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A Retail Category Management Model Integrating Shelf Space and Inventory Levels 

 

ABSTRACT 

A retail category management model that considers the interplay of optimal product assortment decisions, 

space allocation and inventory quantities is presented in this paper. Specifically, the proposed model 

maximizes the total net profit in terms of decision variables expressing product assortment, shelf space 

allocation and common review period. The model takes into consideration several constraints such as the 

available shelf space, backroom inventory space, retailer’s financial resources, and estimates of rate of 

demand for products based on shelf space allocation and competing products. The review period can take 

any values greater than zero. Results of the proposed model were compared with the results of the current 

industry practice for randomly generated product assortments of size six, ten and fourteen. The model 

also outperformed the literature benchmark. The paper demonstrates that the optimal common review 

period is flexible enough to accommodate the administrative restrictions of delivery schedules for 

products, without significantly deviating from the optimal solution. 

 

Key words: Category management, product assortments, optimal shelf space allocation.  
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A Retail Category Management Model Integrating Shelf Space and Inventory Levels 

 

INTRODUCTION 

Many business organizations are forced to continually seek improvements in productivity due to 

the increasing costs in labor, space resources, volatile sales, and intense competition. Cachon (2001) 

emphasized the need for retailers to constantly strive for excellence in operations due to extremely narrow 

profit margins. The major contributing factors to retailers’ costs are rental cost (Bultez and Naert 1988) 

and the opportunity cost of shelf space allocation to a product (Brown and Lee 1996). An efficient use of 

available shelf space and effective choice of product assortment would lead to increased retail 

productivity. 

 

Recent developments in category management have focused on product categories rather than 

individual products/brands to investigate the performance of the retail industry. Campo and Gijsbrechts 

(2005) discuss the issues that interplay between retail assortment, shelf and inventory management and 

further emphasize the need to integrate these three decision areas of category management. The 

management of an independent franchise retailer requires recurring decisions including which products to 

stock (assortment decisions), how much shelf space to allocate for each product, the inventory order size 

of each product, and the frequency of assortment evaluation. The existing models in the literature do not 

address this important problem in an integrated manner from the perspective of an independent franchise 

retailer.  The problems facing an independent retailer differ from those of other retailers, such as chain 

stores, in many ways. An independent retailer owns only one retail outlet, allowing him to make 

independent decisions and not tying up capital in other outlets. There is also the flexibility in choosing 

suppliers, retail formats and devising strategy. Customer segments can be selected instead of the mass 

market, so that product assortments, prices, and store hours are set consistent with the market. The main 

contributions of this paper are as follows:  
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(i) The development of a non-linear mixed integer programming model that integrates product 

assortment, demand, shelf space, back room inventory space and inventory value restrictions 

in the context of independent franchise retailing.  

(ii) The development of a heuristic method based on the Excel Solver add-in. 

(iii) Illustration of the proposed methodology using examples with real life data drawn from an 

independent franchise retailer. 

(iv) Comparison of the proposed method with the commonly used industry practice and also the 

simulated annealing method proposed by Borin et al. (1994). 

The next section provides a brief background and review of the literature available in this area. 

This is followed by a presentation of the mathematical model for the category management problem 

introducing all the necessary notations and assumptions. In the next section, the methodology is 

illustrated through several examples generated from real life data arising from an independent franchise 

retailer. The conclusions are presented in the last section. 

 

BACKGROUND 

 

The existing category management models have evolved from the 1960’s literature on the 

optimization of shelf space allocation (Brown and Tucker 1961; Lee 1961). Lee (1961) proposed a simple 

allocation model using shelf space elasticity as a demand effect. Curhan (1973) formalized the shelf space 

elasticity and provided a valuable synthesis of shelf space conceptual models and experiments exploring 

the relationship between the space allocated to a product and the unit sales of the product. A similar 

approach was adopted by Anderson and Amato (1974). Campo and Gijsbrechts (2005) provided a recent 

review of the literature in this area. Table 1 provides a brief outline of the subsequent literature in the area 

of shelf space allocation models and their main features. 
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Table 1: List of some important contributions to shelf space allocation models 

Author(s) The Model Main features and method used 

Hansen and 

Heinsbroek 

(1979) 

Shelf space allocation 

model as a constrained 

optimization problem.  

It is an extension of earlier models. Models the demand using the 

shelf space elasticity, past sales and shelf space allocation. 

Develops near optimal solution, using Lagrangian technique. 

Corstjens 

and Doyle 

(1981) 

Shelf space allocation 

model. 

Extends Hansen and Heinsbroek (1979) model by incorporating 

cross elasticities within the demand formulation. Develops 

branch and bound method. 

Corstjens 

and Doyle 

(1983) 

Dynamic shelf space 

allocation model. 

Extends their previous model to a dynamic model incorporating 

product life cycle and consumer preference. Develops near 

optimal solution. 

Zufryden 

(1986) 

Dynamic programming 

formulation of shelf 

space allocation model. 

Extends the model by Corstjens and Doyle (1981) incorporating 

space elasticity and non-space factors such as price, advertising, 

and promotion. 

Bultez and 

Naert 

(1988) 

SH.A.R.P. (Shelf 

Allocation for 

Retailers Profit) model. 

