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CHANGES IN ZIRCON CHEMISTRY DURING ARCHEAN UHT
METAMORPHISM IN THE NAPIER COMPLEX, ANTARCTICA
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ABSTRACT. Zircons from two paragneisses (from Mount Sones and Dallwitz Nu-
natak) and one orthogneiss (from Gage Ridge) in the Tula Mountains, Napier
Complex (East Antarctica) were analyzed for U-Pb age, oxygen isotopes, REEs and by
scanning ion imaging. A large number of zircons from all samples are reversely
discordant. Mount Sones zircons show an age range from 3.0 Ga to 2.5 Ga and
underwent high-grade metamorphism at both ~2.8 Ga and 2.5 Ga. Zircons from
Dallwitz Nunatak record detrital ages between 3.5 Ga and 2.5 Ga. Zircons from Gage
Ridge record multiple age groups, with concordant data between 3.6 Ga and 3.3 Ga
and reversely discordant data that form a discrete ~3.8 Ga population. All of the grains
show evidence of Pb mobility during metamorphism. Ion imaging of zircons reveals
Y and U zonation, characteristic of magmatic zircon, together with a micro-scale
patchy distribution of 2°°Pb and 2°’Pb that does not correspond to either growth
zonation or crystal imperfections. Some of these patches yield 207pp, /206ph ages >4
Ga, whereas others yield ages younger than the magmatic crystallization age. Reversely
discordant data are the result of ancient Pb mobilization, which is independent of the
degree of metamictisation, oxygen isotope and REE content of the zircons. This
mobilization can result in spurious ages and was most likely caused by polymetamor-
phism under anhydrous conditions; that is two high-grade events; one poorly defined at
~2.8 Ga and the other ultra-high temperature (UHT) metamorphism at 2.5 Ga.
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INTRODUCTION

More than any other mineral, zircon (ZrSiO,) has been the target of geochrono-
logical studies, due to properties that allow a wealth of geological information to be
encoded within its structure. As a chemically and physically robust mineral that
incorporates U and Th, but initially excludes Pb, zircon commonly retains accumu-
lated radiogenic Pb despite weathering or metamorphism of the host rock, and is
therefore the mineral of choice for U-Th-Pb geochronology (for example Davis and
others, 2003 and references therein). Moreover, as a result of the extremely low
diffusivity of Pb in zircon (Cherniak and Watson, 2003; Cherniak, 2010), it preserves
isotopic systematics even through high-grade metamorphic events. However, although
zircon is the most popular geochronometer, its U-Pb isotope systematics can be
disturbed by certain geological processes, 1eadin% to discordance between the ages
calculated from the independent U-Pb systems 258 /2%%pPh and 2851y /207pp (Ahrens,
1955). In most cases, discordance is due to an apparent deficiency of radiogenic Pb
relative to U, when compared to the Pb content predicted by the ratio of daughter
products (?°7Pb/2°°Pb). This is termed “normal discordance,” in contrast to “reverse
discordance” where U-Pb ages are significantly older than 207pp /296pp ages. For the
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correct interpretation of isotopic data it is crucial to understand whether U-Pb age
discordance is analytically induced or due to real disturbance of parent-daughter
isotope distributions. Because the isotopes 2°°Pb and *°’Pb are not significantly
fractionated relative to each other (Shimizu and Hart, 1982), either by natural
processes or by SIMS analysis, 2°’Pb/?°°Pb ages are less susceptible to such distur-
bances. Thus, especially in studies of Paleoproterozoic and older zircon where U-Pb
ages are less precise than 2°’Pb/2°°Pb ages, the latter are generally regarded as more
reliable, with normal discordance attributed to “Pb loss” through a variety of mecha-
nisms. The concept of “Pb gain” or “U loss” to produce reverse discordance, on the
other hand, is not widely appreciated; such data tend to be ignored, and few studies are
available that have directly addressed this problem (see Williams and others, 1984;
White and Ireland, 2012; Kusiak and others, 2013).

As well as a robust recorder of radioisotope evolution, zircon is also regarded as a
valuable carrier of other geochemical information, including oxygen and hafnium
isotope compositions, and titanium and rare earth element (REE) concentrations.
Zircon typically preserves primary oxygen isotope compositions, due to low oxygen
diffusivity even under conditions of high-grade metamorphism or intense hydrother-
mal alteration (Peck and others, 2003; Valley, 2003). Other elements, like REE, that
can be incorporated in the crystal structure of zircon, may also be useful for unraveling
petrogenetic associations (for example Speer, 1980; Belousova and others, 2002).
Characteristic REE concentrations and patterns have been proposed for distinguishing
zircon from different geological environments (Hoskin and Schaltegger, 2003; White-
house and Platt, 2003).

Pre-3.6 Ga rocks are rare on Earth, with most studies being focused on localities in
Canada (for example Bowring and others, 1989) and Greenland (for example White-
house and others, 1999) as well as on detrital zircon from Western Australia (for
example Cavosie and others, 2005 and references therein). Although rocks as old as
3.93 Ga are present in Antarctica, they have received little attention compared to the
more accessible locations, with studies focused on the pervasive high-grade metamor-
phism and zircon response to it (Black and others, 1986a, 1986b; Harley and Black,
1997; Carson and others, 2002a, 2002b; Kelly and Harley, 2005). A recent study (Kusiak
and others, 2013) has shown that Pb mobilization can cause spurious zircon ages in
these rocks. In that study two grains of similar age (3.4 Ga), but different U contents,
were utilized and it was evident that the grains showed an uneven Pb distribution.

Here, we present results from complex zircon grains from layered ortho- and
paragneisses from Mount Sones, Dallwitz Nunatak and Gage Ridge (Napier Complex,
Antarctica) with different 2°7Pb/2°°Pb ages (2.8 Ga, 3.0 Ga, 3.6 Ga and 3.8 Ga,
respectively) to determine the effect of metamorphism, including a ~2.5 Ga ultra-high
temperature (UHT) event, on the isotopic record. We have utilized ion imaging,
together with U-Pb geochronology, oxygen isotope, REE and Raman spectral analyses
to provide additional information about the relationships between reversely dis-
cordant zircons and their structural and chemical features following UHT meta-
morphism.

GEOLOGICAL SETTING

The Napier Complex is a granulite-facies terrane that forms the large promontory
of Enderby Land, East Antarctica, between longitudes 47°E and 56°E (fig. 1). Investiga-
tions since the 1960s by Australian, Russian and Japanese scientists have outlined a
basic framework for the Archean geological history of the Napier Complex (summa-
rized by Sheraton and others, 1987; Harley and Kelly, 2007; Ishizuka, 2008a, 2008b;
and Hokada and others, 2008), which includes at least two high-grade metamorphic
events: at ~2.8 Ga and ~2.5 Ga (Kelly and Harley, 2005). The complex comprises
granitic, charnockitic and enderbitic gneisses, intercalated with lesser amounts of felsic
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Fig. 1. Outcrop map of the Napier Complex, Enderby Land, East Antarctica (modified after Carson and
others, 2002). * = localities of samples used in this study. Data sources from: Black and others, 1983a, 1986b;
Williams and others, 1984; Harley and Black, 1997; Carson and others, 2002a, 2002b; Hokada and others,
2003, 2004; Kelly and Harley, 2005; Suzuki and others, 2006; Belyatsky and others, 2011; Horie and others,
2012.

and pelitic paragneisses, and minor proportions of mafic to ultramafic orthogneisses
and meta-ironstones (Sheraton and others, 1987; Harley and Black, 1997; Hokada and
others, 2004). In the vicinity of Casey Bay, Amundsen Bay and the Tula Mountains (fig.
1), mineral assemblages that include sapphirine + quartz, osumilite, high-Al orthopy-
roxene, and/or high-Ca mesoperthite, record UHT metamorphic conditions between
1050 and 1120 °C, at pressures that increase from north to south from 7 to 11 kbars
(Dallwitz, 1968; Harley, 1987; Hensen and Motoyoshi, 1992; Harley and Motoyoshi,
2000; Hokada and others, 2008). A stage of decompression under UHT conditions has
been recognized in some localities (Hollis and Harley, 2002; Hokada and others, 2008;
Shimizu and others, 2012); however, the general post-peak metamorphic evolution is
that of isobaric cooling (Harley, 1985; Harley and Hensen, 1990; Hensen and Motoyo-
shi, 1992; Osanai and others, 1999; Shimizu and others, 2012).

Peak metamorphism was associated with the regional development of a predomi-
nantly subhorizontal to shallowly-dipping gneissosity and intense mineral lineation,
along with macro-scale recumbent isoclinal folding (D; of James and Black, 1981;
Sandiford and Wilson, 1984; Sheraton and others, 1987; Toyoshima and others, 2008).
Tight inclined to recumbent macro-scale folds (D,) are recognized in some localities
(James and Black, 1981; Sheraton and others, 1987), and regionally developed
upright, open folds (Ds, Sheraton and others, 1987) were developed during wide-
spread retrograde metamorphism, producing a regional dome-and-basin structure
(Toyoshima and others, 2008). Hokada and others (2008) and Toyoshima and others
(2008) suggested that the complex can be divided by inferred faults and/or shear-
zones into a number of blocks that have been exhumed to different levels, accounting
for pressure differences in peak assemblages from north to south. Amphibolite-facies
shear zones are recognized at several localities, in places accompanied by pegmatites
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(Sheraton and others, 1987; Carson and others, 2002b). A variety of mafic dikes of
different generations that vary from sheared to undeformed, cut across the gneisses in
most localities (Sheraton and others, 1987; Suzuki others, 2008). The regional extent
and timing of peak deformation and UHT metamorphism has long been debated;
however it should be kept in mind that structural field studies in Enderby Land are of
limited extent and that regional correlations are necessarily tentative.

