C, 

and the rocks are considered to have followed a clockwise P–T evolution typical of collisional 

orogenesis (Fig. 3; Brandt et al., 2011; Braun et al., 2007; Brown and Raith, 1996; Mohan and 

Windley, 1993; Raith et al., 1997; Sajeev et al., 2001, 2004; Sajeev et al., 2006; Santosh and 

Kusky, 2010; Tateishi et al., 2004; Tsunogae and Santosh, 2010a, b).  The age of 

metamorphism has been constrained using a number of techniques, with electron microprobe 

(EPMA) monazite, SIMS U-Pb monazite, U-Pb zircon and Sm-Nd garnet-whole rock analyses 

yielding ages between 600-480 Ma (Bartlett et al., 1998; Braun et al., 2007; Jayananda et al., 

1995; Santosh et al., 2006).  

 

3. Sample description and petrology 

In order to constrain the conditions and duration of metamorphism in the Madurai Block two 

metasedimentary gneisses from different locations (Fig 1d) were collected for detailed 

analysis. Both samples are diatexitic migmatites in which the proportion of leucosome to 

melanosome varies widely.  
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Sample I06-62 – Usilampatti (77˚ 49’ 34” E 9˚ 56’ 25” N) 

Rock exposures near the village of Usilampatti are garnet-bearing migmatites containing 

discontinuous foliation-parallel leucosomes (Fig. 4a, b). Residual portions (melanosome), 

which may occur as discrete discontinuous layers, contain conspicuous garnet, sillimanite, 

cordierite, biotite, spinel and opaque minerals (Fig. 4a). Leucosomes are dominated by quartz, 

plagioclase and K-feldspar and may contain coarse-grained garnet (Fig 4b). The leucosomes 

are folded and a strong foliation is present within both the leucosome and melanosome that 

wraps garnet porphyroblasts (Fig 4a, b). A strongly residual sample of aluminous metapelite 

(I06-62) was selected for detailed study.  

In thin section, sample I06-62 is compositionally and texturally heterogeneous, 

comprising irregular patches and veins of coarse-grained quartzofeldpathic leucosome 

(individual grains up to 10 mm across) and (generally) finer-grained melanosome rich in 

ferromagnesian minerals and sillimanite. Garnet forms highly resorbed anhedral 

porphyroblasts up to 20 mm across (Fig. 4d). Inclusions of quartz, biotite and sillimanite are 

generally concentrated in the cores of porphyroblasts and, in the case of biotite and 

sillimanite, commonly show a strong preferred orientation (Fig. 4f). Matrix sillimanite occurs 

as prismatic grains up to 2 mm in length that generally occur in clusters. Dark green spinel 

and magnetite occur together as widely distributed, irregular cuspate grains up to a few 

millimetres across. Within these composite grains magnetite is volumetrically more abundant 

than spinel.  

Cordierite, which may be intergrown with finer-grained magnetite–spinel, surrounds 

and separates garnet and sillimanite, which are rarely found in contact (Fig. 4e), and isolates 

these phases from large grains of spinel/magnetite. In many cases patches rich in cordierite 

that are several millimetres across contain only small fragments of relict garnet in their cores 
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(Fig. 4e). In addition to its occurrence as inclusions (Fig. 4f), biotite also occurs as randomly 

oriented larger grains (up to 2 mm across) and grain aggregates replacing garnet and 

ilmenite, and rarely at the margins of quartz-rich leucosomes where they are in contact with 

residual portions of the rock.  

These petrographic observations are interpreted to record growth of garnet with 

biotite and sillimanite along the prograde path, with complete consumption of biotite prior to 

attainment of peak conditions. Cordierite with or without magnetite/spinel, which replace 

garnet, are interpreted as having grown during the high T retrograde segment of the P–T path, 

with late biotite probably recording reaction with small quantities of trapped melt as the 

rocks cooled to an elevated solidus. Microstructural relationships similar to those described 

above have previously been described from the Madurai Block by a number of workers, who 

estimate peak metamorphic temperatures of >950°C at pressures greater than 0.6 GPa 

temperatures (Fig. 3; Braun et al., 2007; Brown and Raith, 1996; Mohan and Windley, 1993; 

Raith et al., 1997; Sajeev et al., 2001, 2004; Sajeev et al., 2006; Santosh and Kusky, 2010; 

Tateishi et al., 2004; Tsunogae and Santosh, 2010a, b). 

Zircon and monazite are abundant in sample I06-62. Zircon grains are up to 150 μm in 

length and occur in a number of textural positions including: (1) within the cordierite corona 

that surrounds the garnet (Fig. 5a); (2) within late biotite (Fig. 5b); and, (3) growing on the 

edge of ilmenite grains (Fig. 5b). All these positions are suggestive of zircon growth during the 

high-temperature retrograde evolution of the rock.  Cathodoluminesence (CL) images of 

zircons from this sample (Fig. 5a) display a variety of textures with the cores having a low CL 

response and typically elongate morphologies. In most cases the cores display oscillatory 

zoning or simple, broad zonation (Fig. 5c, d, k). Moderate CL response material forms rims on 

the oscillatory zone cores (Fig. 5c, d, e, k) or whole grains (Fig. 5f, g, i). 
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Monazite in sample I06-62 occurs as inclusions within garnet or growing in apparent 

textural equilibrium with ilmenite and is inferred to have grown on the prograde to peak 

portion of the P–T path (Fig. 6a). Yttrium electron probe maps of monazite from this sample 

(Fig. 6b-g) show very complicated internal zonation patterns. A generation of high Y monazite 

is observed within a number of grains and appears texturally early. These are referred to as 

the cores, but are not always in the central portion of the grains (Fig. 6b, e). A variety of 

lobate/embayment textures, hereby referred to as rims, with a lower Y response are present 

throughout all grains with low-Y material also forming complete grains. A single monazite 

grain with a very high Y response that truncates the lower Y monazite was also observed (Fig. 