Extended the work of Corstjens and Doyle (1981, 1983) and its 

application. They estimated space elasticities using a symmetric 

attraction model. 

Bultez et 

al. (1989) 

SH.A.R.P. II model. This is an extension of SH.A.R.P. model integrating it with an 

asymmetric variant attraction model for the cross elasticities. 

Bookbinder 

and Zarour 

(2001) 

Shelf space allocation 

model. 

This model incorporates Direct Product Profitability (DPP) 

considerations within the model by Corstjens and Doyle (1981).  
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Yang (2001) considered a simple shelf space allocation model to maximize the store profit 

constrained only by the length of the shelf, the length of the product, the product profit per facing and 

bounds on number of facings. The author proposed a heuristic algorithm to solve this as a multi 

constrained knapsack problem, but optimal solutions were only found to simplified versions of the 

original model. Lim, Rodrigues, and Zhang (2004) developed metaheuristic methods such as Tabu search 

and a Squeaky Wheel Optimization to solve the simplistic model proposed by Yang (2001), as well as a 

simplified version of the Corstjens and Doyle (1981) model. Recently, Chen and Lin (2007) explored the 

data mining approach to product assortment and shelf space allocation. The first category management 

model that integrates the shelf space allocation and the inventory decisions was developed by Borin, 

Farris, and Freeland (1994). Table 2 provides a brief account of the category management models 

available in the literature.  

 

Table 2:  Integrated category management models 

Author(s) The Model Main features and method used 

Borin et al. 

(1994). 

Category 

management.  

This constrained optimization model integrates shelf space allocation 

and its influence on demand. They developed a heuristic method based 

on simulated annealing to maximize the category return on inventory.  

Urban 

(1998) 

Integrated 

category 

management.  

This model improves the model of Borin et al. (1994) by separating the 

consequences of backroom and displayed inventories and by keeping 

track of the competitive and complementary product considerations. 

They provided a gradient reduction algorithm and a genetic algorithm to 

find near optimal solutions while maximizing the average net profit. 

Hwang et al. 

(2005) 

Integrated 

category 

management.  

The model distinguishes the product display levels in the shelf. A 

gradient search heuristic and a genetic algorithm were proposed to solve 

the model while maximizing the average net profit.  
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Apart from the academic literature, commercial software programs such as Apollo (Information 

Resources) and Spaceman (ACNielsen) have contributed to the area of allocation of shelf space through 

non optimal methods. The types of factors relevant to allocation of space considered by these programs 

are turnover, gross profit margins and constraints such as inventory costs. Although such programs assist 

in investigating alternate shelf space allocations through simulation (Dreze et al. 1994), these software 

packages can not be considered as optimization tools (Desmet and Renaudin 1998).  

 

Over the years the emphasis of shelf space and product assortment models research has shifted 

towards an integrated category management optimization model. Retail managers are required to make a 

number of vital decisions that include what products to stock on the shelf (assortment decisions), the 

number of facings to allocate to each product (shelf space allocation decisions), the ordering levels, and 

the frequency of category assortment evaluation or review. Such decisions are all dependent upon the 

accurate estimation of demand and available inventory space.  

 

In order to understand the current industry practice and the usage of the existing models, detailed 

interviews were conducted with small and medium size independent franchise retailers. It was noted that 

the current decision processes (regarding product assortment and space allocations) used by retailers are 

ad hoc. In fact, the retailers lack an understanding of the alternative decision strategies that could improve 

their profit. Further, it was found that the space decisions were made through either a share-of-sales-

equals-share-of-space rule, or planograms designed by high market share manufacturers such as Kellogs 

and Coca-Cola, or those designed by the franchiser. In general, these planograms do not take note of the 

individual independent franchisee’s interests such as demand or contribution to net profit that is relevant 

to the specific geographic location of the retailer. Some of the retailers expressed a keen interest in 

exploring alternative methods of determining optimal review periods. 
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The model presented in this paper specifically addresses the issue of product assortment, shelf 

space allocation, back room inventory, monetary restriction on inventory and the optimal period of review 

(evaluation) by considering demand as a function of allocated shelf space and the cross-elasticities of 

competing products.  

 

At first glance the proposed model may be viewed as an extension of one of the models proposed 

by Borin et al. (1994), Urban (1998), or Hwang et al. (2005). The following observations reiterate the 

benefits of our proposed model and the suggested methodology: 

(i) The category management model proposed by Borin et al. (1994) maximizes the category 

return on inventory. The integrated category management models of Urban (1998) and 

Hwang et al. (2005) maximize the average net profit per unit time. But the independent 

franchise retailer would rather maximize the expected total net profit accumulated for a group 

of competing products of a category during a common review period for them.  The proposed 

model uses this objective function which is relevant to the independent franchise retailer.  

(ii) The model proposed by Borin et al. (1994) is not explicit in its formulation and hence its 

applicability may not be satisfactorily validated. In fact their formulation does not include 

restrictions on back room inventory and monetary levels. The integrated category 

management models of Urban (1998) and Hwang et al. (2005) also exclude monetary 

restrictions that are vital to the independent franchise retailer. The model proposed by Hwang 

et al. (2005) does not include product assortment. The model proposed in this paper is in an 

explicit form and direcly addresses the needs of independent franchise retailers.  

