

© 2012 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

An Integrated System for Autonomous Robotics Manipulation

J. Andrew Bagnell, Felipe Cavalcanti, Lei Cui, Thomas Galluzzo, Martial Hebert,
Moslem Kazemi, Matthew Klingensmith, Jacqueline Libby, Tian Yu Liu,
Nancy Pollard, Mihail Pivtoraiko, Jean-Sebastien Valois and Ranqi Zhu‡

Abstract— We describe the software components of a robotics
system designed to autonomously grasp objects and perform
dexterous manipulation tasks with only high-level supervision.
The system is centered on the tight integration of several core
functionalities, including perception, planning and control, with
the logical structuring of tasks driven by a Behavior Tree
architecture. The advantage of the implementation is to reduce
the execution time while integrating advanced algorithms for
autonomous manipulation. We describe our approach to 3-
D perception, real-time planning, force compliant motions,
and audio processing. Performance results for object grasping
and complex manipulation tasks of in-house tests and of an
independent evaluation team are presented.

I. INTRODUCTION

Our work focuses on developing software that enables
a robot to autonomously manipulate, grasp, and perform
complicated everyday tasks with humans providing only
high-level supervision. This work was performed as part
of a DARPA Autonomous Robotic Manipulation–Software
track (ARM-S). Six teams, each with identical hardware,
participated in a fast-pased initial phase centered around
grasping and manipulation challenges. Grasping centered
around detecting, localizing and grasping everyday objects
like screwdrivers, hammers, shovels, that are typically small
relative to the hand. The actual objects during testing are
often novel variants of the class of object, e.g., testing on
a new screwdriver never seen before. In addition, objects
with small size relative the hand were deliberately selected
to showcase the dexterity of our approach.

More advanced manipulation challenges included drilling
into a block of wood at spot indicated by a red dot, unlocking
and opening a door, hanging up a phone, and turning a
flashlight on. The performance of each team was measured
by the successful task completion percentage, as well as by
the average execution time over multiple trials. We attributed
our successes to design decisions that enabled integration of
state-of-the-art perception and decision making algorithms
and an architecture supporting easy composition of primitive
behaviors into complex and robust manipulation programs.
In this paper, we present the details of our design and
implementation.

Our choice of algorithms and overall design is influenced
by two critical elements. First, the execution speed of the
software affects the system’s ability to react to the pro-
gression of events. Hence, a speed up allows errors to be

‡All the researchers are with the Robotics Institute at Carnegie Mellon
University, Pittsburgh, PA, USA.

Fig. 1: Robotics manipulation platform.

caught faster, minimizing plan changes and resulting actions.
Second, the quality and performance of the algorithms
affect the feedback information that is propagated through
the system, and in turn, the sophistication of subsequent
data consumers to deal with error sources. The robotics
manipulation architecture proposed here focuses on both
accuracy and speed. This comes from both the selection of
algorithms and organization of the software architecture.

The robotics platform provided for development is shown
in Fig. 1. Mounted on top of the perception head is a high
resolution (5 mega pixel) monocular color camera with a
fixed focal length lens. A Bumblebee2 R© stereo pair and an
SR4000 R© time-of-flight camera provide 3-D sensing capa-
bility. Two Audio-Technica cardioid condenser microphones
form a stereo pair, which act as ears for the perception head.
The head is mounted on a 4-axis neck capable of pan, tilt and
forward motions for sensor positioning. Attached to the fixed
torso is a 7-DOF Barrett WAM with a 3-fingered robotic
hand. The hand is attached to the WAM through a 3-axis
force-torque sensor. The palm and each finger is equipped
with a 24-cell pressure sensor.

Related Work: The field of robotic manipulation is com-
prised of numerous fully integrated (mobile and non-mobile)
systems designed for performing grasping and manipulation
tasks. A detailed review of all those platforms and related
research is beyond the scope of this paper, and here we only
mention some of the efforts towards the development of fully
autonomous systems that are closely related to our work.

Although the existing manipulation platforms share simi-
larities and differences in hardware design, they are mainly
distinguished by their software architecture, the variety of
manipulation tasks they can accomplish, and their level of

2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 7-12, 2012. Vilamoura, Algarve, Portugal