6g). 

 

I06-79 - Kodaikanal (77˚ 38’ 03” E 10˚ 13’ 30” N)  

Exposures alongside the Ganguvarpatti to Kodaikanal road consist of interlayered 

porphyroblastic garnet-biotite gneisses and garnet-cordierite-sillimanite gneisses containing 

irregular patches and veins of leucosome (Fig. 7a, b). A sample (I06-79) of residual garnet-

biotite gneiss was selected for detailed study.  

Garnet porphyroblasts are up to 10 mm across and have irregular corroded margins 

around which garnet is variably replaced by granular aggregates of cordierite (Fig 7c, d). 

Garnet contains inclusions of quartz, biotite, prismatic sillimanite and rare grains of opaque 

minerals, inherited/detrital zircon and monazite. Sillimanite and biotite inclusions may show 

a preferred orientation (Fig. 7d). Biotite occurs as ragged grains up to 5 mm in length that are 

distributed more or less evenly throughout the sample and show a weak preferred 

orientation. Ilmenite and magnetite occur as skeletal grains up to 4 mm across that are 

commonly associated with biotite. Rare composite grains comprise magnetite with 
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subordinate green spinel. The matrix comprises plagioclase and K-feldspar that form grains 

1–4 mm in diameter with lobate-cuspate grain boundaries, along with rare smaller rounded 

grains of quartz. 

Inclusions in garnet show that the high T segment of the prograde path was within the 

stability field of sillimanite, but the absence of matrix sillimanite suggests this phase was 

consumed at the metamorphic peak. The peak assemblage in this sample is interpreted to be 

garnet, biotite, plagioclase, K-feldspar, quartz and ilmenite/magnetite, although some or much 

of the biotite may be of retrograde origin. Cordierite replacing garnet is interpreted to have 

grown during high temperature retrogression. Biotite is also observed to be partial replacing 

cordierite in places (Fig. 7c, d). 

 Zircon in this sample has a variety of morphologies and sizes up to 200 μm in the 

longest dimension. The majority of grains have a low CL core that displays oscillatory zoning 

(Fig. 8a, b). In most cases the core material has high CL response rims that slightly truncate 

the original zoning (Fig. 8b). A number of equant grains are composed entirely of high CL 

response material (Fig. 8 c, d) 

Monazite is intergrown with ilmenite (Fig. 9a) or as inclusions in garnet (Fig. 9b), 

suggestive of growth during the prograde–peak segment of the P–T evolution of the rock. The 

Y element maps of monazite show a very patchy and convoluted zoning pattern that does not 

seem to correlate in any obvious way with core–rim structure (Fig 9c, d). 

 

4. Metamorphic evolution 

Quantitative constraints on peak pressure-temperature conditions and on the near-peak 

metamorphic evolution use phase equilibria calculations based on the compositions of 

samples I06-62 (Usilampatti) and I06-79 (Kodaikanal) as determined by XRF analysis. The 
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former is a residual aluminous metapelite that lacks extensive hydrous retrograde reaction; 

the latter contains abundant retrograde biotite, suggesting either subsolidus fluid infiltration 

or retention of a high proportion of the produced melt. Calculations are in the Na2O–CaO–

K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (NCKFMASHTO) model system and use the end-

member thermodynamic data of Holland & Powell (2011; specifically the updated ds62 

dataset generated on 06/02/14) and a–X models detailed in White et al. (2014).  

 The pseudosection for sample I06-62 has an elevated solidus (>800 °C), reflecting the 

residual (melt-depleted) nature of the rock, which shows a step to higher T (>900 °C) at 

around 0.55–0.6 GPa (Fig. 10). Within this sample, the abundance of sillimanite inclusions in 

the cores of garnet and the absence of any evidence for the former presence of kyanite suggest 

the prograde field passed through the sillimanite stability field. As the composition used to 

construct the pseudosection is residual, the diagram cannot be used with confidence to place 

further quantitative constraints on the prograde evolution. Sample I06-62 contains the 

inferred peak metamorphic assemblage garnet, sillimanite, ilmenite, spinel/magnetite, K-

feldspar, quartz and melt. The appropriate fields for this assemblage in the model system are 

shown (cross ornament) on Fig. 10, and contain the spinel–magnetite solvus. At temperatures 

below 1000 °C, this constrains peak conditions to pressures of around 0.6–0.8 GPa and 

temperatures >850 °C, and predicts retained melt fractions of 3–10 mol.% (≈ vol.%), 

depending on temperature. Cordierite and most of the finer-grained spinel–magnetite in 

sample I06-62 are interpreted to record partial retrograde replacement of garnet and 

sillimanite at high temperatures while the rocks were still melt bearing. These observations 

and interpretations suggest the high temperature retrograde segment of the P–T path passed 

into the lower variance cordierite-bearing fields (dotted ornament on Fig. 10), thereafter 
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crossing the solidus, consistent with decompression of around 0.2 GPa from the metamorphic 

peak. A high T segment of a P–T path consistent with the observations is shown on Fig. 10. 

 The pseudosection for sample I06-79 (Fig. 11a) contains a narrow field for coexisting 

melt and volatile H2O (‘wet’ solidus), suggesting that the LOI-based H2O content used in this 

bulk composition is too high. To assess the impact of the water content of the peak field we 

have constructed a T–MH2O diagram at 0.8 GPa. This diagram demonstrates that there is a 

negligible effect (<5 °C) on the stability of the lower and upper boundaries of the field as H2O 

content is reduced. The interpreted peak assemblage of garnet, biotite, K-feldspar, plagioclase, 

quartz, ilmenite and melt with or without magnetite occupies a field in P–T space consistent 

with peak temperatures of 820–860 °C and pressures of 0.6–1.0 GPa (Fig. 11). For the 

modelled bulk composition, orthopyroxene is predicted to be stable at pressures below 0.7 

GPa and at higher T. Retrograde cordierite is predicted to grow with a small amount of cooling 

and decompression from the inferred peak (Fig. 11). A high T segment of a P–T path, 

consistent with the observations is shown on Fig. 11, which is similar to that inferred for 

sample I06–62, albeit at slightly lower temperatures. 