EARLIER GEOCHRONOLOGY

As is the case with the structural history, the timing of crust formation, protolith
generation and other earlier geological events is generally obscured by the pervasive-
ness and intensity of a major tectono-metamorphic event at ca. 2.5 Ga (see Sheraton
and others, 1987; Kelly and Harley, 2005; Hokada and others, 2008). The available
datasets are also restricted by the lack of sample availability, especially from inland
localities. As a result, the same samples have been re-analyzed and reassessed in several
papers, although this has been accompanied by the application of newly-available or
refined techniques. Consequently, age estimates from later studies generally supersede
those reported in earlier studies—an important point when considering the evidence
both for near-Hadean zircon and for the timing of UHT metamorphism.

The oldest ages reported, obtained from U-Pb ion microprobe dating of zircon
from felsic orthogneiss and paragneiss samples from Mount Sones and Gage Ridge in
the Tula Mountains (fig. 1), are scattered between ca. 4.1 and 3.9 Ga (Black and others,
1986b; Harley and Black, 1997; Kelly and Harley, 2005), but for the most part are
reversely discordant, and therefore of questionable significance. Early estimates for the
age of the protolith of the Mount Sones orthogneiss (395510 Ma, Williams and
others, 1984; 3927+10 Ma, Black and others, 1986b) were not supported by re-analysis
thatyielded a concordia intercept age of 3800+50/—100 Ma (Harley and Black, 1997).
This revised age for magmatism coincides with other best estimates for orthogneiss
from Mount Sones (3773213 Ma, Harley and Black, 1997) and nearby Gage Ridge
(385162 Ma, Kelly and Harley, 2005; superseding Harley and Black, 1997—
3700250 Ma). Eoarchean zircon ages have not been found elsewhere in the Napier
Complex, with the exception of a single 3981+8 Ma grain from enderbitic orthogneiss
from Aker Peaks in western Kemp Land (fig. 1), which Belyatsky and others (2011)
interpreted as recording the age of the magmatic protolith. They also report grouped
concordant zircon ages from multiple samples of charnockitic and enderbitic gneisses
of 3632+12 Ma and 3628+23 Ma, respectively, which they attribute to magmatism
during a granulite-facies event; however, no evidence for metamorphism at this time
was presented, nor are the relationships between magmatic 3980 Ma and 3630 Ma
zircon grains from enderbite explained. Thus the significance of these results remains
unclear.

Elsewhere, the entrainment of Eoarchean or Paleoarchean crust in the Napier
Complex has been demonstrated only by the presence of scant ages from detrital
zircons in paragneisses of the Tula Mountains (for example from Mount Sones and
Dallwitz Nunatak; Harley and Black, 1997), and in depleted mantle Nd model ages
from a variety of gneisses from Amundsen Bay and the Tula Mountains (Shiraishi and
others, 2008 and references therein). Model Nd ages from orthogneisses cluster
around ca. 3.9 Ga at Mount Sones, 3.7 to 3.1 Ga on Tonagh Island, 3.4 Ga at Mount
Riiser-Larsen and 3.5 to 3.2 Ga in the Fyfe Hills (fig. 1). These indicate significant
crustal growth or reworking during the Paleoarchean; however, actual protolith ages
have been established only for the end of the Paleoarchean to the Mesoarchean, with
the zircon U-Pb dating of felsic orthogneisses from Mount Riiser-Larsen (327012 Ma,
8267+5 Ma and 307312 Ma; Hokada and others, 2003), Dallwitz Nunatak (293325
Ma, zircon, Kelly and Harley, 2005) and Proclamation Island (2988*=23 Ma, Kelly and
Harley, 2005). A Rb-Sr whole rock age of 310075 Ma may also suggest the presence of
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old granitoid protoliths in the Fyfe Hills (Black and others, 1983a, 1983b), and discrete
populations of ca. 3.0 Ga detrital zircons in paragneisses from Fyfe Hills and Mount
Cronus suggest the presence of rocks of this age in the western Napier Complex
(Asami and others, 2002; Horie and others, 2012).

A late Mesoarchean episode of high-grade metamorphism and deformation has
been recognized from widespread localities. U-Pb zircon ages that are regarded as
dating metamorphism were reported from Khmara Bay (2822+22 Ma, Harley and
Black, 1997), Dallwitz Nunatak (2842*+16 Ma, Kelly and Harley, 2005, superseding
Harley and Black, 1997), Mount Riiser-Larsen (2850-2790 Ma, Hokada and others,
2003), and Proclamation Island (2854%+14 Ma, Kelly and Harley, 2005). Harley and
Black (1997) regarded this episode as involving the highest grade of metamorphism,
consistent with ages from supposedly syn-tectonic intrusions. Such magmatic ages have
been identified at Dallwitz Nunatak (Harley and Black, 1997), Mount Bride (2840280
Ma, Rb-Sr, Black and others, 1986b) and Mount Riiser-Larsen (ca. 2830 Ma zircon,
Suzuki and others, 2006). However, Kelly and Harley (2005) reassessed these ages in
light of REE compositions of metamorphic zircon from the Dallwitz Nunatak ortho-
gneiss, which established the absence of garnet (present in the UHT paragenetic
assemblage) during ca. 2850 Ma metamorphism, and concluded that such zircon
growth occurred during a low-P high-T (but not UHT) event. Exactly which event, 2.8
Ga or subsequent 2.5 Ga metamorphism, relates to regional D, is unclear; rather it is
likely that high strain fabrics cannot be readily correlated between widely-separated
localities.

Neoarchean zircon ages for protoliths of felsic orthogneisses at Fyfe Hills (ca. 2741
Ma, Horie and others, 2012) and Tonagh Island (2626228 Ma, Carson and others,
2002a) provide upper constraints on the timing of UHT metamorphism. These are
consistent with zircon data from paragneisses from several localities, which yield
detrital ages with remarkably consistent ranges: 2970 to 2600 Ma (Zircon Point; Kelly
and Harley, 2005), 3025 to 2674 Ma (Fyfe Hills; Horie and others, 2012), 3020 to 2580
Ma (Mount Cronus; Horie and others, 2012) and 3000 to 2650 Ma (Mount Riiser-
Larsen; Hokada and others, 2004). The oldest estimates for the major tectono-
metamorphic episode that reworked ca. 2800 Ma gneisses and younger igneous and
sedimentary lithologies into a single high-strain gneissic terrane come from metamor-
phic zircon, and concentrate at ca. 2540 Ma in multiple localities (ca. 2535 and 2518
Ma, Fyfe Hills, Horie and others, 2012; 2543+41 Ma, Zircon Point, Kelly and Harley,
2005; 2546+13 Ma, Tonagh Island, Carson and others, 2002a). In all these localities,
this event was followed by subsequent episodes of growth (ca. 2484 and 2437 Ma at Fyfe
Hills, Horie and others, 2012; 251117 and 249017 Ma at Zircon Point, Kelly and
Harley, 2005; and 2480-2450 Ma at Tonagh Island, Carson and others, 2002a). Ages of
zircon growth that do not define precise stages are found elsewhere (2520-2450 Ma at
Mount Riiser-Larsen, Hokada and others, 2003, 2004; Suzuki and others, 2006; and
2550-2480 Ma at Aker Peaks, Belyatsky and others, 2011). Samples from other localities
record only a single episode at ca. 2490 Ma (2492-2490 Ma at Mount Cronus, Horie and
others, 2012; 2485*+ 14 Ma at Dallwitz Nunatak, Kelly and Harley, 2005; 24866 Ma at
Gage Ridge, Kelly and Harley, 2005; and 2487210 Ma at Proclamation Island, Kelly
and Harley, 2005). Due to this complexity in zircon age data, there is disagreement as
to whether peak ultra-high temperatures were attained during the earlier (ca. 2540
Ma) or later (ca. 2490 Ma) stages of zircon growth. Kelly and Harley (2005) argue for
peak metamorphism occurring shortly before or at ca. 2540 Ma, with later zircon
growth at ca. 2490 Ma occurring during cooling and crystallization of anatectic melt.
Horie and others (2012) hypothesize that ca. 2490 Ma zircon at Mount Cronus could
be a product of fluid activity, a suggestion consistent with the post-peak interpretation
of Kelly and Harley (2005). In contrast, Grew (1998) suggested that UHT conditions
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are also recorded by syn-deformational pegmatites at Casey Bay (fig. 1) that were dated
by Black and others (1983a) at 24743 Ma and 24568 Ma. However, as the latter cut
gneissic fabrics and are only deformed by late (D3) folding and shearing, they are best
considered as providing a lower age limit to the episode of high-T metamorphism and
high-strain deformation in the Napier Complex. Subsequent to this, there is only local
evidence of deformation and metamorphism, largely restricted to discrete mylonitic
shear zones (dated at ca. 2550-2470 Ma by Crowe and others, 2002). Late pegmatite
intrusions provide age estimates for later minor events, possibly associated with
metamorphism (for example ca. 2200 Ma zircon in pegmatite, Grew and others, 2001;
ca. 1930-1800 Ma for fluid-altered zircon adjacent to pegmatite, Carson and others,
2002b; and 498=2 Ma for monazite in pegmatite, Carson and others, 2002b).