978-1-4673-1736-8/12/S31.00 ©2012 IEEE 2955

256436k
Rectangle

256436k
Rectangle

autonomy. A force sensing and compliant humanoid, called
Domo [1] was developed in the Humanoid Robotics Group at
MIT as a research platform for exploring general dexterous
manipulation, visual perception, and learning tasks. As a
main distinction, Domo employs Series Elastic Actuators in
its arms, providing natural compliance for safe interactions
with the environment. Researchers at UMass Amherst have
developed a variety of platforms for robotic manipulation,
e.g., UMan [2] and Dexter [3], that integrate perception
and manipulation capabilities. Similarly to our system, both
UMan and Dexter use the combination of Barret WAM arms
and hands as their manipulators which provide compliance
through cable driven joints, requiring active control of com-
pliance using accurate force sensing. Our system implements
a number of active force compliant motions towards grasping
and manipulation of objects[4]. HERB, developed at the
Personal Robotics laboratory at Carnegie Mellon University
[5], is a mobile manipulation platform developed for per-
forming manipulation tasks in human environments. HERB
has been employed to perform daily tasks such as fetching
objects by integrating perception and manipulation planning,
and open-loop execution of planned motions. Finally, the
PR2 platform developed at Willow Garage [6] provides a
research and development platform based on the Robotic
Operation System (ROS) for robotic manipulation. Each of
the existing platforms try incorporate some aspects of au-
tonomous robotic manipulation to accomplish specific tasks
with less focus on full integration of all required components
including: perception, planning, force compliant motions,
and closed-loop execution of planned motion. In our design
we paid careful attention to the choice of these techniques as
well as their integration to achieve a high level of robustness
and repeatability for a variety of tasks as demanded by the
competitive nature of the DARPA ARM-S program.

In Section II we give an overview of the system design
and the main components related to perception, planning,
control and behavior execution. Section III covers statistical
performance of our system at various tasks. Finally, the
conclusion is found in Section IV where a summary of our
work, together with future improvements are described.

II. SOFTWARE DESIGN

Our software relies on several open-source packages that
are ubiquitous in robotics. We use the Robot Operating
System (ROS) for inter-process communication between the
main application, all the sensor interface applications and
our robot controller. The Open Robotics Automation Virtual
Environment (OpenRAVE) is primarily used for storing
the environment representation of the manipulators, sensor
positions, and other scene models. We use the OpenWAM 1

software to control both the WAM arm and Barrett.
The design tenets of our software are rapid percep-

tion/decision making feedback loops, simple composi-
tional architecture, and globally accessible state containers.

1The software and documentation for OpenWAM can be found at
http://personalrobotics.ri.cmu.edu/intel-pkg/owd/html

(a) (b)

(c) (d)

Fig. 3: Windows from the system user interface. a) 3D graph-
ical renderer of the OpenRAVE environment. b) Behavior
visualization and execution. c) Image renderer d) Sensor data
plotter.

Through the use of ROS, we implemented data filtering
algorithms to automatically process data coming from, or
sent to, various sensors and actuators. For example, images
from the stereo camera are rectified and placed into an
image cache for later consumption by the vision algorithms.
Complex tasks are built upon grouping simple and rapid-
execution action primitives into behavior tree structures.
Finally, the use of globally accessible data “blackboards”
simplifies access to previously saved states without passing
data pointers between functions.

The software diagram as implemented is shown in Fig. 2.
At the top level, a behavior tree orchestrates the execution
of tasks through direct access to the data processing classes.
The OpenRAVE data structure stores the environment states,
which are constantly updated from telemetry, pose filters,
and from perception algorithms. The robot interface class
abstracts connections to various perception sensors, neck
control, and to the OpenWAM controller. The sensor class
stores a list of images for easy access by the perception algo-
rithms. Finally, a graphical user interface provides behavior
execution control, sensor visualization and data plotting,
together with rendering of the OpenRAVE environment.
Typical windows from the user interface are found in Fig. 3.

The following subsections contain the details of the be-
havior architecture for tasks execution, and also the planning,
control and perception modules implemented.

A. The Behaviors Architecture for Robotic Tasks (BART)

Our system development required a method of task or-
chestration and execution that facilitated re-use and enabled a
team with broad skill sets to contribute easily. Given the task
complexity and the need to adjust plans, we implemented
a behavior tree [7] based architecture to help meet these

2956

256436k
Rectangle

Fig. 2: Software diagram.

challenges. Behavior tree are a graphical modeling language
primarily used in software engineering. They facilitate the
representation of organizational elements in a large-scale
system; an ideal tool for building complex manipulation tasks
from primitives with limited capabilities. This concept form
the basis for our task execution architecture library called
BART 2 , Behavior Architecture for Robotic Tasks.

A behavior tree is a hierarchical structure of individual
behavior nodes, or simply behaviors. A behavior is a simple
first class function object that accepts nothing as input and
returns a boolean success value. Each behavior is responsible
for carrying out some action or checking some condition
for the system. The lowest level of the tree is made up
of leaf behaviors. These behaviors connect the tree to the
robotic system. They provide a direct interface mechanism
that allows feedback information to flow into the tree and
data to be output from the tree. Composite behaviors form the
higher levels of the tree. They contain both leaf behaviors and
sub-composite behaviors. The role of composite behaviors is
to structure the way in which sub-behaviors are executed.
For example, some composite behaviors can execute sub-
behaviors in sequence, and others can execute sub-behaviors
in parallel for concurrency.