 

5. SHRIMP monazite and zircon geochronology 

In order to link the evolution of the silicate mineral assemblage with growth of both monazite 

and zircon, the geochronological analyses were undertaken in situ within thin section and 

grain separates mounted in epoxy using the Sensitive High Resolution Ion Microprobe 

(SHRIMP) at Curtin University (see Supplementary details for the analytical methods). 

Complete data tables for zircon and monazite U-Pb analyses can be found in Supplementary 

Data Tables S.1 and S.2. 
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5.1 Sample I06-62 

A total of 15 zircon U-Pb analyses were performed on sample I06-62, including both cores and 

rims as identified by CL imaging (Fig. 5). Bright CL cores gave predominantly discordant 

results (only 1 point shows <10% discordance), with the oldest concordant 206Pb/238U spot 

age being 701 ± 11 Ma (Fig. 12a). Analysis of the 12 zircon rims from this sample define a 

distinct group with a weighted mean 206Pb/238U age of 518± 4 Ma (Fig. 13b) and an MSWD of 

0.95. A single analysis of one zircon rim (Fig 5h, z7.1) returned a 206Pb/238U age of 585 ± 8 Ma, 

well outside the analytical uncertainty of the other rim analyses. 

Twenty-six U-Pb analyses of monazite from this sample covered a large variety of the 

textures revealed by Y-element mapping (Fig. 6b-g). In general, the high-Y cores gave the 

oldest 206Pb/238U spot ages that range from 767 ± 12 Ma to 654 ± 10 Ma and do not form a 

single coherent population. The low-Y monazite shows a younger range with 206Pb/238U spot 

ages from 568 ± 11 Ma to 538 ± 9 Ma with a weighted mean 206Pb/238U age of 559 ± 4 Ma (Fig 

13a; n=20, MSWD 0.90). A single analysis from the highest Y monazite (spot m16.1) returned 

the youngest 206Pb/238U spot age of 508 ± 8 Ma.  

 

5.2 Sample I06-79 

A total of 44 zircon U-Pb analyses were performed on sample I06-79, including both cores and 

rims as identified by CL (Fig. 8a-d). Low response CL cores gave predominantly discordant 

results but did yield a number of concordant 207Pb/206Pb spot ages of 2640 ± 19 Ma, 2495 ± 6 

Ma, 2388 ± 7 Ma, 2343 ± 6 Ma, 2249 ± 7 Ma, 2096 ± 10 Ma, 1946  ± 12 Ma, 1784 ± 6 Ma with 

five 206Pb/238U spot ages between 796 and 686 Ma (Fig. 12b). The remaining fifteen high-CL 
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response zircon rims and whole grains give a 206Pb/238U weighted mean age of 512 ± 4 Ma 

(Fig. 13d) with an MSWD of 2.2. 

Twenty-two U-Pb analyses from two monazite grains in this sample were undertaken 

(Fig. 9b). The convoluted nature of the zoning patterns means that there has been no attempt 

to relate individual chemical zones to specific ages. Spot ages range from 596 ± 18 Ma to 516 ± 

15 Ma with a weighted mean age of 550 ± 7 Ma (Fig. 13c; n=22, MSWD 2.2).  

 

6. LA-ICPMS geochemistry 

Complete data tables for zircon, monazite and garnet trace element analyses can be found in 

Supplementary Data Tables S.3-S.5. 

6.1 Sample I06-62 

Zircon 

REE analyses of zircon from sample I06-62 show three distinct patterns that can be related to 

textural setting (Fig. 14a). Zircon rims in the cordierite corona show flat REE trends on a 

chondrite-normalised plot. YbN/GdN values are 0.6-0.8, corresponding with Y values of around 

84–110 ppm and Eu/Eu* of 0.18-0.35. REE patterns for zircon within retrograde biotite show 

steeper patterns on a chondrite-normalised plot. YbN/GdN values are 41-67, corresponding 

with higher Y values of 663-1113 ppm and Eu/Eu* of 0.29-0.36 (Fig. 14a). Zircon growing on 

ilmenite has a slope that is intermediate between the biotite- and cordierite-hosted zircon 

chondrite-normalised YbN/GdN values are 1.9-4.3, corresponding with Y values of 320-1166 

ppm and Eu/Eu* of 0.07-0.28. 

Garnet 
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REE analyses for garnet from this sample were very consistent, without any distinct variation 

from cores to rims. Chondrite-normalised REE plots show flat to slightly negative patterns, 

with YbN/GdN values ranging from 0.27-0.53. Y values range from 135-166 ppm and europium 

anomalies are clear, with Eu/Eu* of 0.03-0.24 (Fig. 14b).  

Monazite 

REE analyses for monazite from sample I06-62 show some variation that correlates with Y 

contents identified by the electron probe mapping (Fig 6b-g). The Y-rich (9220-11880 ppm) 

core domains show a spread of chondrite-normalised HREE concentrations with GdN of 

36775-45626 and YbN of 782-1508 and Eu/Eu* values of 0.26-0.28 (Fig. 15a). The low-Y 

(2512-6110 ppm) domains are more consistent with similar GdN of 37233-47660 to the cores 

but lower and less variable YbN of 77-388, with the bulk of the analyses less than 130. The 

Eu/Eu* values for the low-Y monazite range between 0.24-0.27 (Fig. 7d). The single younger 

spot analysis, m16.1, with the highest Y response (22420 ppm) from mapping had the most 

elevate HREE contents, with a GdN value of 51984, YbN of 3413 and a lower Eu/Eu* value of 

0.28 when compared to the other Y delineated domains.  