SAMPLES

The three samples utilized in this study were collected from the Tula Mountains
(fig. 1) by Pat James during the 1978 Australian National Antarctic Research Expedi-
tion.

Mount Sones (Sample 14178-1; n3852), Paragneiss

Sample 14178-1 is a paragneiss from Mount Sones. It is dominated by quartz and
mesoperthite and contains low modal proportions of idiomorphic garnet, cordierite,
K-feldspar and orthopyroxene, with accessory zircon, rutile and monazite. Quartz
contains numerous exsolved rutile needles oriented within its crystal lattice. Distrib-
uted throughout the rock are fine-grained intergrowths of cordierite + K-feldspar +
quartz; some of these intergrowths contain dendritic orthopyroxene. This assemblage
can be interpreted to represent the breakdown of former osumilite, indicating this
rock attained ultra-high temperature conditions. Small euhedral zircon crystals are
observed in the cordierite + K-feldspar + quartz intergrowths. However, the location
of zircon is not restricted to this microstructure and it can be found distributed
throughout the rock.

Dallwitz Nunatak—945 Peak (Sample 11178-1; n3847), Sapphirine-Bearing Paragneiss

This rock is quartz-rich containing volumetrically minor sapphirine, orthopyrox-
ene and mesoperthite, with accessory zircon and rutile. Isolated intergrowths of
K-feldspar + cordierite + quartz are distributed throughout the rock and are inter-
preted to have formed by the breakdown of peak osumilite. Sapphirine is observed in
textural equilibrium with orthopyroxene and quartz, suggesting the rock experienced
temperatures in excess of 900 °C. Locally, sapphirine is separated from quartz by a thin
corona of cordierite. The coarse-grained quartz contains abundant exsolved rutile
needles whose orientations appear to be crystallographically controlled. Some of the
geochronological results from this sample were published in the data repository by
Kusiak and others (2013): in this paper they are presented in table 1.

Gage Ridge (Sample 16178-2; n3850), Orthogneiss

This sample is a strongly layered felsic, pyroxene-bearing orthogneiss and was
collected from the same sample site on the same expedition as sample 78285013
investigated by Harley and Black (1997) and Kelly and Harley (2005). It is composed of
granoblastic mesoperthite and quartz with scattered trails of orthopyroxene defining a
coarse gneissosity. Some of the geochronological results from this sample were
published in the data repository of Kusiak and others (2013): in this paper they are
presented in table 2.

METHODOLOGY

Zircon grains were separated by standard crushing and heavy-liquid techniques,
mounted in epoxy resin along with the Geostandards 91500 zircon (Wiedenbeck and
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others, 1995) and polished to reveal their interiors. Back-scattered electron (BSE) and
cathodoluminescence (CL) images were obtained to characterize the internal struc-
ture of the grains. The CAMECA IMS 1280 ion-microprobe at the Swedish Museum of
Natural History, Stockholm (NordSIMS facility), was used for zircon geochronology
(U-Pb dating in single-collector mode and Pb-Pb multi-collector mode) and for oxygen
and REE analyses; additionally, selected grains were mapped by Scanning Ion Imaging
(SII). Spot analysis for U-Pb closely follows the method described by Whitehouse and
Kamber (2005) using a ca. 15 pm, 6 nA Oy, primary beam, and peak-hopping
mono-collection with an ion counting electron multiplier (EM) at a mass resolution of
ca. 5400 (M/AM). Common Pb was corrected using the 201ph counts assuming a
present-day terrestrial Pb-isotope composition model (Stacey and Kramers, 1975)
following the rationale of Zeck and Whitehouse (1999) that this is largely surface
contamination introduced during sample preparation, and not common Pb residing
in zircon and/or micro-inclusions. Very low amounts of common Pb were detected
during the spot analyses with f*’°Pb < 0.1 percent, in many cases below the detection
limit for ***Pb based on the electron multiplier background. Where common Pb correc-
tions were deemed necessary on the basis of measurable ***Pb, these were small and
therefore insensitive to the precise composition of the common Pb. Subsequent
Pb-isotope spot analyses used four multi-collector EMs to detect the Pb isotopes
206Pb,207Pb and 2%8Pb, as well as 2°*Pb. Data reduction was performed using the NordSIMS-
developed suite of software of M. J. Whitehouse.

For ion imaging, an aperture illuminated (ca. 2-4 pm, ca. 200 pA O, ) primary beam
was rastered over an area of 70 X 70 pm. Peak hopping mono-collection at a mass
resolution of 5400 was used to image 89y, 180Hf, 206pp, and 2°®U. Further, Pb-
isotope imaging used four multi-collector EMs to detect the uranogenic Pb isotopes
206ph and 27Ph, as well as 2**Pb and a matrix peak (*°Hf'°0 at mass 196). The instrument
was set to a mass resolution of 4860 (M/AM), sufficient to separate Pb from molecular
interferences. Detector backgrounds were assessed separately using long integrations
with the secondary ion beam blanked and were typically ~0.01 cps. Relative detector
yields were measured using a peak-hopping routine, putting the same species (HfO)
sequentially into each detector, and were within *5 percent. Secondary ion signals
were sufficiently low that dead-time corrections were insignificant. Image analysis was
performed using the Cameca Winlmage software. Following correction for detec-
tor gains, 207Pb/QOGPb ratios were corrected for common Pb based on measured
204pp, /296ph ratios.

Oxygen isotopic analyses were performed using similar methods to those de-
scribed by Whitehouse and Nemchin (2009), utilizing a critically focused Cs* primary
beam with a spot size of ca. 10 um, a low energy, normal incidence electron flooding
device for charge compensation and simultaneous detection of '°O and 'O in two
Faraday detectors. Measured isotopic ratios were normalized to a 8'*0 value of +9.86
permil (relative to SMOW) for the reference zircon 91500. Minor linear drift correc-
tions (<1 ppm/run) were applied to the data sets, where applicable, based on
minimizing the external error on the standards.

Rare earth element concentrations in selected zircon grains were made using the
same SIMS instrument and on the same analytical sites used for geochronology and
oxygen measurements: the detailed methodology is described by Whitehouse (2004).
The calibration standard was NIST SRM 610, and the concentration values follow
Pearce and others (1997). The values for C1 normalization were taken from Anders
and Grevesse (1989).

Raman measurements of two zircon grains (Dallwitz Nunatak, grain identifier
n3847-44 and Gage Ridge, grain identifier: n3850-47) were conducted at the Mineral-
ogical Institute of the University of Munster, Germany, using a Horiba Xplora
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dispersive Raman spectrometer. Raman scattering was excited by the 638 nm line of a
He-Ne laser and the scattered Raman light was analyzed with a charged-coupled device
(CCD) detector after being dispersed by a grating of 1800 grooves per mm and passed
through a 100 wm entrance slit. The resulting spectral resolution was about 3.5 cm ™.
A confocal aperture of 500 pm was used to collect the spectra. Maps were obtained with
a 100X objective, resulting in a lateral resolution of about 1 wm and steps of 1 um.
Measured FWHM (Full Widths at Half Maximum; the width of a spectral emission at

the 50% amplitude points) were calculated using the equation given by Irmer (1985).

RESULTS

Sample 14178-1, n3852-970; Mount Sones, Paragneiss

All zircon grains have a very low response in CL, obscuring any internal structure.
Eighteen grains were analyzed for U-Pb age, with 26 spots selected in the central and
outer parts of the grains to test for age variations (table 3). No core-rim differences
were distinguished in any zircon grains. All sites record high U and Th contents, up to
5268 ppm and 383 ppm, respectively. Outer parts of the analyzed zircons are character-
ized by lower Th content (<200 pm), resulting in slightly lower Th/U ratios, although
all are low and vary between 0.12 and 0.04. The proportion of common Pb is generally
insignificant (**°Pb/***Pb >15000). Most of the analyses are a few percent reversely
discordant, distributed along a broadly linear array on the concordia diagram with
apparent 207pp /206ph, ages ranging from 3058*+12 to 2495+ 12 Ma (fig. 2A). Analyses
of the outer parts of the grains are concentrated in the reversely discordant part of
the array, with 2°’Pb/2°°Pb ages between 3055+4 and 2975+7 Ma. As most of the data
are reversely discordant, a regression line was fitted to the data anchored to a lower
intercept value of 250050 Ma. This value was chosen as an approximation of the age
of the UHT event in the Napier Complex, and incorporates best estimates for the age
of metamorphism from various sources (Grew and others, 2001; Carson and others,
2002a; Kelly and Harley, 2005). The upper intercept of the regression line is 281060
Ma, MSWD 3.4. Ten grains were also analyzed using the multi-collector mode (table 4)
and the weighted mean **’Pb/?°°Pb age was 303214 Ma. There is a broad positive
correlation between the amount of discordance and the U concentration, but no
correlation between age and Th/U ratio. As is evident from figure 3B, all analyses of
the outer parts of zircons (black diamonds) record the oldest ages (ca. 3000 Ma) with a
Th/U ratio <1.