Behavior trees provide a scalable way to organize the
logic and execution of any process. The main difference
between a typical programming language and a behavior
tree is a dynamic object rather than static code. Therefore
it is possible to construct and restructure program execution
at run-time rather than at compile time, in ways similar to
embedded dynamic scripted languages (e.g. Python, PHP,
Ruby). The addition of real-time introspection facilitates the
development of behavior trees by providing a way to observe
what the system is executing at any time. By seeing which
behaviors are running, which have succeeded and which have
failed, one can quickly determine how the overall task is
performing.

Another benefit is the possibility to implement algorithms
that modify the tree structure on-line in order to change
how the system performs. For example, the system can
automatically plan or learn sequences of behaviors that
improve or optimize a certain task [8].

Other architecture libraries such as SMACH [9] employ hi-

2The C++ software library can be found at
https://code.google.com/p/bart/

erarchical state machines to organize complex robotic tasks.
However, there are clear advantages to using behavior trees
over state machines. The main advantage is that individual
behaviors can easily be reused in the context of another
higher-level behavior without needing to specify how they
relate to subsequent behaviors. Behavior execution is defined
by the context of the parent behavior. In contrast, a state in
a hierarchical state machines (HSM) requires the definition
of transitions to subsequent states and therefore must be
redefined with new transitions when used in a different
context. Ease of reuse was the primary reason we chose
behavior trees rather than an HSMs for task execution.

Behavior trees have also become popular in the game
development industry [10]. Primarily they have been used
as an alternative to existing game AI systems, which were
previously implemented by finite state machines (FSMs) and
in particular HSMs[11].

Types of behaviors: In BART, the behavior tree is im-
plemented as a binary decision tree. Each composite behavior
may contain only two child behaviors that are executed
according to a binary logical operator that is specified by
the parent composite. Typically, there are two types of
composite behaviors, sequences and selectors. Sequences
execute a set of child behaviors one-after-the-other. If one
of the child behaviors fails in the sequence, no further child
behaviors are executed and the entire sequence behavior
fails. This sequence behavior is equivalent to the short-
circuiting C++ logic operator ”&&”. Therefore, in BART,
sequences are implemented by the ”&&” syntax, which has
been overloaded to combine behavior objects together.

With selectors, each child behavior is executed one-after-
the-other until one of them succeeds. As soon as a child
behavior succeeds, the selector immediately returns success.
If no child behavior succeeds then the selector returns failure.
This is equivalent to the short-circuiting C++ logic operator
”||”. Like the sequence, we overloaded the ”||” syntax to
implement selectors.

BART also implements several other composite behaviors
that enable more flexibility. For example, BART has a
parallel composite that can execute multiple child behaviors
simultaneously in separate threads. We have also imple-
mented the non-short-circuiting versions of the and and or
logic operators, which enables a composite to execute all
child behaviors and then return the complete logic result to

2957

256436k
Rectangle

indicate success or failure.
In addition to composite behaviors, BART also supports

behavior decorators. These behavior decorators can wrap any
existing behavior with additional functionality. For example,
one can apply a Loop decorator to a behavior to repeat it a
certain number of times or until it succeeds. Other decorators
such as logging or announcement are used to store or print
out additional debugging information as the behavior tree is
executed.

To illustrate its simplicity, we include three lines of
code from the shovel grasping task. The first line uses the
Announce decorator to warn the operator that the system has
started an object search routine, while concurrently moving
the arm to an initial configuration using the ∗ operator. On
the second line, the Loop operator will repeat the routine
until successful and then it will sequentially (through the &&
operator) plan for grasp and then execute the planned motion.
Finally, the third line shows how composite behaviors are
launched using the execute method. Note that the non-bold
names are leaf behavior pointers called by the composite
behaviors.

1) Announce(Behavior(findHammer), ”Search for Hammer”) *
Behavior(moveToWing);

2) Loop(findHammerAndReadyArm) && Behavior(planGrasp) &&
Announce(Behavior(graspHammer), ”Caution, moving arm”);

3) findAndGraspHammer.execute();

B. Perception Subsystem

Autonomous manipulation requires identifying and local-
izing relevent workspace objects. This information is needed
for motion planning, to determime goal locations for the
manipulator end-effector, and for obstacle avoidance. This
section explains the algorithms and techniques employed for
these perception requirements.