 

6.2 Sample I06-79 

Zircon 

REE analyses of zircon from sample I06-79 show two distinct patterns (Fig. 14c). Oscillatory 

zoned zircon cores show steep positive REE trends on a chondrite-normalised plot. YbN/GdN 

values are 8-180, corresponding with Y values of 412-2031 ppm and Eu/Eu* of 0.03-2.10. REE 

patterns for the zircon rims and CL-bright new grains show consistently flat to slightly 
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negative patterns on a chondrite-normalised plot (Fig. 14c). YbN/GdN values are 0.20-1.77, 

corresponding with lower Y values of 41-245 ppm and Eu/Eu* of 0.04-0.33.  

Garnet 

REE analyses for garnet from in sample I06-79 show a distinct variation in core and rim 

compositions (Fig.14d). Chondrite-normalised REE plots show flat to slightly positive 

patterns, with YbN/GdN values ranging from 4.0-5.1 and corresponding Y values range from 

352-382 ppm. Europium anomalies are clear with Eu/Eu* values of 0.13-0.30 (Fig. 14d). 

Chondrite-normalised REE plots of garnet rims show slightly negative patterns, with YbN/GdN 

values ranging from 0.13-0.35 and corresponding Y values of 73-136 ppm. Europium 

anomalies are again pronounced with Eu/Eu* of 0.10-0.21 (Fig. 14d).  

Monazite 

REE analyses for monazite from this sample show a spread of chondrite-normalised REE (Fig 

15b) with GdN of 31332-52645 and YbN of 52-713. Y contents of 670-9300 ppm and Eu/Eu* 

values for monazite range between 0.15-0.29.  

 

7. Numerical modelling of the Madurai Block 

In this section we use a 1D numerical model to explore radioactive decay as a potential 

heat source controlling the time scale over which crustal temperatures in the Madurai Block 

evolved towards high temperature conditions. Heat production values relevant to the study 

area (Ray et al., 2003; Ray et al., 2008) are used in the modelling and the model results are 

compared to the metamorphic P-T-t evolution obtained from the petrology and 

geochronology.  
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Using 2D models of orogens, previous studies have demonstrated that it is possible to 

reach temperatures of >800 °C in the mid crust (Beaumont et al., 2001; Beaumont et al., 2004; 

Faccenda et al., 2008b; Gerya et al., 2014; Jamieson and Beaumont, 2011; Jamieson et al., 

2004; Jamieson et al., 2010; Lexa et al., 2011; Sizova et al., 2014). Jamieson and Beaumont 

(2011), in particular, have highlighted how temperatures in excess of 900 °C may be achieved 

in the core of a large hot orogen where rocks are deeply buried for an extended period of time 

and are exhumed by post-orogenic thinning. In their models the lower crustal material 

remains buried in the orogenic core rather than being transported towards the surface over a 

lower crustal ramp allowing the rocks time to incubate at depth (point 5 on their fig. 4b). In 

the case of the Madurai Block, the geological constraints suggest that there is a significant 

distance from the Tanzania craton-Azania suture zone to the area of high-T metamorphism 

(Figs 1B & 2) and the metamorphic P-T evolution is similar for multiple localities over a large 

area (Figs. 1C & 3). Accordingly, we suggest that this scenario can be approximated by a 1D 

model of homogenous thickening, treating the crust as a vertically uniform column that is 

spatially removed from the system boundaries.  

To model the temporal evolution of a representative pressure-temperature path in the 

southern Madurai Block, we solve the standard heat flow equation in one spatial dimension 

with terms for conduction, radiogenic heat production, erosion and partial melting: 

 

∂T

∂t
=

1
ρcmod

∂
∂z

k T( )∂T

∂z

 
 
 

 
 
 − uρc p

∂T

∂z
+ Arad

 
  

 
  
    equation 1 

 

where T is temperature, t is time, ρ is density, k is thermal conductivity, z is depth, u is the 

erosion (exhumation) rate, Arad is radiogenic heat production, cp is specific heat capacity and 

cmod is a modified heat capacity which includes the effects of partial melting (Stüwe, 1995). 
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The upward movement of radiogenic heat production due to erosion at the surface acts to 

reduce the total heat production available within the crust over the course of the orogenic 

event. In order to replicate a potential burial and exhumation history of a rock from within a 

large plateau, we delay erosion for 60 Ma post thickening and then remove 35 km of crust 

over the next 60 Ma. All model parameter values and their units are listed in Table 1 and the 

schematic of the model setup is shown in Fig. 16a.  

Melting reactions in crustal rocks are strongly endothermic and we use the 

expressions in Stüwe (1995) to quantify this buffering effect of anatexis. The heat consumed 

during partial melting depends on the temperature interval between the onset (Tmin) and 

completion (Tmax) of melting, the latent heat of melting (L) and a constant (α), which 

determines the distribution of volumetric melt fraction over the melting interval. The effects 

of partial melting are incorporated into the governing equations through the use of a modified 

heat capacity, defined as: 

 

cmod = cp + L
αeαT

eaTmax − eαTmin
 for Tmin ≤ T ≤ Tmax   equation 2a 

and  

cmod = c p    for T < Tmin or T > Tmax  equation 2b 

 

We also include the temperature dependence of both thermal conductivity (k) and 

specific heat capacity (cp). For model depths within the mantle, the expression for k(T) is 

taken from McKenzie et al. (2005) for olivine (assuming Fo89), and for crustal depths we take 

the expression from Mottaghy et al. (2008) based on measured data from their Transalp 

profile. The expressions for cp(T) are derived from the same sources. We assume constant 
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densities for the crust and mantle, and a uniform distribution of radiogenic heat production 

throughout a single layer within the crust (Table 1). 