Eight oxygen isotope analyses were made on 7 grains. The 8'%0 ranges between
7.2 and 8.9 permil (table 5), with an average of 8.1+0.2 permil (20). There is no
correlation between 3'%0 and 207Pb/ 206pp, age, or between U, Th/U and 380 values
(fig. 4). The same grains were selected for rare earth element analyses (table 6). REE
patterns measured in the grain centers (gray diamonds on fig. 5A) are uniform, with
typical positive Ce and negative Eu anomalies and steep MREE. Four outliers with
LREE enrichment might be analyses incorporating additional material other than
zircon (for example monazite micro-inclusions).

Sample 11178-1, n3847-972; Dallwitz Nunatak, Sapphirine-Bearing Paragneiss

A total of 116 U-Pb spot analyses were obtained on 98 zircon grains with apparent
207ph /20°Ph ages ranging from 3.6 Ga to 2.4 Ga, and define a discordia with an upper
intercept age of 327132 Ma and a lower intercept age of 2520257 Ma. Data anchored
to a lower intercept of 250050 Ma yield an upper intercept age of 330035 Ma,
MSWD 6.5 (fig. 2B). In CL images, three different types of zircons can be distin-
guished: 1) those with oscillatory zoning, 2) those with high CL intensity; and 3) those
with little or no CL response. Most grains have low U concentrations (c¢a. 200 ppm),
however, there are a few grains with higher U (>1000 ppm) and Th contents and
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Fig. 2. Tera-Wasserburg concordia diagrams of zircon U-Pb ages: (A) Mount Sones; (B) Dallwitz
Nunatak; (C) Gage Ridge; (D) multi-collector data for zircon grains analyzed in all samples. Error ellipses
are 20.

Th/U ratios. Unlike the Mount Sones sample, there is no correlation between U
content and degree of discordance; however, analyses with U contents above 500 ppm
are less scattered (less discordant) than those with lower uranium. There is a positive
correlation between 207Pb/ 206pp, age and Th/U (fig. 3D), regardless of whether the
analyses were obtained from the central or outer parts of the grains.

Zircon grains with bright CL response (table 1; grains 2, 20, 23, 31, 50, 55, 60, 77),
are characterized by low U and Th contents (31-75 ppm and 15-46 ppm, respectively),
with Th/U ratios of 0.25 to 1.08. Despite this narrow compositional range, the data
cover the entire 2’Pb/?°°Pb age range between 3614 and 2460 Ma.

Grains with no, or very weak, CL response (table 1; grains 22, 24, 44, 45, 48, 56, 58,
61, 74, 94, 97), have U contents much higher than grains with a strong CL response,
with two distinguishable ranges of 565 to 844 ppm and 1007 to 1267 ppm (with one
outlier of 390 ppm). Thorium content varies from 40-782 ppm and Th/U ratio varies
between 2.16 and 0.01 with one outlier of 4.14. Similar to the grains with bright CL
response, the 2°/Pb/?*°Pb age ranges from 3476 to 2503 Ma. Reversely discordant
zircons were selected for multi-collector analysis (table 4) and yielded a weighted mean
207ph /295Pb age of 3487+40 Ma (n=20, fig. 2D).

Fourteen analyses of oxygen isotopes were performed on 9 grains. The §'%0
values are slightly lower than for zircons from Mount Sones, varying from 6.8 to 8.0
permil with an average of 7.4+0.1 permil (table 5). There is no correlation between
8'%0 and 2°"Pb/2°°Pb age, U content or Th/U ratio (fig. 4). The same grains were
analyzed for rare earth elements (table 6) and REE patterns are mostly uniform, with
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TABLE 4

SIMS U-Th-Pb multicollector data for zircons from Mt Sones, Dallwitz Nunatak, and Gage
Ridge samples

Sample' Ratios”

Spot # 207pp/2%ph +6 (%) 206pp/238y +6 (%)
n3852-m-36r 0.2313561 0.1192567 0.0262952 0.0825912
n3852-m-32 0.2245134 0.1108598 0.0116133 0.267264
n3852-m-28r 0.229739 0.1099585 0.0107678 0.0921174
n3852-m-25r 0.2289857 0.0928307 0.0240257 0.0837732
n3852-m-22r 0.2296792 0.1892469 0.0124296 0.1227784
n3852-m-11 0.2279546 0.1445131 0.0192031 0.1095067
n3852-m-13r 0.2243925 0.1491327 0.0149955 0.0816212
n3852-m-18 0.2222744 0.3493903 0.0272778 0.4552469
n3852-m-08 0.2305062 0.205372 0.0277232 0.1537009
n3852-m-04 0.2313838 0.0981651 0.0234296 0.1120796
n3847-m-03r 0.1768701 0.1615047 0.0442491 0.4981454
n3847-m-04 0.269219 0.4107908 0.1059626 0.1580643
n3847-m-05r 0.1744668 0.2140767 0.0163971 0.4741069
n3847-m-06 0.3131398 0.2178816 0.2676085 0.1933194
n3847-m-10 0.2846819 0.3608831 0.131327 0.1258595
n3847-m-13 0.2984344 0.3296232 0.1182866 0.1677879
n3847-m-19 0.291646 0.2580608 0.1760341 0.2643688
n3847-m-24 0.3109806 0.1786611 0.0983972 0.0708111
n3847-m-28 0.293935 0.2173953 0.110575 0.128786
n3847-m-28r 0.2867514 0.4973949 0.1104537 0.1934109
n3847-m-74 0.3144278 0.2606758 0.1796068 0.0831358
n3847-m-30 0.3139916 0.2623545 0.1314032 0.1319067
n3847-m-32 0.2858611 0.3155998 0.1204626 0.1107615
n3847-m-43 0.2972048 0.2529294 0.1714338 0.2036235
n3847-m-50 0.3459067 0.3079018 0.2601389 0.1836932
n3847-m-51 0.3038073 0.8129092 0.0497971 0.2378957
n3847-m-52 0.3257617 0.2565804 0.240033 0.211459
n3847-m-60 0.3295953 0.3740823 0.1566832 0.1760327
n3847-m-57 0.2911146 0.3861081 0.1583663 0.5005204
n3847-m-42r 0.3182079 0.4025717 0.1099743 0.3682879
n3850-m-01 0.4020672 0.1598849 0.0403778 0.0571501
n3850-m-07 0.310757 0.1853284 0.0152881 0.10394
n3850-m-01b 0.3938052 0.1337901 0.0431206 0.0642614
n3850-m-40 0.3862312 0.0866048 0.1650768 0.0665222
n3850-m-38 0.3974645 0.0406543 0.1492093 0.0544825
n3850-m-38b 0.3824071 0.1293492 0.0682281 0.0878314
n3850-m-49 0.3695689 0.2163332 0.1534778 0.2632861
n3850-m-49r 0.3571133 0.0789116 0.1981388 0.0535409
n3850-m-48 0.3280262 0.1621888 0.0251607 0.0704549
n3850-m-47 0.3123631 0.1654724 0.0172684 0.0676465
n3850-m-52 0.3032533 0.2633625 0.016613 0.1007222
n3850-m-58 0.2963842 0.1703757 0.0153554 0.1278908
n3850-m-58r 0.3257341 0.185458 0.0170295 0.0950976
n3850-m-78 0.3016942 0.2450947 0.0506154 0.220575
n3850-m-32 0.3076245 0.3130608 0.0179538 0.0929182
n3850-m-73 0.3217027 0.4047196 0.0490527 0.1390517
n3850-m-30 0.3070775 0.2250453 0.0197682 0.0765633
n3850-m-66 0.2784237 0.2846996 0.0180125 0.2662647

! n3852, n3847, and n3850 are the NordSIMS laboratory numbers for sample identification. ‘r’ refers to
rim domain and ‘b’ to duplicate analyses.
2 Values corrected for common Pb.

positive Ce and negative Eu anomalies and steep HREE patterns. Three analyses are
unusually enriched in LREEs (fig. 5B), possibly due to the presence of unobserved
micro-inclusions, such as monazite.
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Fig. 3. Geochemical plots of samples from the Napier Complex: (A), (C), (E) % discordance versus
uranium content for Mount Sones, Dallwitz Nunatak and Gage Ridge samples, respectively; values >0 =
reversely discordant data; (B), (D), (F) Th/U ratio versus 207p, /206ph age for each sample. Diamonds = Mt
Sones, circles = Dallwitz Nunatak, squares = Gage Ridge; gray symbols = analyses of the inner parts of
grains; black symbols = analyses in the outer parts of grains.