1) Object Identification and Localization: Our perception
software is comprised of several behavior layers that break
down the process into three steps: detection, verification and
localization.

In the detection step, the neck actuators are used to
position the sensors to survey the workspace. Individual 3-D
point clouds are stitched together and analyzed to segment
the background table from potential candidate objects. A
plane detection and fitting algorithm using a RANSAC [12]
filtering method is used to distinguish points belonging
to the table from others belonging to object candidates.
Object candidate points are then grouped according to image
connected components. Groups having an area that is close
to known objects are kept for further analysis. The average
point location of filtered clusters is stored into a list to be
processed in the following step.

During the verification step, each candidate is re-sampled
by centering the sensor view on its estimated location, and
repeating previous detection process. The calibrated camera
center line is aligned with the candidate location by comput-
ing thecompletely neck pan and tilt angle inverse kinematics.
This alignment minimizes sensor distortion effects and helps
ensure that the object will be completely contained in the
field of view. After alignment, the background subtraction

process is repeated and if the remaining cluster size is
still within the appropriate size range, the object candidate
is considered “verified” and the next step, localization, is
executed.

For localizing known objects we match the observed data
with coarse 3-D geometric templates that are generated
a priori. The templates cover expected orientations of an
object at a 5 to 10 degree resolution. Observation-to-template
similarity is correlated by segmenting and comparing depth
information. The result is an estimated object pose and match
“quality” score that is used to verify identification of the
desired object and its location. After the initial estimation,
the localized pose is refined through a viewpoint constrained
Iterative Closest Point (ICP) algorithm that corresponds 3-
D points from the object model to the observed 3-D data.
The model point set is reduced such that only points visible
from the estimated camera viewpoint are included in the
refinement. This eliminates the effect of model and sample
outliers degrading the pose regression. If there are multiple
object candidates, the one with the best match “quality” score
is taken as the solution. Fig. 4 presents the flow sequence of
this localization process.

Additional 2-D vision information– including expected
colors and edge/texture statistics– are used to improve the
match score, particularly on object classes that are difficult to
detect purely geometrically. Such data reduces the generality
of the approach, but improves accuracy on objects for which
stereo and time-of-flight data is sparse or inaccurate.

C. Hand Tracking

Hand tracking is a necessary element to reduce errors
introduced by inaccuracies in the WAM joint positions. Our
approach is to track the arm using an edge detection method
that is based on the RAPiD[13] algorithm. The robustness
of the method was improved through several modifications.
First, we augmented the algorithm to use both images from
our stereo camera such that only consistent edges from the
left and right images are preserved. Second, we extended
the algorithm with multiple re-projection iterations in a
tracking fashion to reduce edge location uncertainty. Third,
the algorithm is run multiple times for each frame with a set
of candidate starting position seeds in order to avoid local
minima. From those seeds, we pick best match according
to a linear regression classifier that was trained on labeled
convergences. Currently, our hand tracking system runs at
4fps and achieves pose estimation precision of 5 mm and
3 degrees. In Fig. 5 we summarize this process in a block
diagram.

D. Sound Classification of Drill Speed

The stereo pair of microphones on the perception head
is used to classify sounds that the arm or hand might
induce while interacting with objects during various tasks.
This knowledge provides feedback to aid in successful task
execution. For example, sound analysis can be used to detect
whether the trigger of an electric drill has been pressed fully
or not. Hence, the speed of the drill is directly correlated

2958

256436k
Rectangle

Fig. 4: Perception localization pipeline.

Fig. 5: Robot arm tracking method chart.

Fig. 6: The processing pipeline for sound classification.

to how far the drill lever is depressed by the fingers. It is
easier to hear the drill speed, rather than try to see the finger
position with the cameras or feel the finger position with
pressure and torque sensors.

We discretized the speed of the drill into 3 states: low
speed, medium speed, and high speed. This allows us to
classify the sound of the drill into one of three classes.
The task of turning on the drill is only successful if it
reaches the high speed class. The processing pipeline for
this classification is depicted in Fig. 6.

The raw signal is sampled at 44.1 kHz with a 16 bit
word. The digitized signal is then split into short windows,
around 0.5 second in length. An FFT is used to convert
each window into the frequency domain, and then various
feature vectors are extracted from both the frequency domain
and the original time domain. The feature vectors from the
right and left stereo pair are averaged together. These vectors
are then used as inputs into multiple binary Support Vector
Machines (SVMs), one for each pair of classes. The binary
SVM outputs are then combined into a multi-class classifier
using a Decision Directed Acyclic Graph. The SVMs were
trained offline using hand labeled data, by running trials with
the drill at each of the three speeds. The classifier can then
run online using the trained models. Refer to [14] for more
details on the technical approach.