We solve the heat flow equation (1) by finite differences with a constant time 

increment (∆t) of 0.1 My and a constant depth interval (∆z) of 0.5 km. We discretise the finite 

difference equations using the unconditionally stable Crank-Nicolson method, centered in 

time and space. The temperature dependencies of k and cp are handled using a method similar 

to that in McKenzie et al. (2005), following Press et al. (1992). We employ boundary 

conditions of constant surface temperature (0 °C) and a constant temperature at the base of 

the lithosphere (1300 °C).  The Moho is initially at z = 35 km and instantaneous, homogeneous 

thickening of the crust by a factor of two is imposed at t = 0. A time delay in the erosive 

removal of crustal material is fixed at 60 My. 

The results of this modelling suggest that for a uniform heat production value of 3 

µWm-3 the crust will achieve temperatures of 900 °C approximately 60 Ma after initial 

thickening (Fig 16b, c). Once erosion of the upper crust begins the crust at a depth of 0.9 GPa 

continues to heat for a further 20 Ma and then begins to cool towards 700 °C after 120 Ma. A 

particle that began at a depth of 0.9 GPa will remain at temperatures of >900 °C for 

approximately 40 Ma in this model (Fig. 16c). At depths greater than 0.8 GPa the crust is 

essentially isothermal with no significant increase in temperature with depth even down to 

depths >1.2 GPa (Fig. 16b).  

 

8. Discussion  

8.1 Metamorphic evolution 
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The calculated phase equilibria for the two modelled compositions produce results that are 

broadly consistent. Both samples record granulite-facies conditions, with all prograde matrix 

biotite having been consumed in the aluminous metapelite (sample I06–62) and all prograde 

matrix sillimanite in the subaluminous composition (sample I06–79). The results suggest 

peak pressures of around 0.6–0.9 GPa at temperatures of >850 °C in sample I06–62 and close 

to 850 °C in sample I06–79. The presence of sillimanite inclusions in garnet and lack of 

evidence for the former presence of kyanite suggests the trajectory of the prograde path did 

not occur at pressures significantly higher than those recorded at the peak. The late growth of 

cordierite replacing garnet in both samples suggests they followed a clockwise path, broadly 

consistent with previous studies (Fig. 3; Braun et al., 2007; Brown and Raith, 1996; Mohan 

and Windley, 1993; Raith et al., 1997; Sajeev et al., 2001, 2004; Sajeev et al., 2006; Santosh 

and Kusky, 2010; Tateishi et al., 2004; Tsunogae and Santosh, 2010a, b). Although example P–

T paths consistent with petrographic observations are shown on Figs 10 and 11, there are no 

clear constraints on their precise shape except that the rocks underwent high-T 

decompression. 

 

8.2 Monazite growth and the timing of peak metamorphism 

In sample I06-62 the apparent textural equilibrium of low-Y and HREE depleted monazite 

with garnet and ilmenite is consistent with monazite growth at peak conditions of >850 °C, 

within the garnet–ilmenite–plagioclase–sillimanite field (Fig. 10). This suggests that the age 

obtained from monazite likely constrains the timing of peak metamorphism. An age of 559 ± 4 

Ma (Fig. 13a) was obtained from the analysis of the low-Y monazite. These relatively low-Y 

contents also suggest that monazite grew in equilibrium with phases that are likely to 

sequester Y, such as garnet. The higher-Y, elevated HREE monazite was observed as cores to 
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the lower Y monazite, with analyses from these domains giving ages >650 Ma (Fig. 13a), 

interpreted as monazite inherited from the protolith. A second high-Y, HREE-enriched 

monazite forms narrow rims on the low-Y monazite, and is interpreted to have grown via the 

retrograde breakdown of garnet. One analysis (m16.1) from the high Y rim gave a younger age 

of 508 ± 16 Ma (Fig. 6g; Fig. 13a; Table S1).  

In sample I06-79 there was no observed correlation between the variations in the 

HREE geochemistry of monazite and the age obtained via SHRIMP. The textural positions of 

the analysed monazites, one inclusion in garnet and the other intergrown with ilmenite, are 

again suggestive of monazite growing on the prograde to peak portion of the P–T evolution at 

550 ± 7 Ma. This age overlaps with that obtained from sample I06-62. 

 

8.4  Timing and mechanisms of metamorphic zircon growth 

In sample I06-62 zircon occurs in a number of different textural positions including: 

(1) in cordierite that forms coronas around garnet (Fig. 5a); (2) as inclusions in late biotite 

(Fig. 5b) and; (3) as an overgrowth on ilmenite (Fig. 5b). These textural associations imply 

that zircon growth was relatively late in the metamorphic history of this rock. The growth of 

zircon can be attributed to a number of reactions that have previously been described in high-

grade metamorphic rocks. Zircon within the cordierite corona is interpreted to be the result 

of the breakdown of garnet during decompression. This is consistent with the flat HREE 

profiles for both garnet and zircon in this textural position, indicating that the two minerals 

were in chemical communication during the growth of zircon (e.g. Rubatto et al., 2000; Taylor 

et al., 2014). Fraser et al. (1997) have suggested that the release of zirconium held in garnet 

during garnet breakdown may result in the growth of new metamorphic zircon. Kelsey et al. 
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(2008) demonstrated that zircon growth is likely to occur during the crystallisation of melt 

and zircon overgrowths on ilmenite have previously been reported from the Norwegian 

Caledonides (Bingen et al., 2001), where the breakdown of ilmenite releases Zr. The lack of 

consistency of between the REE patterns for zircons in different textural locations suggests 

that the length scale of equilibration for REE is less than the scale of a single thin section in 

this sample. The zircon analysed in this study yields an age of 518 ± 4 Ma (n=12, MSWD=0.95 

Fig. 13b).  This age is within error of the single younger monazite age from the high-Y, HREE-

depleted rim described above, suggesting the development of the high-Y rims on monazite 

and the growth of zircon were contemporaneous. 