(iii) The proposed simulated annealing heuristic of Borin et al. (1994) does not use any of the 

constraints of their model in an explicit form. The gradient search heuristics proposed by 

Urban (1998) and Hwang et al. (2005) are partially based on their models, but not 

implemented in the commonly available Excel environment.  Our proposed methodology is 
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explicit and permits modeling of many of the commonly occurring constraints in the Excel 

environment.  

PROPOSED INTEGRATED CATEGORY MANAGEMENT MODEL 

In this section we present a category management model that maximizes the expected total net 

profit accumulated during a common review period for an independent franchise retailer. Our model 

differs from previous approaches on two levels. First, the model incorporates the considerations of space 

allocation, product assortment determination, inventory quantities, retailer’s financial resources, demand 

and the determination of the common review period. Second, the planning horizon for the model is 

flexible, depending on the needs of the retailer. 

 

The assumptions and notations required for the proposed model are: 

1. Let }...1{ nN  denote the set of products that are included in the model from a specified 

category (for example, say from ‘Hot Beverages or Soft Drinks’) such that they are competing 

with each other for the limited shelf space and backroom inventory space.  

2.  The time period between two consecutive reviews of stocks (for ordering and replenishing the 

backroom inventory of all the products in the category) is called the review period. The proposed 

model assumes a common review period for all the products of the category. Furthermore, this 

review period is a decision variable of the model and is denoted by t.  

3. The objective is to maximize the expected total net profit during the review period of length t, 

considering that all the related monitory transactions are often carried out exactly once in every 

review period. 

4. The decision variable js denotes the number of shelf facings allocated to product j, for j in N. Let  

j  ( 0 ) and ju  respectively denote the lower and upper bounds on js .  The variable jz  is 

defined through a constraint )1( jj zs = 0 so that a positive allocation of shelf space for product 
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j forces jz to be 1.  Furthermore, for an optimal solution, the maximizing objective function 

forces the model to choose jz at zero level when js = 0.  Next, the variable jr  (used in modeling 

the demand) is defined using the constraint jjjj zszr )1(  such that jr  = js or 1 according 

to whether js  is positive or zero respectively. Let jsC ,  denote the fixed shelf space cost per 

facing for product j . 

5. The average (expected) demand rate (that is demand per unit time) of product j is denoted by dj. 

The expected demand dj per unit time is modeled in the typical polynomial form as a function of  

j , the potential expected sales; js , the number of shelf facings allocated to product j; j , the 

space elasticity for product j  corresponding to one shelf facing; jk ,  the cross elasticity 

between product j  and product k  which can be either negative (substitutable competitive 

relationship) or positive (complementary relationship); and 
i
, the resistance of a customer to 

compromise in the situation where the desired product i is not included within the assortment.  

More precisely, the expected demand rate dj is modeled (Borin et al. 1994) as follows: Let N  = 

{ j : j is in N and sj > 0} , that is the set of products included in the product assortment. Let N  = 

N - N , that is the set of products excluded from the product assortment.  Further, in the 

following model for the expected demand dj we take sj = 1 whenever j is an element of N . 

Ni

Nm Nk

kmmim

Nk

kjjij

i

Nk

kjjj

mkm

jkj

jkj

ss

ss

ssd 11  .  

The term 
Nk

kjj
jkj ss  represents the modified demand for a product j  and incorporates the 

effect of shelf space elasticities and cross elasticities given a product assortment set N . The 
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second term 
Ni

Nm Nk

kmmim

Nk

kjjij

i

mkm

jkj

ss

ss

1  represents the total demand acquired by 

a product j  from the set of products excluded from the product assortment, that is in N . The 

acquired demand is dependent upon the resistance of consumers of product i  to compromise 

purchase intention and switch to product j , and is measured by 
i
. The volume of acquired 

demand is also moderated by the relative share of shelf space of product j  to the total space 

allocated to the set of products N  included in the assortment. Using the variables jz  and jr  

one can remodel the expected demand rate in terms of js , jr , jz  and N as follows:  

Ni

Nm Nk

kmmim

Nk

kjjij

ii

Nk

kjjj

mkm

jkj

jkj

rs

rr

zrsd )1(11 . 

 Note that in this modeling of jd whenever allocated shelf space js is zero, the model forces      

jd to be zero, though the basic expected sales j is positive.  

 
6. The parameters used in the modeling of dj are estimated either from the past data or from 

specially conducted experiments. 

7. Note that the per unit time potential sales is a random variable and its mean is estimated as the 

potential expected sales j  from the past sales data for product j. 

8. Note that the model uses the proportionality assumption and thus the order quantity for the review 

period of length t is equal to the expected potential demand during the review period and that is 

equal to tdj for product j. The managers would prefer to set the order quantity for the review 

period of length t as tdj + SSj where SSj is the safety stock determined on the basis of the 

stochastic behavior of the potential demand, the cost of idle inventory, and the cost and risk of out 



 12 

of stock situation for product j.  The present model assumes that SSj is zero. Let   
min

jQ  and 

max

jQ respectively denote the lower and upper bounds on the number of units ordered of product j.   