E. Motion Planning

The motion planning component of the system is respon-
sible for computing trajectories for the arm to complete
grasping and manipulation tasks. For planning algorithms,
we specify the tasks in the robot operational space [15].
This space is more suitable for collision detection and for
computing the desired hand motion. However, the mapping
between the operational into a configuration (C) spaces of
the manipulator is required for arm control, where joint angle
trajectories are used.

We approached this problem in a hierarchy consisting of
three layers, where the lowest level planner is executed first,
and subsequent higher level, i.e more complex and slower,
planners are only executed if the previous layer fails. At
the root of the hierarchy is the fastest operational space
planner based on inverse kinematics for direct linear hand
motions. This planner is capable of detecting trajectories that
are in collision along its path, although it is not able to avoid
them. The second planning layer is a variant of the CHOMP
algorithm [16]. It is capable of modifying trajectories so to
avoid collisions using a covariant gradient descent. Finally,
the third layer uses a global planner based on the Bi-
RRT [17] algorithm, enabled with an extension to satisfy
end-effector pose constraints [18] in order to accomplish
certain tasks, such as carrying objects without changing their
orientation during the motion. The details of all the layers
of planning are presented in the following subsections.

1) Inverse Kinematics: The inverse kinematic planner is
the first to be executed. It computes a set of configurations
that correspond to a given workspace pose of the end-effector
using the IK-fast method [19]. Each element qIK in the
resulting set of configurations is then tested for collision.
The configurations that are free from collision (satisfy the
free-space constraint) are further sorted based on a task-
dependent utility function, FIK : C → R, that attempts to
assess the quality of a configuration with respect to the task
being accomplished. For example, this assessment may be
arm manipulability at qIK [20] or proximity to obstacles. For
some tasks, the initial (e.g. stowed) arm configuration, qI ,
may be factored into FIK : for example, it may be preferred
to minimize the C-space distance between qI and qIK or
obstacle proximity along the geodesic connecting the two
configurations, computed using operational space control in
Section II-F.1. The feasible qIK are stored in a priority queue

2959

256436k
Rectangle

based on their FIK value. Using the highest ranking qIK ,
the trajectory from qI to qIK is sampled at a regular intervals
for collision, joint limits and singularities. If this operation is
successful, the trajectory is used, otherwise the next planner
in the queue is attempted.

2) Covariant Optimization-based Planning: This ap-
proach utilizes numerical optimization in order to compute a
trajectory that is both free of collision and smooth. An initial
trajectory is first chosen based on a heuristic; for example a
geodesic in C-space, or a straight line in the robot operational
space. Suppose the endpoint configurations of this trajectory
are qI and qF . Then the problem of computing a feasible
trajectory can be stated as minimization of a certain cost
function F under the constraint that the trajectory is free
of collision. We assume a time-independent cost function
F : Q × U → R assigns cost to steering the system with
a control u while it is at configuration q ∈ C. In practice,
cost may be related to time duration of the associated
control, energy consumed by the system during motion, risk
experienced, etc. The objective function is typically designed
such that the robot’s perceptual information is mapped into
a scalar value that is consistent with the desired notion of
motion cost. We define the cost function as a weighted sum
of component functions, representing a number of desired
performance criteria:

F(qI , u) =
k∑
i

wifi(qI , u) (1)

for a weight vector w ∈ Rk. Several components of the
cost are most relevant in this setting, including obstacle,
smoothness and end-effector motion constraint costs. These
are given below in this sequence.

The smoothness cost, fs(τu(t)), is a function of the
trajectory. This function is a sum of squared derivatives. For
each derivative d = 1, . . . , D, we assume a finite differencing
matrix Kd and represent smoothness cost as a sum:

fs(τu) =
1

2

D∑
d=1

wd‖Kdτu + ed‖2 (2)

where constants ed represent the boundary values qI and
qF , and wd are weights for each of the cost component. The
smoothness cost can be re-written as quadratic form:

fs(τu) =
1

2
τTu Aτu + τTu b+ c (3)

for the appropriate constants, including a positive definite
A. The latter will also be used as the metric for covariant
gradient descent.

The collision cost function is assumed to be continuous
and differentiable. One approach to obtaining such a cost
function for representing environment obstacles is to use a
signed distance field d : R3 → R which gives the distance
from a point x ∈ R3 to the nearest boundary of an obstacle.
Values of the distance field are negative inside obstacles,
positive outside, and zero at the boundary.