The growth of zircon from the breakdown of garnet to produce cordierite is consistent 

with the textural observation of zircon occurring in the cordierite corona. The zirconium 

released during garnet breakdown would not have been consumed by the melt because the 

predicted volume of melt in the rock along this segment of the P–T evolution begins to 

decrease (Fig. 10). As temperature decreases a potential maximum 950°C to below the solidus 

all of the remaining melt in the rock will crystallise promoting zircon growth, as there are no 

other phases able to incorporate the zirconium being released. 

In sample I06-79 the HREE patterns are consistent with zircon rims and CL-bright 

whole grains having grown in equilibrium with garnet rims (Fig. 8c, d). Zircon textures in this 

sample are similar to those that have been demonstrated to have grown from crystallising 

melts (Hoskin and Black, 2000; Vavra et al., 1996). This reinforces the notion that zircon 

records both the timing of the breakdown of garnet during decompression and cooling and 

crystallisation of the melt that remained in the rocks after peak temperature conditions had 

been reached. The U-Pb age of 512 ± 4 Ma obtained from the zircon from this sample is within 

analytical uncertainty of the zircon age from I06-62. 
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A further outcome of the SHRIMP U-Pb study is revealed by the spectrum of ages from 

the analysed zircon cores. Concordant U-Pb ages ranging from 2640 Ma to 686 Ma suggest 

that the protoliths to the metasedimentary rocks in the southern Madurai Block were 

deposited in the Neoproterozoic. This is consistent with recent studies of the zircon U-Pb 

systematics of protoliths that have identified this block as comprising a suite of younger 

sediments that were deposited in the Mozambique Ocean prior to the collision of Greater 

India with East Africa (Collins et al., 2014; Plavsa et al., 2012; Plavsa et al., 2014; Teale et al., 

2012). 

 

8.5 What drove high temperature metamorphism in the Madurai Block? 

There have been numerous studies that deal with the thermal structure of the 

lithosphere during orogenesis (Beaumont et al., 2010; Beaumont et al., 2001; Beaumont et al., 

2004; Depine et al., 2008; England and Molnar, 1993; England and Richardson, 1977; England 

and Thompson, 1984; Jamieson and Beaumont, 1988; Jamieson et al., 2004; Jamieson et al., 

2010; Lachenbruch, 1970), and some that have focussed on the extent to which enrichment in 

HPE in the crust can lead to elevated temperatures in the mid-crust (Chamberlain and Sonder, 

1990; England and Thompson, 1984; Faccenda et al., 2008a; Goffe et al., 2003; Huerta et al., 

1998; Le Pichon et al., 1997; Sandiford and Hand, 1998).  More recent numerical modelling of 

orogens have produced results that suggest if the crust is significantly enriched in HPE and 

deeply buried (Lexa et al., 2011), if crustal material with moderate HPE levels is kept at depth 

for a long period of time (Jamieson and Beaumont, 2011; Jamieson et al., 2010; McKenzie and 

Priestley, 2008) or there is significant addition of heat input from the deformation of strong 

lithologies (Nabelek et al., 2010) then the crust may be able to be heated to temperatures in 

excess of 900 °C at depths consistent with observations from  UHT metamorphic terranes. In 
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the previous sections we have constrained the P–T–t history of one such occurrence from the 

SGT in India. 

In the specific case of the SGT the petrological and geochronological data suggest that 

temperatures required for the crust to start melting (~700 °C) would have been achieved 

within 20 My of thickening, a duration that is consistent with constraints from the Himalayas 

that suggest that melting began within 25 My of the onset of crustal thickening (Harris et al., 

1995; Harris et al., 2000; Harris et al., 2004). As crustal temperatures continued to rise, UHT 

metamorphic conditions were achieved at ~560 Ma, approximately 60 My after the proposed 

collision of the Azania microcontinent with East Africa. This duration is consistent with the 

results from our 1–D numerical modelling for the time needed for moderately enriched crust 

to conductively heat to granulite-facies temperatures. This can be seen in Fig. 16c, where the 

P–T path for a particle that starts at 0.9 GPa intersects the peak fields as constrained by the 

pseudosection modelling after 60 Ma (Fig. 16c). However, it should be noted that the 

intergrowth of monazite and garnet occurs over a range of temperatures that cannot 

adequately be described by a single age population, and it may be more appropriate to 

consider the growth of monazite to have occurred over a broader time interval than the 

reported error on the age indicates. One could consider this time interval to be broadly 

constrained by the range of individual spot ages that, in this case, range between 575 to 540 

Ma (Fig. 13a, c). In addition, it should also be acknowledged that 575 Ma is a minimum 

estimate for the upper age limit as at such high temperatures there may be a degree of Pb-loss 

and partial resetting of monazite along the concordia that is unresolvable with current 

techniques (Korhonen et al., 2013; Mezger and Krogstad, 1997). 

The growth of zircon triggered by the breakdown of garnet and ilmenite and the 

crystallisation of melt at temperatures in excess of around 900°C at 518 Ma indicates that the 

crustal rocks in the SGT remained at temperatures in excess of 900°C for over 40 My. The 
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range of ages in this study, when linked to the petrological development of the silicate 

assemblages via REE geochemistry from the two investigated samples, is consistent with a 

long-lived heat source. Given the absence of any coincident large-volume magmatic rocks in 

the SGT, an alternative to magmatic heating must be found. The dataset of Ray et al. (2003) 

demonstrates that there are large volumes of rock within the SGT that have average heat 

production values of greater than 3 µWm-3 at 550 Ma, and we propose this as a plausible long-

lived heat source for metamorphism in the SGT.  