9. The shelf space is continuously replenished from the backroom inventory. 

10. Let jp  and jc  denote respectively the retail price and the purchasing cost of one unit of the 

product j .  Let joC ,  denote the fixed procurement (ordering and receiving) cost of product j for 

every delivery. Note that  joC ,  does not depend on the delivered quantity. Let jhC ,  denote the 

fixed backroom storage cost per unit of product j irrespective of the duration of storage.  

11. Since the model uses a short time planning horizon, it is reasonable to assume that all the cost 

parameters are constant and do not change with time during the planning horizon. Furthermore, 

the model can be resolved with appropriate changes to the cost parameters while planning a sales 

promotion with the supplier for some of the products.  

12. Let SLB , SWB  and 
SHB   respectively denote the length, depth and height of the available shelf 

space. The volume of the available shelf space is equal to sB = ))()(( SHSWSL BBB .  

13. Let jsb  , swjb  and shjb  denote respectively the length, depth and height of one unit of product j. 

The volume of one unit of product j is jb ))()(( shjswjjs bbb  . Note that the product j can be 

displayed in the shelf with either depth facing or length facing and it is given by 

 required. facinglength  if - L

required. facingdepth  if -W 
jF . Furthermore, for some products its height shjb  compared to 

shelf’s height BSH permits vertical stacking. The stack-ability of product j is given by jSP  which 

assumes value 1 or 0 according as the product j is stackable or not.  

14. Let jk  denote the maximum number of items of product j that can be stored on the shelf given an 

allocation of one facing, and the facing requirement Fj of product j .  
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Note that, jk  = 

, if ,

,  if , 

LF
b

B

b

B

WF
b

B

b

B

j

swj

SW

shj

SH

j

js

SW

shj

SH



   or  

LF
b

B

WF
b

B

j

swj

SW

j

js

SW

 if , 

, if , 


           according to 

whether SPj is equal to 1 or 0 respectively.  Thus if product j is allocated sj shelf facings then the 

number of  items of product j that will be accommodated on the shelf is  sj kj

15. Let 
bB  denote the volume of available backroom inventory space. Similarly let MI denote the 

upper bound on the maximum money value of the idle capital in the form of the total inventory on 

hand at any point of time. 

16. It is also assumed that no stock is currently on hand by the retailer which can be used to cater for 

expected sales. 

Mathematical formulation  

            
Nj

jhjjjjjsjjojjjn CkstdsCzCtdcpMaximize ,,, , (1) 

subject to 

Nj

WF

Nj

LF

SLjjsjswj

j j

Bsbsb  ,  (2) 

Nj

sjjj Bksb ,  (3) 

Nj

bjjjj Bkstdb )( ,           (4) 

Nj

Ijj Mtdc )( ,  (5) 

max

jj Qtd ,   Nj ,  (6) 

jjj zQtd min
,   Nj ,  (7) 
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jjj tdks ,   Nj ,  (8) 

jjj us ,   Nj ,  (9) 

0)1( jj zs ,   Nj , (10) 

jjjj zszr )1( ,    Nj , (11) 

             
Ni

Nm Nk

kmmim

Nk

kjjij

ii

Nk

kjjj

mkm

jkj

jkj

rs

rr

zrsd )1(11 ,   Nj , (12) 

(Note that the expected demand dj is modeled as detailed in Assumption 5.) 

 

0jz  ;  zj ≤ 1;      jj sz ;  sj integer  Nj .  (13) 

 

 
The objective function (1) maximizes the expected net profit accumulated during the review 

period and it is equal to the gross revenue subtracted by procurement costs, shelf space costs and 

backroom inventory costs. Note that the contributions to the objective function by a product j in N during 

a review period of duration t are (i) the gross revenue: jjj tdcp )( ; (ii) the procurement cost: - jjo zC , ; 

(iii) the shelf space cost: - jjs sC , ; and, (iv) the backroom inventory cost: - )(, jjjjh kstdC .  

 

Constraint (2) restricts the sum of the allocated linear metric space of the shelf allocation to be 

less than or equal to the available shelf space length, BSL with the given values of Fj. Constraint (3) 

ensures that the total volume of products allocated to the shelf space is less than or equal to the available 

shelf space volume Bs. Next, constraint (4) restricts the total volume of the backroom inventory space of 

the products in the assortment to be less than or equal to the total volume of the backroom inventory 

space, Bb.  Similarly, the constraint (5) assures that the total idle money locked up in inventory (both 

backroom and shelf) will not exceed MI at any point of time.  
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In order to satisfy the expected sales during period t we take the order quantity as jtd  given that 

the rate of demand is dj. Constraints (6) and (7) place an upper (
max

jQ ) and lower (
min

jQ ) order limit on 

the quantity ordered for each product j . These upper and lower limits permit the retailer to strategically 

model situations that arise due to demand during product life cycle or unexpected events or constraints 

imposed by supplier (Corstjens and Doyle 1983). Constraint (8) states that the quantity ordered must be 

greater than the number of units required to be stored on the shelf given the allocation of js  facings. 

 

The constraint (9) places lower and upper limits on the number of facings ( js ) to be allocated to 

a product j . Often such constraints arise from administrative convenience, contractual obligations 

between supplier and retailer.  