Discrete variants of d(x) can be derived that operate on
a voxel grid representation of distance fields. A number of

fast techniques to compute discrete distance transforms exist;
for example, a method due to [21] has linear complexity
in the number of voxels in the grid. Unfortunately, this
computation still takes several seconds on modern hard-
ware for typical manipulator reachability regions, even at
the minimal admissible voxel resolution. Moreover, it is
beneficial to increase this resolution as much as possible,
as it improves convergence of the optimizer. Therefore, it is
beneficial to utilize boundary representations of the objects
with geometric primitives (such as spheres, boxes, etc.) for
which distance computations have a closed form.

Finally, it is beneficial in many settings to impose a
workspace cost on certain robot motion. In the context of ma-
nipulation, visual servoing and other applications, one might
desire to constrain the end-effector of the manipulator to be
in certain region in SE(3). As stated, any continuous and
differentiable cost function can be utilized in this approach.
Given a certain element of the robot body, b ∈ B and its
workspace pose, we can setup a per-dimension cost function
that is 0 if b satisfies the desired constraint, otherwise the
cost is quadratic with respect to distance from the constraint.
Using the x- dimension as an example, suppose we desire to
limit b’s pose such that its x-coordinate is greater than xmin,
we can define a workspace cost potential:

c (x) =

{
(x− xmin)

2 if x < xmin

0 otherwise
(4)

In practice, we found that the performance of the planner
can be sensitive to the initial trajectory seed, and we generate
a sequence of a few different initial trajectories based on the
contextual information from the environment. To minimize
the number of initial trajectories attempted, the order of
the elements in the sequence is ranked by leveraging the
submodular nature of these attempts. Each trajectory in the
sequence is selected to maximize the marginal improvement
in planning success of the sequence, assuming all previous
elements have failed.[8]

F. Control and Grasping

1) Operational Space Control: We employ a velocity-
based operational space formulation to generate the desired
joint velocities q̇d for a given robot end-effector velocity ẋd.
We favor this approach due to its overall good performance
compared to other variations of operational space control
such as presented in [22].

The desired joint velocities for a given hand velocity ẋd,
are calculated using Liegeois’ resolved motion rate control
approach [23] as

q̇d = J+ẋd + λ(I− J+J)∇H(q), (5)

where J is the robot Jacobian with its pseudo-inverse denoted
J+, λ is a gain value, and H(q) is a null-space cost/utility
function. Different criteria can be used to define H(q)
depending on the objective, e.g., staying away from joint
limits or kinematic singularities.

2960

256436k
Rectangle

The desired motors torque command is calculated using
the computed torque control method with an added velocity
feedback [22] to track the desired joint velocities in (5),

τ = M(q)q̈d +C(q, q̇) + g(q) +Kq,d(q̇d − q̇) (6)

where M(q) is the inertia matrix, C(q, q̇) is the Corio-
lis/centrifugal vector, g(q) is the gravity vector, Kq,d is a
gain matrix, and τ is the joints torque vector. The desired
joint acceleration q̈d is obtained by differentiating q̇d.

The end-effector velocity is determined on a task by task
basis, but typically it performs position-based servoing of
the end-effector to a desired pose xd in task space until
contact with an object. In such case, the desired hand velocity
is calculated as ẋd = −Kx,p(x(t) − xd) where Kx,p is
a positive proportional gain. We use the above operational
space control formulation to achieve the desired end-effector
velocities required by many of the manipulation behaviors.

2) Force Compliant Grasping Primitives: Although our
perception system provides reasonable object pose estima-
tion, the combination of localization and kinematic errors
create a situation where the hand is positioned far enough
from its intended target to affect the manipulation perfor-
mance. Such inaccuracy can be dealt with by using additional
sensing information from the tactile and force/torque sensors
to determine when the hand is in contact with certain objects.
Despite promising progress in geometric grasp planning and
the efforts devoted to analyzing grasp properties, challenges
still remain in real-world manipulation tasks because these
method typically fails to consider opportunities presented
by contacts with the environment. In our view, supported
by our empirical studies, two factors must be considered
for achieving robust grasps: 1) dealing with object-to-hand
relative positioning uncertainties, and 2) handling contacts
between the robot and objects in the environment using
compliant control methods.

Most approaches to grasping attempt to model uncertainty
and devise plans for it. In contrast, we believe that the
effect of uncertainty can be ignored simply by caging the
objects and using compliant interactions between the robot
and the environment. Because we allow contact with the
environment, compliant controllers are crucial to ensure
safety of the robot. Our approach is motivated by anecdotal
experiments with human subjects which demonstrate similar
behavior in human grasping of small objects. The use of
compliance for grasping small objects is one of the main
contribution of our work.