 

8.6 Implications for the formation of regional scale granulite and UHT metamorphic 

terranes through Earth history 

In the previous discussion it is suggested that the major contributor to the generation of 

regional scale UHT conditions in the SGT is the heat produced due to the decay of HPEs in 

thickened crust. A good starting point to test the applicability of this mechanism to the 

generation of granulite and UHT (G-UHT) terranes through time is to see how it can be related 

to the observation that G-UHT metamorphism is cyclical in nature, and that there is a first 

order link between the supercontinent cycle and the generation and preservation of regional 

scale G-UHT terranes (Brown, 2006). For our model to be appropriate to the generation of G-

UHT conditions in other G-UHT terranes throughout Earth history, a number of conditions 

must be satisfied.  

The primary requirement for radiogenic heat production to be the heat source for the 

generation of regional-scale G-UHT metamorphic conditions is that there is the requisite 

concentration of HPEs in the crustal column. The observed link between the occurrence of G-

UHT conditions and the terminal stages of supercontinent amalgamation may provide a 

mechanism for the enrichment of the crustal column in HPEs. It has been proposed that 
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continents reorganize by two contrasting processes, known as extroversion or introversion, 

or by a combination of both (Murphy and Nance, 2003, 2013; Murphy et al., 2009). 

Extroversion, is where a supercontinent rifts apart and then turns inside-out to form a second 

supercontinent along suture zones that correspond to the margins of the first supercontinent. 

In contrast,  introversion, is where the first supercontinent rifts apart forming an internal 

ocean and then reassembles through the closure of the newly created ocean forming a second 

supercontinent. The process of extroversion, which is interpreted to be the driving 

mechanism for the formation and destruction of several past supercontinents in Earth history 

such as Vaalbara, Columbia, Rodinia and Gondwana (Murphy and Nance, 2013; Nance et al., 

2014), would have resulted in the development of large passive margins of material derived 

from the erosive removal of the collisional mountain systems formed during continental 

collision. The reworking and redistribution of HPE within these collisional orogens, and their 

erosion and deposition at the margins of a supercontinent where they can be incorporated 

into the next supercontinent cycle, provides a mechanism for the heat source for the 

generation of regional scale G-UHT terranes. However, these ideas need to be tested in more 

detail through studies integrating geochronological and petrological data that focus on the 

duration and P–T conditions of metamorphism in each of these terranes.  

Secondly, as partial melting acts as a heat sink during the evolution of a terrane to high 

temperatures, a requirement for a terrane to attain G-UHT conditions, effectively evolving 

from a regional scale migmatite terrane into a G-UHT terrane, is that the duration of 

orogenesis must be long enough (>60 Ma for average crustal heat productions of 3 µW-3) for 

the radiogenic heat source to provide the required thermal energy to overcome the thermal 

buffering effect of partial melting (e.g. Clark et al., 2011). This means that the orogen must be 

either large in scale or that erosion rates are slow enough to retard the removal of the HPEs. 

The observation by Brown (Brown, 2006, 2007) that the age distribution of metamorphic 
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belts that record regional scale G-UHT metamorphism is not uniform and can be broadly 

correlated with the amalgamation of the continental lithosphere into supercratons or 

supercontinents is suggestive of a correlation between the two processes. Whereas Brown 

(Brown, 2006) suggests that G-UHT metamorphism is related to the generation of initially 

high geothermal gradient conditions in continental back-arc regions prior to crustal 

thickening, we propose that G-UHT conditions actually relate to the final stage of 

amalgamation (i.e. continent–continent collision). The thickening of the crust during 

continental collision during the amalgamation of Gondwana has been likened to the 

generation of a Himalayan-scale continental collision system (Santosh et al., 2009).  This 

correlation between the terminal phase of collision during supercontinent amalgamation 

fulfils the requirement that a long-lived collisional system is integral to the cyclic generation 

of regional scale G-UHT conditions in nature. 

While the scenario related to the formation and reorganisation of supercontinents 

described above fulfils a number of criteria in regard to the apparent cyclicity of G-UHT 

terranes it should also be noted that continental margins and other thick sedimentary basins 

on thinned crust and lithosphere, including continental backarcs, are naturally enriched in 

HPE. Any collision involving a rifted continental margin, or closure of a continental back-arc 

basin, will result in thickened HPE-enriched sections and lead to the development of elevated 

geothermal gradients. Provided the crust remains thickened for long enough, there is the 

potential for the achievement of G-UHT conditions in any orogenic system of this type.  
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FIGURE CAPTIONS 

1. (a, b) Geology of the East African Orogen within Gondwana modified after Fitzsimons 

and Hulscher (2005). Line of cross-section X–Y indicated. The Bangweulu Block (BB) 

and Tanzania Craton (TC) are both part of the Congo Craton, separated by 

intracratonic deformation along the Ubendian Belt.. Also marked on the map are 

Betsimisaraka Suture (BMS), Tanzanian Arc/Vohibory Group (TZA), Palghat Cauvery 

Shear System (PCSS) and the Southern Granulite Terrane (SGT). Gondwana fit after 

Reeves et al. (2002). (c) Geology of Southern India indicating the area of this study. (d) 

Local map of the Madurai Block showing the sample localities (marked by white stars) 

and other UHT outcrops within the area. (e) Schematic east –west section through the 

East African Orogen showing the relationships between the main blocks. 

 

2. Sequence of tectonic cartoons schematically illustrating the main interactions of 

crustal blocks during the amalgamation of Gondwana between 640 and 530 Ma. Block 

abbreviations: TC—Tanzania Craton; WGD—Western Granulite domain, Tanzania; 

MB—Madurai block; AN—Antananarivo block; NMB—northern Madurai block; SMB—

southern Madurai block; TB— Trivandrum block. Figure modified from Plavsa et al. 

(2014). 