Zircon grain number 44 was selected for analysis by Raman spectroscopy, follow-
ing ion probe imaging. The variation in Raman spectral characteristics of the zircon ng
(Si0,) anti-symmetric Raman band near 1008 cm ™! is shown in figure 6 (A-C).
Intensity (fig. 6A), shift (fig. 6B) and FWHM (Full Width at Half Maximum, fig. 6C) of
this Raman band is strongly dependent on crystallinity (Nasdala and others, 1995).
With increasing radiation damage the ns (SiO,) band shifts from around 1008 cm ™"
down to around 994 cm ™' and the FWHM increases from about 5 to up to 35 cm™'. A
loss in Raman intensity can also be observed with increasing lattice damage. The
Raman map of this grain shows a clear correlation between regions that are dark in CL
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TABLE 5
Oxygen isotope data for zircon grains from Mt Sones, Dallwitz Nunatak and Gage Ridge
samples

6 16 T8~ 16 I8 0
Sample O cps Osamp/av.std 0/°0 + abs 3°0 £ %o
1D (x 1€9) Drift corrected samples
n3852-0x-04 1.800976 1.0040296 0.0020136 3.145E-07 7.8 0.3
n3852-0x-08 1.773909 0.9889399 0.0020159 4.207E-07 8.9 0.3
n3852-0x-13 1.797614 1.0021553 0.002015 3.736E-07 8.4 0.3
n3852-0x-18 1.794844 1.000611 0.0020143 3.062E-07 8.1 0.3
n3852-0x-28 1.812701 1.0105661 0.0020151 3.025E-07 8.5 0.3
n3852-0x-32r 1.780541 0.9926372 0.0020125 4.604E-07 7.2 0.3
n3852-0x-32 1.792173 0.999122 0.0020132 3.873E-07 7.6 0.3
n3852-0x-22 1.746613 0.9737226 0.0020151 1.992E-07 8.5 0.2
n3847-0x-06 1.753278 0.9921705 0.0020131 2.2E-07 7.3 0.2
n3847-0x-06r 1.763993 0.9982341 0.0020132 2.767E-07 7.3 0.2
n3847-0x-02 1.753244 0.9921513 0.0020138 3.031E-07 7.6 0.2
n3847-0x-24 1.747421 0.9888561 0.0020128 3.27E-07 7.1 0.2
n3847-0x-30 1.760581 0.9963033 0.0020127 3.632E-07 7.1 0.2
n3847-0x-30r 1.756999 0.9942762 0.0020132 2.678E-07 7.3 0.2
n3847-0x-19 1.851387 1.0476899 0.0020135 2.603E-07 7.5 0.2
n3847-0x-19r 1.810655 1.0246399 0.0020122 2.645E-07 6.8 0.2
n3847-ox-44 1.765483 0.9990773 0.0020133 3.559E-07 7.4 0.2
n3847-0x-28 1.729642 0.978795 0.0020145 2.866E-07 8.0 0.2
n3847-0x-28r 1.719563 0.9730914 0.0020141 4.463E-07 7.8 0.3
n3847-0x-22 1.743547 0.9866638 0.0020131 2.751E-07 7.3 0.2
n3847-o0x-18r 1.758253 0.9949859 0.0020138 2.603E-07 7.7 0.2
n3847-0x-18 1.717225 0.9717683 0.002013 2.495E-07 7.3 0.2
n3850-0x-49 1.695894 1.0621053 0.0020111 3.106E-07 5.7 0.3
n3850-0x-49r 1.683174 1.054139 0.0020107 2E-07 5.6 0.2
n3850-0x-48 1.701745 1.0657697 0.0020101 4.161E-07 52 0.3
n3850-0x-47 1.717593 1.075695 0.0020091 3.517E-07 4.7 0.3
n3850-0x-40 1.657956 1.0383455 0.0020104 4.451E-07 5.4 0.3
n3850-0x-40r 1.64492 1.0301813 0.0020103 4.888E-07 5.4 0.3
n3850-0x-78 1.669154 1.0453586 0.0020113 4.266E-07 5.8 0.3
n3850-0x-32 1.66068 1.0400515 0.0020125 3.437E-07 6.4 0.3
n3850-0x-38 1.675184 1.0491351 0.00201 4.663E-07 52 0.3
n3850-0x-38r 1.6622 1.0410034 0.0020114 3.654E-07 59 0.3
n3850-0x-38b 1.668432 1.0449064 0.0020111 3.317E-07 5.7 0.3
n3850-0x-73 1.680292 1.0523341 0.0020102 3.46E-07 53 0.3
n3850-0x-30 1.664831 1.0426512 0.0020124 3.409E-07 6.4 0.3
n3850-0x-01¢c 1.694723 1.061372 0.0020114 2.923E-07 5.9 0.3
n3850-0x-01 1.654074 1.0359143 0.0020119 3.772E-07 6.1 0.3
n3850-0x-01r 1.641153 1.0278221 0.0020112 4.733E-07 5.8 0.3
n3850-0x-66 1.618459 1.0136093 0.0020118 3.419E-07 6.1 0.3
n3850-0x-07 1.607243 1.0065849 0.0020122 2.724E-07 6.3 0.3
n3850-0x-08 1.611239 1.0090876 0.0020118 2.603E-07 6.1 0.3
n3850-0x-52 1.618234 1.0134684 0.0020102 3.394E-07 53 0.3
n3850-0x-53 1.616478 1.0123686 0.0020106 2.615E-07 5.5 0.3
n3850-0x-54 1.620105 1.0146402 0.0020118 4.201E-07 6.1 0.3
n3850-0x-47b 1.660574 1.0399851 0.0020098 2.807E-07 5.1 0.3
n3850-0x-47r 1.65031 1.033557 0.0020111 4.159E-07 5.8 0.3
n3850-0x-47a 1.645809 1.0307381 0.0020101 4.236E-07 53 0.3
n3850-0x-15 1.595653 0.9993263 0.0020115 2.927E-07 6.0 0.3
n3850-0x-16 1.657191 1.0378664 0.0020132 4.685E-07 6.8 0.3
n3850-0x-17 1.624871 1.017625 0.0020116 3.445E-07 6.0 0.3
n3850-0x-18 1.580926 0.9901031 0.0020115 3.877E-07 6.0 0.3
n3850-0x-21 1.586325 0.9934844 0.0020114 3.321E-07 5.9 0.3
n3850-0x-21r 1.562073 0.9782958 0.0020116 4.13E-07 6.0 0.3

! n3852, n3847, and n3850 are the NordSIMS laboratory numbers for sample identification. ‘r’ refers to
rim domain, ‘c’ refers to central domain, and ‘a’ and ‘b’ to duplicate analyses.
2 Values corrected for common Pb.



Archean UHT metamorphism in the Napier Complex, Antarctica 953

4000

A.

3500 +

]

3000 +

Ma

Age [
[ ]
-*

2500 1+ m

2000 L L L L
4.5 5.5 6.5 7.5 8.5 9.5

6000

4.5 5.5 6.5 1.5 8.5 9.5

0.8 +

0.6 +

Th/U

0.4 L+
0.2 +

4.5 5.5 6.5 7.5 8.5 9.5
6180

Mount Sones © Dallwitz Nunatak
Gage Ridge zircon inner parts
® Gage Ridge zircon outer parts

Fig. 4. Oxygen data for selected zircon grains from the Napier Complex plotted against (A) 2°’Pb/2°°Pb
ages, (B) U content and (C) Th/U ratio. Gray symbols = analyses of the inner parts of grains; black
symbols = analyses of the outer parts of grains.



954 M. A. Kusiak and others—Changes in zircon chemistry during

TABLE 6
SIMS REE data for zircons from Mt Sones, Dallwitz Nunatak, and Gage Ridge samples
Sample # Y Hf La Ce Pr Nd Sm Eu Gd Dy Er Yb

n3852ree_04 520 9803  0.00 3.72 0.03 0.64 1.93 0.14 10.05 448 647 1218
n3852ree_08 957 12003  1.29 17.93 3.04 22.55 11.09 086  20.03 79.1 1289 2075
n3852ree_13 447 10529  0.02 3.43 0.05 0.60 1.57 0.17 8.10 392 573 103.0
n3852ree_22 665 10152 0.00 3.90 0.03 0.84 252 0.29 1034 57.0 846 159.1
n3852ree_36 506 10465  0.00 5.13 0.05 1.24 2.95 0.21 10.72 386  57.6 107.0
n3852ree_32c 450 9945  0.07 4.71 0.09 0.55 1.90 0.15 7.69 33.1 48.5 83.5
n3852ree 32r 2234 13246 1.75 14.22 1.98 11.66 5.66 0.52 2744 1649 3148 568.8
n3852ree_18 1305 11422 0.57 7.13 0.81 4.73 2.66 0.20 1190 1022 2192 511.6
n3852ree_28 483 10170  0.00 4.37 0.03 0.77 2.15 0.15 9.21 384 627 1129
n3852ree_28r 1369 13569  0.41 7.94 1.08 8.60 6.52 0.52 2006 1174 199.0 362.7
915-ree mt970 141 5199  0.00 3.70 0.02 0.36 0.64 0.29 1.97 120 254 60.7

n3847ree_52 1760 7635  0.03 19.42 0.42 5.98 8.73 233 4457 177.6 2668 4645
n3847ree_51 866 11309  0.00 8.01 0.01 0.51 1.45 0.72 9.81 68.5 129.6 276.1