 

A product is excluded from the category assortment if it is not allocated a shelf facing. The 

constraints (10) and (11) define respectively the variables jz and jr . The next constraint (12) recollects 

the modeling of the expected demand dj. Finally, the constraint (13) ensures that jz is non-negative and at 

most equal to js . Note that in our model the product assortment is decided through the shelf space 

allocation sj by virtue of selecting sj to be zero. On the other hand Urban (1998) considered them as 

distinct problems. 

 

PRACTICAL EVALUATION OF THE PROPOSED MODEL 

From the interviews conducted with independent franchise retailers, it was found that the current 

practice is to allocate shelf space for a product approximately equal to its market share. This is the most 

commonly used allocation method by practitioners (Borin and Farris 1995). The aim of this section is to 

carry out extensive comparisons of our model with the current practice. 
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A number of studies (Sandgren (1981), Haggag (1981), Kao (1988) on a variety of problems, including 

applications in optimizing the inventory and shelf space allocation model (Urban, 1998; Kar et al., 2001), 

have been undertaken showing that the GRG is a robust and reliable approach to solving nonlinear 

programming problems. Colville (1968) conducted a comprehensive comparison of fifteen codes from 

industrial firms and universities and Generalized Reduced Gradient (GRG) was ranked the best method 

among them. In particular, the method was found to be consistent in programs used to solve real-life 

industrial problems. 

We note that neither GRG nor any other nonlinear optimization package can guarantee finding the global 

optimum in cases where there are distinct local optima. The only exception is if the problem is convex, in 

which case any local optimum is also global. The proposed search method overcomes some of these 

drawbacks by generating several initial solutions that are used as input for the GRG method to develop a 

set of local optimum solutions. Furthermore, the search method uses a rounding heuristic to search around 

the generated local optimum solutions for the feasible solutions of our model. In the process the method 

generates a number of feasible solutions and selects the best in terms of the objective function value.  

Ramaseshan, Achuthan and Collinson (2008) developed a Category Management Decision Support 

Tool (CMDST) in the environment of Microsoft Excel using its spreadsheet capabilities, Visual Basic for 

Applications and an add-in facility called Solver (Frontline Systems).  This was done keeping in view the 

inexpensive and easy accessibility of Microsoft Excel software to independent retailers. The CMDST has 

user driven menus to enter input data and choose optimizing criteria. The CMDST is a search method 

developed for the underlying model with a user specified limit on the number of iterations. It uses the 

following call routines: Init_Solution, Random_Init_Solution, Solver and Round. At each iteration i, the 

best solution S
*
i, from a set of feasible solutions is compared with the best known solution  Sbest and 

updated if necessary.  
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The pseudo code of CMDST is shown in Figure 1. 

 

  

 

 

 

 

 

 

 

 

Figure 1.  Pseudo Code of the proposed Search Method. 

 

In the following we briefly outline the important features of the call routines used in our search method.  

Init_Solution : 

1. Fix the variable dj = j, the estimated average per unit time demand of the product j and consider 

the reduced problem (1) – (9) and (13).  

Set Iter  0, Sbest  , n
(best)

  0 

 

Sinit  Init_Solution  

     

Repeat 

Iter  Iter + 1 

 

i ←Iter 

 

Si  Random_Init_Solution(Sinit)      [Select Random Solution] 

 

S´i  Solver(Si)                  [Call Excel’s Solver] 

 

S
*
i  Round(S´i)                  [Call Rounding Heuristic] 

 

      n
(i)

  n (S
*
i)  

 

If n
(i)

 > n
(best)

  Then 

 

Sbest  S
*
i 

 

End If 

 

Until Iter =  MaxIter 

 

Output Sbest 
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2. Solve the reduced relaxed problem (1)- (9) and (13) relaxing the integer restrictions on  sj  and zj. 

Note that this relaxed problem is a Linear Programming Problem and can be solved by the Solver. 

Let the solution obtained by the Solver be denoted by Sinit = (t, sj,  zj , dj). Note that if Sinit = (t, sj,  

zj , dj) satisfies (10) to (12)  then it is a feasible solution to the relaxed  problem (1) to (13), 

relaxing the integer restrictions. 

3. When Sinit = (t, sj,  zj , dj) does not satisfy  (10) – (12) we perform the following steps: 

 (a) If sj ≤ 0.1 and 0)1( jj zs  then fix sj = 0 and dj = 0. 

 (b) If sj ≥ 0.9 and 0)1( jj zs , then fix zj = 1. 

 (c)  If 0.1< sj < 0.9 ,  0)1( jj zs  and (1-zj)≤ 0.1, then fix zj = 1. 

 (d) Revise the non zero dj by the constraint (12) using rk = max{1-zk , sk}. 

   (e) Consider the reduced problem (1) – (9) and (13) eliminating the variables 

                          that are fixed by steps (a) to (c).  

4. Repeat steps (2) and (3) until Sinit = (t, sj,  zj , dj) satisfies (2) – (13), relaxing the integer 

restrictions.  

Random_Init_Solution(Sinit): 

1. Using the initial solution Sinit = (t, sj,  zj , dj), determine for each product j,  the integer interval Ij = 

[0,  js  ].  Select a random integer k between 
4

n
 and 

2

n
. The choice of this interval was 
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made after investigating several alternatives. Then choose k products at random from the set of n 

products.  