We present three simple, yet effective, manipulation prim-
itives for robust grasping (and releasing) of small objects
from support surfaces [4]: (1) Compliant Finger Placement
for bringing all fingers safely in contact with the support
surface, (2) Compliant Object Grasping for maintaining the
contact between the fingertips and the support surface during
the finger closure, and (3) Compliant Object Release for
releasing and placing the object gently on the support surface
using a method similar to step 2. An example of landing and
grasping primitives is shown in Fig.7. In these primitives
the hand is controlled in compliant with the forces exerted

Fig. 7: Grasping of a hammer composed of three steps: com-
pliant landing, compliant grasping, and compliant releasing

Fig. 8: Steps for drill grasping using compliant manipulation:
touch shaft, touch base, capture shaft, and actuate the button.

to the fingertips while the fingers make contact with the
support surface during landing, grasping, and releasing. We
encourage the reader to study [4] for more details regarding
the implementation of these primitives.

We conducted extensive grasping experiments on a variety
of small objects with similar shape and size. The results
demonstrates that our approach is robust to localization
uncertainties and applies to many real-world objects.

3) Force Compliant Manipulation Primitives: The salient
feature of the manipulation tasks is that position uncertainties
caused by the perception system and robot positioning errors
far exceed the accuracy required by the tasks,and visual
assistance is not available to resolve the uncertainty due to
low resolution and/or occlusion. Under this scenario, It is
necessary to apply a localization strategy to dealing with the
uncertainties using force sensing.

We developed hand coded behaviors to utilize guarded
moves to effectively reduce pose uncertainties between the
perception system outputs and the hand location. Guarded
moves are known to be much more accurate than the
absolute motion with respect to the world frame to place
the end-effector to the desired configuration. A sample force
compliant motion sequence is given in Fig. 8. It illustrates
the steps used to capture a known drill, and later to pull
on the drill button to active it. The sequence starts with the
hand fully open and translating towards the drill shaft until
a contact is made. This is used to reduce uncertainty in the
plane of the table. Next, the bottom finger is closed, and
the hand is moved down until the finger contacts the bottom
battery. The relative height of the button is thus established.
Finally, the remaining fingers are closed to firmly capture
the drill and actuate the button.

III. TASKS AND PERFORMANCE

Throughout the development period, the system was tested
on both object grasping, and on more complex, lengthier,
manipulation activities. For grasping, success was measured
by the robot’s ability to lift an object off a table surface,
and gently place it over a letter-sized paper target (without
dragging the object). The typical object travel distance was
between 40 to 50 cm. Test objects were selected for their
diversity in shape, texture and mass. Common household
objects that were used are shown in Fig. 9.

2961

256436k
Rectangle

Grasping Rock Maglite Ball Radio Driver Hammer Shovel Pelican Floodlight

Num. Trials 26 24 32 24 30 35 33 37 25
Success Rate 100% 92% 100% 88% 92% 97% 82% 97% 84%

Manipulation Stapling Flashlight On Open Door Unlock Door Drill Hole Hangup phone

Num. Trials 36 32 36 20 38 31
Success Rate 95% 91% 88% 95% 90% 89%

TABLE I: System performance for grasp and manipulation tasks

Fig. 9: Example of objects grasped by the system.

Manipulation tasks included stapling papers, turning a
flashlight on, opening a door, unlocking a door using a key,
and hanging up a princess phone. In addition, one of the tasks
was to drill a 2cm deep hole in a piece of 4”x4” lumber using
a standard drill. The desired hole location was indicated by a
red dot on the lumber surface. Results from several test runs
are presented in Tab. I. Notice for the grasping tasks that our
success rates tend to be lower for small laying down objects.
Most of those failures were due to a finger “break-away”
hardware issue, where proximal finger joints locked when the
system contacted the table top incorrectly. The other main
mode of failure was from inaccurate object localization due
to calibration error in both the perception system and the
forward kinematics.

We have posted video clips for certain grasping and
manipulation experiments:
• http://www.youtube.com/watch?v=sukjzddaCUc
• http://www.youtube.com/watch?v=SCO7Ws3jujQ

IV. CONCLUSIONS AND FUTURE WORK

The software design and techniques presented here were
developed as part of a project for autonomous robotic ma-
nipulation where tasks were performed with minimal human
intervention. We found that our approach was effective at
localizing and grasping individual objects–including versions
never seen before, as well as manipulating objects for simple
tasks. On-going work focuses on both dual-arm manipulation
and more intricate tasks. Improvements of the system will
include: dual-hand tracking to minimize the need for extrin-
sic calibration accuracy, localization of objects in dynamic
and cluttered workspaces, bi-manual motion planning, and
increased speed of task execution.

V. ACKNOWLEDGMENTS

The authors gratefully acknowledge funding under the
DARPA Autonomous Robotic Manipulation Software Track
(ARM-S) program.