n3847ree_44 2112 10032  0.18 34.12 0.23 2.62 5.48 0.35 3222 1729 317.8 5704
n3847ree_43 2281 7623 0.03 22.20 0.14 3.13 6.32 129 3436 191.0 339.7 615.6
n3847ree_63 1720 11330  0.22 10.93 0.11 1.24 3.30 0.66 2541 157.7 2777 5384
n3847ree_33 578 10849  0.08 10.60 0.06 0.82 1.61 0.50 8.90 514 998 2472
n3847ree_32 885 9186  0.00 11.35 0.05 0.96 232 0.13 13.72 740 1355 2285
n3847ree_30c 1402 7823  0.01 14.52 0.12 2.27 4.66 1.00 2419 1219 2172 3889
n3847ree_30r 980 7843  0.00 14.38 0.08 1.69 3.39 0.78 16.46 914 1564 2774
n3847ree_42 1492 9010 2240.90 4584.77 451.56 1575.68 34436 14.89 10092 1184 211.8 3572
n3847ree_83 295 11893  0.00 7.32 0.02 0.66 1.28 0.33 6.05 266 46.6 1146
n3847ree_24 778 10766  0.01 18.87 0.05 0.94 2.47 0.11 13.15 719 1153  186.9
n3847ree 22 1948 8248  0.00 14.76 0.08 2.13 5.29 0.77 3414 1858 2985 4717
n3847ree 21 1016 7690  0.00 6.21 0.05 1.40 3.31 1.05 19.59  104.0 159.0 27438
n3847ree_19¢ 2079 10461 1817.07 4329.56 596.99 2253.19 596.10 10.03 944.00 531.5 4303 603.0
n3847ree_19r 1681 9399  0.01 30.31 0.11 2.20 432 142 2965 1502 257.1 4763
n3847ree_18c 3350 7113  0.02 10.56 0.13 3.51 7.96 122 5291  296.6 5225 880.2
n3847ree_18r 4546 8280  0.00 32.30 0.12 3.55 9.79 1.47  89.18 4895 717.7 1089.6
n3847ree_13 1019 11306  0.00 8.27 0.03 0.81 2.00 0.65 12.85 848 177.0 424.1

n3847ree_90 1342 9854 047 32.17 0.39 2.86 3.91 1.00  20.10 1009 192.6 4194
n3847ree_92 581 13144  0.03 232 0.00 0.45 0.58 0.13 1.37 254  110.1 3474
n3847ree_08 689 10078  0.05 17.64 0.05 1.13 2.54 1.05 1456  60.6 100.6 211.5
n3847ree_07 2240 8957 295091 12887.64 1174.53 5546.72 1246.46 21.34 2239.75 967.6 559.0 557.6
n3847ree 06c 721 9188  0.01 27.60 0.07 1.47 2.83 0.61 1408 63.0 107.6 1913
n3847ree_06r 360 10825  0.00 21.93 0.03 0.51 1.21 0.24 5.47 277 552 1215
n3847ree_04 721 8722 0.01 8.04 0.14 2.08 3.25 0.83 17.47 725 1176  236.0
n3847ree_02 2827 8475  0.00 18.26 0.12 3.17 7.17 2.63 5096  282.6 4604 763.5
n3847ree_02b 2013 8744  0.00 13.00 0.07 2.01 4.79 1.61 3481 186.8 314.8 539.8
915-ree_ mt972 124 5541 0.00 3.66 0.03 0.40 0.80 0.38 1.78 106 223 54.1

n3850ree_38c 2239 8953  0.37 16.24 0.25 2.16 433 1.01 30.09 171.3 3357 663.8
n3850ree_38b 1583 9571 0.08 13.88 0.07 1.28 3.23 049  23.64 1329 238.6 4893
n3850ree_49c 2218 7278  0.14 22.30 0.70 10.12 1575 468 6322 2125 3154 5237
n3850ree 49r 1552 7670  0.27 20.02 0.20 2.29 3.60 1.04 22,61 1295 2429 4256
n3850ree_48 891 16605  0.01 6.15 0.03 0.69 243 0.01 18.14 924 121.8 193.7
n3850ree_47c 3568 18145  0.04 6.98 0.04 0.78 3.45 0.04 3835 346.0 4259 502.1
n3850ree_47r 1512 15907  1.47 8.94 0.66 2.18 2.04 0.27 1479 1341 1772 2158
n3850ree_78 491 9457  0.20 3.27 0.13 0.59 0.66 0.06 3.00 285 857 273.0
n3850ree_40 613 8279  0.02 7.19 0.07 1.32 3.09 1.00 17.01 628 879 154.0
n3850ree_40r 577 7362  3.70 4.83 0.43 2.93 5.10 1.35 5.83 43.6 859 1912
n3850ree_32 1018 15992  0.05 4.74 0.03 0.45 1.98 0.02 1689 903 1099 1344
n3850ree_73 1843 12474 194 14.34 0.77 3.39 3.30 0.27 1931 140.6 2722 486.0
n3850ree_30 1009 14863  0.01 4.38 0.02 0.49 221 0.01 1722 916 976 1153
n3850ree_01 1047 10015  0.00 6.54 0.03 0.68 2.15 0.15 13.45 86.6 159.7 300.9
n3850ree 01b 1007 10213  0.15 6.73 0.09 0.78 1.71 0.50 11.69 829 1517 2710
n3850ree_0lr 2003 8846  0.20 10.77 0.17 1.85 3.61 0.63 2280 139.8 2959 o6l64
n3850ree_66 1403 13716  0.14 425 0.08 0.70 1.22 0.02 8.36 77.6 2698 7293
n3850ree_08 1000 15198  0.03 3.58 0.03 0.50 1.66 0.02 10.06 757 1546 4014
n3850ree_07 3336 18990  0.02 5.06 0.02 0.50 1.96 0.03 2199 2409 564.7 1131.1
915-ree mt975 170 5514  0.00 3.95 0.02 0.37 0.69 0.34 2.92 146 30.0 70.0

! n3852, n3847, and n3850 are the NordSIMS laboratory numbers for sample identification. ‘r’ refers to
rim domain, ‘c’ to central domain, and ‘b’ to duplicate analyses.
2 Values corrected for common Pb.
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Fig. 5. Chondrite-normalized REE plots of zircons from (A) Mount Sones, (B) Dallwitz Nunatak and
(C) Gage Ridge; gray symbols = analyses of the inner parts of grains; black symbols = analyses of the outer
parts of grains.

with low Raman intensities and shifts to lower wave numbers, as well as increasing
FWHM of the ng (SiO,) band. These less crystalline parts contain higher amounts of U

and Th.
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Fig. 6. Raman spectroscopy maps of the two analyzed zircon grains: (A), (B), (C): Dallwitz Nunatak,
grain n3847-44; (D), (E), (F): Gage Ridge, grain n3850-47. In (D) Zone 1 = moderately radiation damaged
area, 2 = amorphous area, and 3 = glassy area with retained zircon composition. Intensity is given in
arbitrary units; Raman shift and FWHM are in cm ™.

Sample 16178-2, n3850-975; Gage Ridge, Orthogneiss

Similar to zircons from the Mount Sones paragneiss, this sample contains only
grains that are dark in CL. A total of 98 U-Pb analyses were performed on 86 grains and
the data record the oldest age obtained in this study of 3883*11 Ma. A discordia
through the data, anchored at 2500=50 Ma, yields an upper intercept age of 3680*=53
Ma (fig. 2C). These zircons have the widest range of U contents, with a maximum of
7122 ppm. There is a small sub-set of grains with distinctly lower U contents of between
285 to 555 ppm. Thorium values are also variable and range from 39 to 2470 ppm, with
Th/U ratios of 0.02 to 0.76. Multi-collector data (table 4) from 18 grains give a
weighted mean 207Pb/206Pb age of 376876 Ma. There is a broad positive correlation
between U content and percentage discordance (fig. 3E). However, there is no
correlation between age and Th/U ratio (fig. 3F).

Oxygen isotope analyses of 31 spots on 22 grains gave much lower values than for the
previous two samples (fig. 4), with a range of 'O between 4.7 to 6.8 permil, and an
average of 5.8=0.1 permil (table 5). There is no correlation between 8'%0 and 2°"Pb/**°Pb
age, U content, or Th/U (fig. 4). The REE trends are similar to the previous samples,
with three analyses showing slightly elevated LREE (fig. 5C).

Raman investigations of grain number 47 confirmed that areas dark in CL
correspond to lower crystallinity (fig. 6). There are a few inclusions of quartz and
several unidentified minerals in the zircon grain. The Raman map shows three
different areas (figs. 6D, 6E and 6F): (1) a moderately radiation damaged zone with
FWHM values for the n; (Si0,) band of ¢ca. 18 cm ™' and a Raman shift of ¢a. 998 cm ™!,
(2) a strongly radiation damaged area with FWHM values at ca. 25 cm ! along with a
Raman shift at ca. 996 cm ™', and (3) an amorphous area that does not yield any Raman
signal. The latter glassy area, however, has retained the stoichiometric composition of
zircon, and has similar Zr and Si contents to the less damaged areas. The area mapped
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by Raman is the same as that mapped for element concentration by Kusiak and others
(2013; fig. 3). The less crystalline parts host higher amounts of U and Th. Although Pb
concentrations are higher in the U-rich, less crystalline areas, the distribution of Pb is
consistently patchy on a smaller scale throughout the mapped areas.

SCANNING ION IMAGING (SII)

In order to address the issue of reverse discordance, following spot analysis, areas
of 70 pm X 70 pm in selected grains were imaged (scanning ion imaging; SII) using a
ca. 2 pm rastered primary beam. This allows both element and isotope variations to be
evaluated.

Two zircon grains from Mount Sones were imaged: grain 28 with an age of 2839+8
Ma and a U content of 3058 ppm (fig. 7A), and grain 04 with an age of 305627 Ma and
a U content of 1641 ppm (fig. 7B). Both grains have a Th/U ratio of 0.1. A single grain
from Dallwitz Nunatak with an age of 357823 Ma, a U content of 165 ppm, and a
Th/U ratio of 0.49 was selected for imaging (fig. 7C). This zircon has the lowest
U content amongst the imaged grains. The Gage Ridge sample is represented by the
oldest analyzed zircon with an age of 388311 Ma. This grain contains 2247 ppm of U
and has a Th/U ratio of 0.16 (fig. 7D). The Hf contents of all imaged grains are
uniformly distributed (fig. 7).