2. Define a new reduced problem on (n-k) products by fixing the levels of the k chosen products in 

the formulation (1) to (13). If a product j is one among the k chosen products, then fix the variable 

sj as a random integer from the Interval Ij. If sj is fixed as zero, then revise the variables zj and dj 

also as zero. If sj is fixed as a non zero value, then fix zj as 1 and dj by (12). Next, construct the 

new reduced problem with (n-k) products eliminating the k products from the model (1) to (13).  

3. Apply the procedure Init_Solution to the reduced problem on (n-k) products. Let Si denote the 

solution obtained by the application of Init_solution to the reduced problem. For notational 

convenience, the solution Si will include the details for all the n products of the original problem.  

Solver (Si): 

The Solver add-in program consists of two computer programs. The first is an Excel Visual Basic 

program used to convert the spreadsheet model to an internal representation used by the second 

program. While the second program, an independent software module, optimizes the model using a 

variant of the Generalized Reduced Gradient (GRG) method, GRG2, and returns the solution to the first. 

GRG is a generalization of the reduced gradient method by allowing nonlinear constraints and arbitrary 

bounds on the variables. If the model and constraints are linear this procedure reduces to the Simplex 

Method, and if no constraints are present it is a gradient search. In the i
th
 iteration of our method the 

solution Si (generated by Random_Init_Solution) is used as an initial solution to the Solver. The output 

of Solver is dented by Si´.  

Round(Si´): 

The output Si´ of Solver may not satisfy all the integer restrictions. Under such situations, the 

routine Round (Si´) constructs the smallest closed and bounded convex set C containing the 
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solution (Si´) such that the vertices of the convex set C satisfy all the integer restrictions. A 

vertex of the convex set C is called a feasible vertex if the corresponding solution satisfies the 

constraints (2) to (13). Furthermore, this routine chooses the best solution S
*

i from a set of n
2
 

feasible solutions corresponding to randomly chosen n
2
 feasible vertices of the convex set C.  

Since the number of vertices of convex set C increases exponentially with n, the number of 

feasible vertices considered was limited to n
2
.  

We illustrate our model through an example and compare it with current practice for an 

assortment of ten products. This data represents an actual (reduced) product assortment of a medium size 

national grocery retailer obtained by Flynn (2004). The retailer provided all the relevant data including 

the monthly demand pertaining to ‘Baked Beans and Noodles’. The retailer noted that the current practice 

is to order every month. Table 3 gives the product name, product dimensions (L – length, H – height and 

D – depth), retail price (RP), wholesale price (WP) and potential demand (PD) that are used in the model 

consisting of a product assortment of ten products.  

 

Table 3: Product assortment details 

Name L H D RP WP PD

Heinz Baked Beans 420G 110 75 75 $1.22 $1.10 152

HNZ Spaghetti 420 G 110 75 75 $1.22 $1.10 44

Maggi Two Minute Noodle Chicken 85G 95 140 38 $0.69 $0.56 34

HNZ Baked Beans 220G 80 74 74 $0.98 $0.78 27

HNZ Spaghetti EXT Cheesy 420G 110 75 75 $1.22 $1.10 27

Maggi Two Minute Noodle Beef 95 140 38 $0.69 $0.56 25

Watties Baked Beans 420G 110 75 75 $1.16 $0.93 21

HNZ Baked Beans EXT CHEESY 420G 110 75 75 $1.22 $1.10 21

HNZ Baked Beans S/RED 420G 110 75 75 $1.22 $1.10 19

SPC Baked Beans 425G 110 75 75 $1.30 $1.08 18

388  

 

Table 4 presents the direct space elasticities ( j ) and cross elasticities ( jk ) generated by Flynn (2004) 

using the method proposed by Borin et al. (1994).  
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Table 4: Product assortment direct space and cross elasticities 

1 2 3 4 5 6 7 8 9 10

1 0.10005 -0.01568 -0.01630 -0.00251 -0.00402 -0.01029 -0.01699 -0.01422 -0.01881 -0.01458

2 -0.00942 0.10302 -0.01287 -0.00781 -0.00392 -0.00331 -0.01927 -0.01361 -0.01768 -0.01619

3 -0.01560 -0.00891 0.10637 -0.00237 -0.00378 -0.01463 -0.00529 -0.00199 -0.01809 -0.01687

4 -0.01770 -0.01533 -0.00829 0.22687 -0.00364 -0.01890 -0.00809 -0.00206 -0.00661 -0.01464

5 -0.01519 -0.00150 -0.00294 -0.00350 0.24393 -0.01516 -0.01247 -0.01001 -0.01248 -0.00871

6 -0.01663 -0.01943 -0.01369 -0.01995 -0.01501 0.26379 -0.01342 -0.00419 -0.01719 -0.01495

7 -0.01647 -0.01675 -0.01691 -0.00187 -0.01028 -0.01933 0.27934 -0.00825 -0.00509 -0.00486

8 -0.00344 -0.00207 -0.00189 -0.01076 -0.01912 -0.01439 -0.00201 0.28448 -0.01165 -0.00184

9 -0.01761 -0.00790 -0.01999 -0.00321 -0.01426 -0.00398 -0.00961 -0.00359 0.29577 -0.01857

10 -0.00145 -0.00285 -0.00146 -0.00836 -0.01720 -0.01463 -0.00231 -0.00422 -0.00275 0.29817  

 

For each of the products listed in Table 3 the facing constraints (Fj), maximum facings (uj) and 

ordering constraints (
min

jQ ,
max

jQ ) are respectively taken as L, 12, 0 and 1000. The available shelf space 

dimensions (length SLB , depth SWB  and height
SHB , in meters) are respectively taken as 3, 0.45 and 0.45. 