 

3. P–T diagram illustrating the P–T paths as per previous studies of the Trivandrum and 

Madurai Blocks. Most studies are consistent with a clockwise evolution that passes 

through the UHT field. Abbreviations, study and locations as follows, B96 - Brown and  

Raith, (1996) - Perumalmalai; R97 - Raith et al., (1997) - Perumalmalai; S04 - Sajeev et 

al., (2004) - Ganguvarpatti; S06 – Sajeev et al (2006) - Kodaikanal; B07 - Braun et al., 
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(2007) - Mottamala; K09 - Kondou et al., (2009) - Ganguvarpatti; T10 - Tsunogae and 

Santosh, (2010b)- Rajapalayam; S00 - Satish-Kumar, (2000) - Kannisseri; N07 - 

Nandakumar & Harley, (2000) - Kozhencherry; Braun et al., (1996) - Manali; T04 - 

Tatieshi et al., (2004) - Rajapalayam; T07 - Tadokoro et al., (2007) - 38km from 

Kodaikanal; Tm04 - Morimoto et al., (2004) - Chittikara. 

 

4. Field relationships and photomicrographs from Usilampatti. (a) Evidence for melt 

segregation at the outcrop scale with residuum material wrapped by leucosome rich 

layers. (b) Deformed leucosome and residuum with fabric wrapping porphyroblastic 

garnet (g) in a moderately deformed layer. (c) Corona of cordierite (cd) surrounding 

garnet in a moderately deformed leucosome-rich layer. (d) Sillimanite (sill)-rich 

domain showing porphyroblastic garnet wrapped by leucosome material. (e) 

Cordierite moats separating the coarse grained peak assemblage of garnet, ilmenite 

(ilm) and sillimanite. Note the pleochroic haloes within cordierite that contain small 

zircons (zrc). (f) Biotite (bi), sillimanite and quartz inclusions within a garnet 

porphyroblast. 

 

5. (a-b) Photomicrographs of the textural position of zircon within the Usilampatti 

metapelite. (c-k) Cathodoluminesence images of the individual zircons that have 

undergone SHRIMP U-Pb analyses, individual spot analyses and ages are indicated and 

the results are tabulated in supplementary data Table 1.  

 

6. Photomicrographs of the textural position of monazite from a sample of the 

Usilampatti metapelite. (a) Backscattered electron image of the area of thin section 

where monazite is intergrown with the peak minerals garnet, ilmenite and surrounded 
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by a corona of later cordierite and biotite. The white boxes are areas that have been 

electron probe mapped for Yttrium. (b-g) Yttrium elemental maps of monazite that 

have undergone SHRIMP U-Pb analyses, individual spot analyses and ages are 

indicated and the results are tabulated in supplementary data Table 2. 

 

7. Field relationships and photomicrographs from Kodaikanal. (a) Migmatitic garnet-

biotite gneiss with an abundance of late biotite, (b) foliated garnet-cordierite gneiss, 

(c) garnet with quartz inclusions, rimmed by cordierite and late biotite, (d) garnet with 

oriented sillimanite and biotite inclusions, magnetite contains exsolved spinel and 

cordierite forming at the expense of garnet. 

 

8. Cathodoluminesence images of the individual zircons that have undergone SHRIMP U-

Pb and LA-ICPMS REE analyses showing core and rim relationships. Results are 

tabulated in Supplementary Data Table 1. 

 

9. Photomicrographs of the textural position of monazite from a sample of the Kodaikanal 

metapelite. (a) Backscattered electron image of the area of thin section where 

monazite is intergrown with ilmenite (ilm), (b) monazite inclusion within garnet. (b-c) 

Yttrium elemental maps of monazite that have undergone SHRIMP U-Pb analyses, the 

results are tabulated in Supplementary Data Table 2. 

 

10. Pseudosection calculated in the NCKFMASHTO system for sample I06-62. Whole rock 

composition determined by XRF and converted to mol. % (reported on the top of the 

diagram, Fe2+/Fe3+ determined by titration, H2O equivalent to LOI). Red dashed lines 

are contours of the mol.% melt.  
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11. Pseudosection calculated in the NCKFMASHTO system for sample I06-79. (a) Whole 

rock composition determined by XRF and converted to mol. % (reported on the top of 

the diagram), Fe2+/Fe3+ determined by titration. (b) T-MH2O section to assess the effect 

of H2O on the stability of the peak field. Red dashed lines are contours of the mol. % 

garnet.  

 

12. Terra-Wasserburg concordia plots for all zircon analyses from (a) I06-62 and (b) I06-

79. 

 

13. Terra-Wasserburg concordia for geochronological analyses of all metamorphic 

monazite and zircon (a) I06-62 monazite, (b) I06-62 zircon, (c) I06-79 monazite, and 

(d) I06-79 zircon.  

 

14. Normalised rare earth element plots for (a) I06-62 zircon, (b) I06-62 garnet, (c) I06-79 

zircon, and (d) I06-79 garnet 

 

15. Normalised rare earth element plots for (a) I06-62 monazite, and (b) I06-79 monazite. 

  

16. (a) The configuration of the 1D model setup pre-thickening, immediately post 

thickening and 120 My after thickening.  (b) 1D transient to steady state thermal 

models with varying heat production and P-T-t paths for particles with initial depths of 

35 km, 50 km and 70 km. Grey boxes are the peak temperature fields as defined by the 

pseudosections in Figures 10 and 11. Model parameters and tabulated in Table 1. 
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Table 1: Parameters used in 1D numerical model. 

       

Arad 0-25 km (µWm-3)  - crustal heat production    3   

L (kJ Kg-1) – latent heat of partial melting     320   

α (from Stüwe, 1995)       0.0001   

Tmin - Tmax (°C) – interval over which rocks generate partial melt  650 - 1100 

U (mm/yr) - erosion rate (after delay of 60 Ma)     0.6   

Initial conductivity @ 25 °C (W m-1 K-1)     2.5   
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Research Highlights 

 

• High-temperature metamorphism in the Madurai Block lasted ~ 100 My 

 

• Radiogenic heating was the main source of heat 

 

• Regional-scale UHT metamorphism can be linked to the supercontinent cycle 