Both grains from Mount Sones have low CL responses, but ion images reveal
variable distribution of different elements. Uranium, thorium and yttrium define
oscillatory zoning patterns, characteristic of magmatic zircons. Lead displays a patchy
distribution, unrelated to any cracks or inclusions in the grains (fig. 7). The grains
from Dallwitz Nunatak and Gage Ridge do not exhibit any zonation in U or Y.
However, Pb patchiness was identified in both mapped zircons (fig. 7), independent of
the U content, age, and Th/U ratio.

Multi-collector lead isotope images, which show evidence of patchiness for both
296ph and 2°7Ph, were used to provide maps of the distribution of 2°’Pb/?*Pb (fig. 8) for
two grains; the youngest and the oldest imaged in this study. Elliptical areas were
selected using the WinImage software, with areas measuring ca. 123 pm? in order to
mimic the size of typical SIMS analytical spots, and 100 sites were randomly placed
across the two images to test for variations in °’Pb/?*°Pb ages. Using the area
definition tool, 2°"Pb/?°°Ph ages (common Pb corrected) were then calculated for
those areas. Targeted areas in both grains yield a broad range of calculated ages with
up to 0.5 Ma difference. The zircon grain from Mount Sones with a spot age of 2839=8
Ma, yields ?*’Pb/2°°Pb ages ranging between 2599 Ma, for the darkest region, up to
3037 Ma for the brightest (fig. 8B). The selected grain from Gage Ridge is the oldest
analyzed grain, with a SIMS spot age of 3883+11 Ma. The ?**’Pb/**°Pb image map
shows the location of all 100 SIMS-sized spots (around 20 pm across) randomly
distributed across the scanned ion image (fig. 8D). The youngest age is 3527 Ma,
whereas the oldest is 4025 Ma. The oldest (Hadean) dates are not “real” ages, but
artifacts of radiogenic Pb mobilization, leading to an apparent increase in the
magmatic age of the crystal. The youngest ages closely approximate the time of
disturbance of the crystal. Although there is a variation of 500 million years in the
calculated dates (fig. 8D), the robust mean age of all 100 sites is 386615 Ma (at 95%
confidence, Tukey’s biweight mean), which is within error of the SIMS spot analysis.
However, if other sites had been selected for in-situ SIMS analysis, a spurious age could
have been obtained for this grain.

DISCUSSION

Timing of Geological Events in the Napier Complex

The zircons from the Mount Sones paragneiss were significantly younger than
those in the other two samples, yielding an upper intercept age of 2810*+45 Ma.



958 M. A. Kusiak and others—Changes in zircon chemistry during

Fig. 7. CL and scanning ion images showing relative intensity of Hf, Y, U and Th; (A) Mount Sones,
grain n3852-28, (B) Mount Sones, grain n3852-04, (C) Dallwitz Nunatak, grain n3847-30, (D) Gage Ridge, grain
n3850-01; White squares on CL images = SII areas of 70 X 70 pwm; white circles are spot analyses with
207ph,/20Ph age. The color-scale bars are relative intensity (they do not correspond precisely to ppm).

Excluding a few younger analyses that may have experienced Pb loss at 2.5 Ga, the
majority of grains are reversely discordant and relatively U-rich and Th-poor, with
uniform compositions and no evidence of oscillatory zoning or other features typical of
igneous zircon. Zircon grains of similar characteristics in an orthogneiss from nearby
Dallwitz Nunatak, and with an upper intercept age of 2842+16 Ma, were identified by
Kelly and Harley (2005) as being of metamorphic origin. We suggest that the ca. 2810
Ma zircons from Mount Sones are also metamorphic in origin, with two possible
relationships to the host metasedimentary rock: 1) the host was metamorphosed at 2.8
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Fig. 8. 207ph /296Ph ratio images. (A), (B) Mount Sones, grain n3852-28, (C), (D) Gage Ridge, grain
n3850-01. Ellipses show the areas used for 2°’Pb/2°°Pb age calculation and include the oldest and youngest
values (solid white ellipses) and location of SIMS spot (solid black ellipses). For clarity, on (B) not all 100
areas are shown, (E) Relative probability of all data from grain n3850-01, Gage Ridge.

Ga, or 2) the host was deposited after 2.8 Ga and includes detrital zircons derived from
the erosion of 2.8 Ga granulite. Although the latter interpretation is consistent with the
deposition of the paragneiss protolith being later than 2.6 Ga, as suggested by Horie
and others (2012), unlike their samples, there is a lack of concordant ages younger
than 2.8 Ga in the Mount Sones sample. This is consistent with the former interpreta-
tion of the sample as a sedimentary rock metamorphosed at both 2.8 Ga and 2.5 Ga.

The paragneiss from Dallwitz Nunatak records U-Pb ages that mostly scatter along
a discordia with an upper intercept age of 3300%£35 Ma. Grain compositions and
structures are more diverse than in the Mount Sones sample and lack a component of
2.8 Ga zircon that could be clearly identified as metamorphic in origin. The low
precision of many analyses is due to irregular Pb count rates during analysis, itself
caused by the redistribution of Pb into micro-domains, most likely as a result of the 2.5
Ga metamorphic event. As a result, we consider the data to represent detrital zircon
from sources that formed between 3550 Ma and 2750 Ma, which are the approximate
ages of the oldest and youngest zircons that are concordant within 2 sigma.
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The Gage Ridge orthogneiss sample contains four age groups. The youngest
group at ca. 2.5 Ga was obtained from zircon grains and rims with relatively low Th/U
(0.02-0.43) and high U (1000-7000 ppm) contents, attributable to growth during
metamorphism. The next youngest group consists of a broadly linear array of discor-
dant data between 3.8 Ga and 2.5 Ga. These are interpreted as older zircon that
variably lost radiogenic Pb during ca. 2.5 Ga metamorphism. A distinct group of
zircons with relatively high Th/U (0.6-0.8) preserve the oldest isotopic signatures, and
on a discordia chord anchored at 250050 Ma (a conservative estimate of the timing of
metamorphism), define an upper intercept age of 3774+36 Ma (n=7). This is similar
to the zircon age obtained by Kelly and Harley (2005), which they interpreted as the
time of formation of the magmatic protolith to the Gage Ridge orthogneiss. However,
there is a fourth group of data that do not lie along this chord, but spread closer to
concordia between 3.6 and 3.3 Ga. These zircons differ in composition from the oldest
group, with higher U and lower Th /U values. If this group represents a distinct stage of
zircon growth between events at 3.8 Ga and 2.5 Ga, then a number of interpretations
are possible. Such growth could have occurred during an as yet unrecognized
metamorphic event, in which case the ca. 3.8 Ga protolith has undergone high-grade
metamorphism twice; alternatively, the zircon could be magmatic, and possibly related
to ca. 3.3 Ga magmatism identified by Hokada and others (2003) at Mount Riiser-
Larsen. In this case, the older ca. 3.8 Ga population is either xenocrystic, or the Gage
Ridge orthogneiss is composite, containing magmatic protoliths of different ages that
have been combined and obscured by the 2.5 Ga tectonic event. It is also possible that
the ca. 3.3 Ga group does not represent a stage of zircon growth, but consists of older
zircon that has been affected by a combination of incomplete Pb loss and Pb
remobilization, so that the data deviate significantly from the discordia chord. Unfortu-
nately, there are no clear textural or chemical criteria that allow us to resolve these
alternatives; the presence of an event at 3.3 Ga remains a hypothesis to be tested by
further investigations. Although the presence of zircon with concordant ages of ca. 4.0
Ga was not confirmed, this study does not rule out their presence. The ca. 3.8 Ga
intercept age for zircon growth in the Gage Ridge orthogneiss matches previous age
estimates and reinforces the interpretation that this is the age of the magmatic
protolith.

Chemical Features of Zircon Affected by UHT

Radiation damaged zircon.—To test if there is a direct correlation between Pb
mobilization and radiation damage, we utilized Raman spectroscopy to determine the
degree of metamictization in the same zircon domains previously imaged by SIMS
(Kusiak and others, 2013). On the Raman maps, differences in intensity, Raman shift
and FWHM define domains with different degrees of metamictization (fig. 6). When
the Raman maps are compared to Pb concentration maps of the same areas (Kusiak
and others, 2013), it is evident that there is no correlation and that Pb is patchily
distributed regardless of the degree of crystallinity.