The volume of the available backroom inventory space 
bB was taken to be three times that of the shelf 

space. The unit time considered for the model is one month. Accordingly, the shelf costs ( jsC , ), 

inventory costs ( jhC , ) and ordering costs ( joC , ) are taken as 0.5, 0.05 and 0.03 (in $’s) respectively for 

all the products. All parameters were supplied by the retailer. 

 

The expected net profit was evaluated corresponding to the allocation strategies given by: (i) the 

current practice of the retailer (Borin and Farris 1995); and (ii) the solution given by our model. The 

expected net profit derived through an allocation of shelf space based upon the current practice within one 

time period (one month) is given in Table 5. 

 

 

 

 

 



 22 

Table 5: Space allocation and net profit from ‘current practice’ method 

Product Name Shelf Allocation
Backroom 

Inventory
Net Profit

Heinz Baked Beans 420G 12 0 $16.24

HNZ Spaghetti 420 G 4 0 $3.74

Maggi Two Minute Noodle Chicken 85G 1 0 $3.59

HNZ Baked Beans 220G 2 0 $4.84

HNZ Spaghetti EXT Cheesy 420G 2 0 $2.59

Maggi Two Minute Noodle Beef 1 0 $2.39

Watties Baked Beans 420G 1 0 $3.92

HNZ Baked Beans EXT CHEESY 420G 2 0 $1.92

HNZ Baked Beans S/RED 420G 2 0 $1.58

SPC Baked Beans 425G 1 0 $3.31

$44.13  

 

Table 6 provides the optimal solution given by our model where the optimal review period works out to 

be 2.01 (approximately representing eight weeks). 

 

Table 6: Space allocation and net profit determined by the model 

Product Name Shelf Allocation
BackroomI

nventory
Net Profit

Heinz Baked Beans 420G 10 17 $39.36

HNZ Spaghetti 420 G 2 20 $9.05

Maggi Two Minute Noodle Chicken 85G 2 5 $7.91

HNZ Baked Beans 220G 1 15 $8.99

HNZ Spaghetti EXT Cheesy 420G 1 16 $4.95

Maggi Two Minute Noodle Beef 1 14 $4.93

Watties Baked Beans 420G 1 4 $8.42

HNZ Baked Beans EXT CHEESY 420G 1 6 $4.19

HNZ Baked Beans S/RED 420G 1 0 $3.79

SPC Baked Beans 425G 1 0 $7.39

$98.98  

 

Suppose that the retailer uses the shelf space allocation provided by Table 6, with zero backroom 

inventory and one month review period, then the total net profit for a period of length 2.01 is $92.70 as 

compared to $98.98 (refer to Table 6) given by our model. Furthermore, the current practice evaluated for 

a period of 2.01 yields a net profit of $88.70. Thus the percentage increase in net profit by our model over 

the allocation methods (i) and (ii) above are respectively 11.59% and 6.77%. This increase is of 
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significant value to a retailer considering the thin margins under which they operate in the competitive 

retailing environment. 

 

The above results highlight the significant contribution the optimal review period makes in 

increasing the net profit. In other words, the current practice does not ensure the best profit in the absence 

of the optimal review period. If the retailer notices significant changes in his operations, then at the end of 

the optimal review time, the retailer has the option to change the parameters and resolve the model. 

 

In practice, the optimal review period given by the model may not satisfy the delivery 

restrictions. We use the above example to illustrate how this situation can be overcome easily. Suppose 

that the last delivery is made on 20 February, 2006, then according to the above solution the next delivery 

should be on 17 April, 2006. This date, however, falls on Easter Monday – a public holiday when 

deliveries are not made. The retailer must adjust the review to occur on either week seven or week nine, 

whichever is feasible and provides the best net profit. In this case a review in week nine (24 April) 

provides the best profit of $107.79. This translates to an increase in net profit of 8.07% over the current 

practice, and is not far off from the near-optimal solution. This demonstrates that the model is flexible 

enough to accommodate the administrative restrictions of delivery schedules. 

Model assessment  

The following discussions provide an assessment of the performance of our model through simulation 

of three trials of product categories of size 6, 10 and 14. Each trial of product category was solved 10 

times. The data for product assortment categories was randomly generated from a category of size 300 

provided by an independent retailer. For each set of trial data of assortment categories, the problem was 

solved by the following three methods. 

1. Method 1: current practice solution; 

2. Method 2: our model restricted to the current practice assortment; and 
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3. Method 3: our model without any assortment restrictions (i.e. products are allowed to be excluded 

from the assortment). 

Of the three methods used, Method 3 produced the best solution yielding the maximum total net profit.  

The percentage increase in the net profit provides a good comparison of Methods 2 and 3 with the current 

practice. Results of the simulation are summarized in Table 7, giving the mean and standard deviation of 

the percentage increase in net profit.  