REFERENCES

[1] A. Edsinger-Gonzales and J. Weber, “Domo: a force sensing humanoid
robot for manipulation research,” in IEEE/RAS Intl Conf. on Humanoid
Robots, 2004, pp. 273 – 91.

[2] D. Katz, E. Horrell, O. Yang, B. Burns, T. Buckley, A. Grishkan,
V. Zhylkovskyy, O. Brock, and E. Learned-miller, “The umass mobile
manipulator uman: An experimental platform for autonomous mobile
manipulation,” in In Workshop on Manipulation in Human Environ-
ments at Robotics: Science and Systems, 2006.

[3] S. Hart, S. Ou, J. Sweeney, and R. Grupe, “A framework for learn-
ing declarative structure,” in Proc. RSS Workshop: Manipulation for
Human Environments, 2006.

[4] M. Kazemi, J.-S. Valois, J. A. Bagnell, and N. Pollard, “Robust object
grasping using force compliant motion primitives,” in Proceedings of
Robotics: Science and Systems, Sydney, Australia, July 2012.

[5] S. Srinivasa, D. Ferguson, C. Helfrich, D. Berenson, A. Collet, R. Di-
ankov, G. Gallagher, G. Hollinger, J. Kuffner, and M. VandeWeghe,
“Herb: A home exploring robotic butler,” Autonomous Robots, 2009.

[6] W. Garage. Pr2 platform. [Online]. Available: http://www.
willowgarage.com/pages/pr2/overview

[7] R. G. Dromey, “From requirements to design: Formalizing the key
steps,” in Conference on Software Engineering and Formal Methods
(SEFM 2003), 2003, pp. 43 – 53.

[8] D. Dey, T. Y. Liu, M. Hebert, and J. A. Bagnell, “Predicting contextual
sequences via submodular function maximization,” Robotics Institute,
Pittsburgh, PA, Tech. Rep. CMU-RI-TR-12-05, February 2012.

[9] J. Bohren and S. Cousins, “The smach high-level executive,” IEEE
Robotics & Automation Magazine, vol. 17, no. 4, pp. 18 – 20, 2010.

[10] C. Lim, R. Baumgarten, and S. Colton, “Evolving behavior trees for
the commercial game defcon,” in EvoGAMES, 2010.

[11] M. Cutumisu and D. Szafron, “An architecture for game behavior ai:
Behavior multi-queues,” in Fifth Artificial Intelligence for Interactive
Digital Entertainment Conference, 2009.

[12] M. Fischler and R. Bolles, “Random sample consensus: A paradigm
for model fitting applications to image analysis and automated cartog-
raphy,” vol. 24, no. 6, pp. 381 – 395, 1981.

[13] C. Harris, “Tracking with rigid objects,” MIT Press, 1992.
[14] J. Libby and A. J. Stentz, “Using Sound to Classify Vehicle-Terrain

Interactions in Outdoor Environments,” in IEEE International Confer-
ence on Robotics and Automation (ICRA), St. Paul, MN, May 2012.

[15] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE Journal of
Robotics and Automation, vol. 3, no. 1, pp. 43–53, 1987.

[16] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” 2009.

[17] J. Kuffner, J. J. and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in Proc. IEEE Int. Conf. Robotics and
Automation ICRA ’00, vol. 2, 2000, pp. 995–1001.

[18] D. Berenson, S. S. Srinivasa, D. Ferguson, A. Collet, and J. J. Kuffner,
“Manipulation planning with workspace goal regions,” in ICRA, 2009.

[19] R. Diankov, “Automated construction of robotics manipulation pro-
grams,” Ph.D. dissertation, Robotics Institute, Carnegie Mellon Uni-
versity, 5000 Forbes Ave., Pittsburgh, PA 15213, 10 2010.

[20] T. Yoshikawa, “Manipulability of robotic mechanisms,” International
Journal of Robotics Research, vol. 4, pp. 3–9, 1985.

[21] P. Felzenszwalb and D. Huttenlocher, “Distance transforms of sampled
functions,” Cornell University, Tech. Rep. TR2004-1963, 2004.

[22] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Operational
space control: a theoretical and empirical comparison,” Int. J. Robot.
Res., vol. 27, no. 6, pp. 737 – 57, 2008.

[23] A. Liegeois, “Automatic supervisory control of the configuration and
behavior of multibody mechanisms,” IEEE Trans. Syst. Man Cybern.,
vol. SMC-7, no. 12, pp. 868 – 71, 1977.

[24] S. Javdani, M. Klingensmith, D. Bagnell, N. Pollard, and S. Srinivasa,
“Efficient touch localization with adaptive submodularity,” in preper-
ation.

2962

256436k
Rectangle