Rare Earth Elements.—The REE distributions in zircon from all three samples are
mostly similar, with steep MREE to LREE trends (fig. 5). A few analyses of zircon from
the Mount Sones and Dallwitz Nunatak paragneisses have elevated LREE contents that
probably reflect either micro-inclusions of LREE-rich minerals, such as monazite, or
radiation-damaged zircon altered by LREE-bearing fluids (compare Cavosie and
others, 2006). The steep MREE to HREE trends of all zircon analyses are consistent
with an igneous origin. However, such patterns are also present in metamorphic zircon
grown in the absence of garnet. Zircon analyses from the Mount Sones sample fall
along a discordia line with an upper intercept age of 2.8 Ga, and this is interpreted as
the time of zircon growth: consistently low Th/U values (<0.12) support this interpre-
tation. A similar 2.8 Ga generation of zircon was identified as metamorphic in origin by
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Kelly and Harley (2005) in an orthogneiss from Dallwitz Nunatak. Like our sample
from Mount Sones, their sample contained garnet that grew during UHT metamor-
phism, but the 2.8 Ga metamorphic zircon lacked the HREE depletion characteristic of
zircon grown in equilibrium with garnet. Instead, Kelly and Harley (2005) suggested
that 2.8 Ga zircon grew during metamorphism under high-temperature, low-pressure
conditions in the absence of garnet. A similar interpretation for the 2.8 Ga zircons
from Mount Sones is likely. Metamorphic zircon grown at 2.5 Ga in the Gage Ridge
orthogneiss sample also has a steep MREE to HREE trend; however, this is consistent
with growth during UHT metamorphism, as the composition likely precluded the
growth of garnet and the rock may have undergone anatexis.

Oxygen.—Oxygen analyses were performed to test if there was any evidence of
disturbance in zircon grains during metamorphism. The §'%0 values vary between
samples (fig. 4) and there is an increase in 8'®O with age from the Gage Ridge
orthogneiss (average 3'°0 = 5.8%o) to the paragneisses: Dallwitz Nunatak sample
(average 880 = 7.4%0) and Mount Sones sample (average 3'%0 = 8.1%o0). Zircons
from paragneisses thus yield significantly higher values than zircons from the Gage
Ridge orthogneiss. Whereas both ages and 8'%0 values are scattered in the Dallwitz
Nunatak sample, suggesting a detrital origin for the zircon, the values from Mount
Sones are quite uniform. Both the high values and the low scatter in 8'%O in zircon
from the Mount Sones sample are consistent with growth during 2.8 Ga metamor-
phism, as proposed above. Igneous zircons from Gage Ridge show a narrow range
(4.7-6.8%o0) of values that are consistent with igneous zircon derived from a magma
whose protolith formed by melting of the mantle (Valley, 2003; Cavosie and others,
2006), or of juvenile crust recently formed from mantle sources.

UHT metamorphism.—The presence of Pb micro-domains supports the earlier
inference by Williams and others (1984) of Pb remobilization, but without Pb loss from
the zircon grains. This is likely to have occurred in an environment deficient in fluids,
since these would assist recrystallization and transport Pb out of the crystals. Conse-
quently, we suggest that annealing under elevated temperatures and fluid-absent
conditions is the most likely mechanism by which Pb is redistributed in the Napier
Complex zircons. The gneisses of the Tula Mountains are exceptionally H,O poor, as a
result of UHT metamorphism, and it is conceivable that this caused the unusual
behavior of Pb in these zircons. However, thermal annealing of metamict zircon
should begin at temperatures below UHT conditions, even in the case of dry annealing
(<800 °C), as indicated by experimental data (Vaczi and others, 2009). If this is the
case, annealing and Pb remobilization may have begun in prograde or pre-UHT stages
of metamorphism, possibly in gneisses that were already lacking H,O-bearing phases.
Such may be the case for the Mount Sones paragneiss, especially if it had been
previously metamorphosed to granulite-facies at ca. 2.8 Ga.

Reverse Discordance

Reverse discordance is rarely observed in zircon analyses where Pb and U are
extracted and homogenized by dissolution (McLaren and others, 1994). However,
during ion microprobe analysis of micro-domains in single crystals, the problem of
reverse discordance has been recognized for more than 25 years (Williams and others,
1984). It has been investigated in a number of studies that have led to a variety of
explanations. Black and others (1991) observed that in individual samples, the most
U-rich zircon is the most reversely discordant. Under temperatures low enough for
a-recoil damage to accumulate, U content correlates with the rate of radiation damage.
Harrison and others (1987) suggested that lattice damage in U-rich zircon creates an
anomalous matrix that allows the net loss of U relative to Pb. Reverse discordance
measured by ion microprobe may potentially result from the different sputtering
characteristics of variably labile components that contain Pb, due to either different
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degrees of crystallinity or different lattice structures (Wiedenbeck, 1995). Alterna-
tively, the degree of radiation damage may influence the diffusivity of Pb, leading to
localized regions of Pb loss or gain. Williams and others (1984) suggested that reverse
discordance is due to genuine local excesses of “unsupported” radiogenic Pb, and is
notan artifact of the measurement technique. Recently, Kusiak and others (2013) used
ion probe imaging to demonstrate inhomogeneity of Pb on the micron scale in zircon
from the Napier Complex, confirming the presence of unsupported radiogenic Pb.

Lead is the stable daughter product of a series of a-decay events from parent
U and Th, and is located within amorphous regions or inter-atomic positions in the
radiation-damaged crystal structure of zircon. Cherniak (2010) has shown that crystal-
line zircon is resistant to Pb diffusion below 900 °C. Experimental studies by Geisler
and others (2003) show that due to the incompatibility of Pb**, radiogenic Pb is
excluded from recrystallized or newly-grown zircon. Both natural examples (Mezger
and Krogstad, 1997) and experimental studies (Geisler and others, 2003) confirm that
Pb loss is greater in metamict zircon where a-recoil damage to the crystal lattice has
occurred to a point where damaged domains overlap, producing a kind of “permea-
bility” (Geisler and others, 2003). However, metamictization itself is not the cause of
Pb mobility, but merely the pre-condition. The mobilization of Pb still requires a
driving force, occurring either through the permeation of fluids into metamict zircon,
transporting Pb and inducing recrystallization, or through annealing at elevated
temperatures, inducing repair of damaged structure that forces Pb elsewhere. When
metamict zircons are reheated and recrystallized, only the parts of the crystal that were
not metamict retain their lead; the most damaged parts reject Pb from the new crystal
lattice (Mezger and Krogstad, 1997).

In the present study, the irregular distribution of Pb revealed by multi-collector
ion-microprobe imaging (fig. 8) demonstrates mobilization of radiogenic Pb within
the zircon grains. These micro-domains of Pb enrichment do not include common
(non-radiogenic) Pb and have 207ph /206Ph values that are higher than would be
expected for radiogenic Pb accumulated since the formation of the zircon. This would
not be the case if the variation in Pb intensity was merely due to differences in ion
sputtering behavior during analysis. The high 2**’Pb/2°°Pb values also demonstrate
that ancient Pb remobilization can result in spuriously old ages, in this case >4 Ga.
The ancient concentration of radiogenic Pb into micro-domains thus explains both
the presence of reversely discordant ages, as well as the distribution of such ages in
U-Pb spot analyses along linear trends that intersect the concordia at the time of
Pb remobilization, that is during 2.5 Ga metamorphism. However, grains selected for
ion imaging in this study were deliberately chosen to be different in age, with their
U contents varying between 165 and 3058 ppm. Ion imaging further emphasizes that
areas of Pb enhancement are independent of U or Th content, as was the observation
in our previous study (Kusiak and others, 2013). Our present results establish that
Pb mobilization affected grains with a range of ages from 3.8 Ga to 2.8 Ga, all of which
underwent UHT metamorphism at ca. 2.5 Ga and possibly a low-P high-T event at
ca. 2.8 Ga.

CONCLUSIONS

This study examined the response of zircons of different age to Archean high-
grade metamorphism that resulted in Pb migration; we reach the following conclu-
sions:

1. A U-Pb study of three gneissic samples from the Napier Complex, Antarctica,
identified zircons that are reversely discordant. Zircons from the Mount Sones
paragneiss support previous studies that indicated metamorphism at both 2.8
Ga and 2.5 Ga in the Napier Complex. Zircons from the Dallwitz Nunatak
paragneiss yield ages that scatter between 3.5 Ga and 2.5 Ga and represent



Archean UHT metamorphism in the Napier Complex, Antarctica 963

detrital grains that experienced variable Pb mobilization during metamor-
phism. Zircon grains from the Gage Ridge orthogneiss form multiple age
groups, including a distinct 3.8 Ga population and a spread of concordant ages
between ca. 3.6 Ga and 3.3 Ga. It is unclear if the older population is
xenocrystic, and the protolith age =3.3 Ga, or if it is consistent with previous
studies from the same locality, which favor an age of 3.8 Ga for the protolith.

2. There is no evidence of oxygen and REE disturbance during UHT metamor-
phism, nor any relationship to Pb mobilization.

3. Pb-enriched patchesyield 7Pb,/29°Pb ages >4 Ga. These are not genuine ages,
but the result of calculations from areas that contain both supported and
unsupported radiogenic Pb, the latter resulting from ancient mobilization.
Isotope imaging of zircon grains by SIMS reveals that radiogenic Pb can be
mobilized, resulting in local domains of Pb-loss and Pb-gain which, over time,
develop lower and higher apparent ?*’Pb/2°°Pb ages, respectively, with respect
to their igneous crystallization age. Thus, the combination of unsupported and
supported radiogenic Pb can yield spuriously old 2°7Pb/2°°Pb ages. This
redistribution of Pb is unrelated to the U or Th concentration in the zircon,
and to the degree of metamictization.

4. The best interpretation of the data is that reverse discordance in zircon from
the Napier Complex is closely related with ancient Pb mobilization and this was
most likely caused by polymetamorphism under anhydrous conditions; that is
two high-temperature events—one low-P event at ca. 2.8 Ga and a UHT event at
ca. 2.5 Ga.
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