 

Table 7: Product assortment model: comparison with current practice 

Number of 

Products in 

the Product 

Assortment 

Allocation Method 

Number 

of Runs 

Percentage Increase in Net Profit from 

the Solution Using Current Practice 

Mean 

Standard 

Deviation 

Min. Max. 

Six 

Method 2 10 
10.74 6.81 0.14 20.35 

Method 3 10 
10.77 7.63 1.41 22.13 

Ten 

Method 2 10 
3.32 0.48 2.65 3.67 

Method 3 10 
22.01 12.92 9.60 49.86 

Fourteen 

Method 2 10 
11.74 6.73 3.38 23.73 

Method 3 10 
23.71 10.41 3.38 34.20 

 

 

As can be seen form Table 7, our model consistently outperformed the current practice allocation. 

The significant variation in the percentage increase of the net profit is observed from the entries in the 

minimum and maximum columns of Table 7. This illustrates the inconsistent performance of the current 

practice. 
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Table 8: Product assortment model: comparison with Borin et al. (1994) 

Number of 

Products in 

the 

Assortment 

Percentage Increase in ROI from the Solution Using 

The Method of Borin et al. (1994) 

Mean Standard 

Deviation 

Min. Max. 

Six 3.12 2.43 -0.19 5.95 

Ten 8.29 2.13 4.33 10.65 

Fourteen 4.75 2.21 2.06 8.68 

  

We have also compared our model with the benchmark literature model of Borin et al. (1994). 

We have adapted our model by utilizing all the available parameters and used the values given in their 

paper. Table 8 shows the percentage increase in the return on inventory (ROI) of our model over that used 

by Borin et al. It can be seen that our model is outperformed only once. In all other instances our method 

proved to be superior with the mean percentage increase in ROI ranging from 3.12% to 8.29% and a 

maximum increase of up to 10.65%. 

Summary 

Our model provides a significant improvement in the net profit compared to that of the current 

practice and the literature benchmark. Combining the three trials we note that the average percentage 

increase in the net profit was 13.72. Also, we observe that in at least 30% of instances the increase in net 

profit is more than 20%. This result highlights the benefit of using our model. 

 

Figures 2 and 3 present the percentage improvement of the net profit obtained by our method 

compared to the solution obtained by the current practice, across thirty runs. As can be seen from Figures 

2 and 3, the performance of the current practice allocation is highly fluctuating, with seventy percent of 
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the allocations generated by Method 3 resulting in at least a 10% increase in net profit over the current 

practice (thirty-three percent for Method 2). 
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Figure 2: Increase in net profit in comparison with the current practice 
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 Figure 3: Increase in net profit in comparison with the current practice 
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The volatile nature of performance of the current practice raises questions regarding its usage. 

One of the common features of the retail industries is narrow profit margins that call for a consistently 

well performing allocation method. Thus our method would be of great benefit to an independent retailer 

providing an opportunity to change the current practice and increase the net profit considerably. Note that 

Method 3 gives an average improvement of 18.83% (indicated by the horizontal line in Figure 3) over the 

current practice. For an independent retailer, Method 3 would be a natural choice to determine shelf space 

allocations. 

Parameter sensitivity analysis 

The parameters of direct shelf space elasticity, cross elasticity and consumer resistance are 

estimated by the process described by Borin et al. (1994) and they are assumed to be the ‘true’ values. To 

understand the robustness of the model we perturb the true values of the input parameters by specified 

amount, resolve the model and perform sensitivity analysis of the results obtained. The process suggested 

by (Borin and Ferris 1995) was used to measure the sensitivity of the model. 

 

All the parameters were perturbed uniformly in the same direction, either positive or negative 

from the true value. The corresponding sensitivity analysis of the results showed that 50% deviation in 

either direction of the true value of the parameters resulted in approximately 15% variation from the net 

profit yielded by the true value of the parameters. A uniform 10% parameter estimation error yielded 

around 4% variation in the expected net profit using the true values.  

 

Next, each parameter was perturbed randomly in any direction, positive or negative, from its true 

value. The corresponding model was solved and its solution was compared with the solution obtained for 

the true value. A mean absolute difference of 17.17% (from the true parameter values) yielded 

approximately 7.69% variation in the net profit from that of the solution obtained from true values of the 

parameters. A higher mean absolute difference of 66.47% in the parameter values produced around 
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28.16% variation in the expected net profit. Thus the model can be considered as a robust model since in 

real life the error in parameter estimation may not be very large. Our results are similar to that of Borin 

and Farris (1994, 1995). 

CONCLUSIONS  

In the current competitive environment with shrinking margins retailers look for every 

opportunity to reduce the costs and improve performance. Retail space in general and shelf space in 

particular, account for a significant element of retailers’ costs. Traditionally, these operational factors 

were not integrated with the market factors while resolving the retailers’ management problems. This can 

be attributed to the weakness in the current shelf space models which solely depend on marketing 

variables. The enormous benefit derived from the proposed integrated model was clearly demonstrated 

through model assessment and sensitivity analysis. In particular our model produced an average of 10 to 

20 percent improvement over the current industry practice and an improvement of 3 to 8 percent over the 

model of Borin et al. (1994).  Our model could be extended further by distinguishing between the display 

features of the shelf such as eye level, middle level and top level. The implementation of our model is 

limited by the capacity of the basic Excel Solver.  
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