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Abstract 

In this study a eutectic melting composite of 0.62LiBH4-0.38NaBH4 has been infiltrated in two 

nanoporous resorcinol formaldehyde carbon aerogel scaffolds with similar pore sizes (37 and 38 

nm) but different BET surface areas (690 and 2358 m
2
/g) and pore volumes (1.03 and 2.64 mL/g). 

This investigation clearly shows decreased temperature of hydrogen desorption, and improved 

cycling stability during hydrogen release and uptake of bulk 0.62LiBH4-0.38NaBH4 when 

nanoconfined into carbon nanopores. The hydrogen desorption temperature of bulk 0.62LiBH4-

0.38NaBH4 is reduced by ~107 °C with the presence of carbon, although a minor kinetic variation is 

observed between the two carbon scaffolds. This corresponds to apparent activation energies, EA, of 

139 kJ·mol
-1

 (bulk) and 116 – 118 kJ·mol
-1

 (with carbon aerogel). Bulk 0.62LiBH4-0.38NaBH4 has 

poor reversibility during continuous hydrogen release and uptake cycling, maintaining 22 % H2 

capacity after four hydrogen desorptions (1.6 wt.% H2). In contrast, nanoconfinement into the high 

surface area carbon aerogel scaffold significantly stabilizes the hydrogen storage capacity, 

maintaining ~70 % of the initial capacity after four cycles (4.3 wt.% H2).  
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1. Introduction 

Our anthropogenic effect on the environment originated from utilization of fossil fuels consumption 

has facilitated research in alternative energy storage materials. Particularly, hydrogen is considered 

a suitable substitute for gasoline, due to its high energy content and non-toxic, carbon-free 

composition [1].  

LiBH4 is considered a potential candidate for solid state hydrogen storage due to its hydrogen 

storage capacity of 13.9 wt.% H2 (excluding the decomposition of LiH) [2, 3]. However, the 

hydrogen desorption and absorption of LiBH4 suffers from poor sorption kinetics and insufficient 

reversibility during hydrogen release and uptake cycling, not to mention its high melting point of  

Tmelt = 275 °C [4]. In the 1970s, Semenenko and Adams reported that LiBH4 could be destabilized 

by the addition of NaBH4 in the stoichiometric ratio of 0.62LiBH4-0.38NaBH4 by forming a 

eutectic melting composite with a melting point of ~220 °C [5, 6]. However, no data was presented 

on the hydrogen storage properties. Recently, Paskevicius et al. revealed data showing the thermal 

decomposition of the system, confirming a eutectic melting in the temperature range of 210 – 

220 °C [7]. Furthermore, similar results for binary borohydride composites systems have already 

been published for eutectic composites comprised of LiBH4 mixed with Mg(BH4)2, Ca(BH4)2, 

KBH4 or Mn(BH4)2, respectively [7-13]. In the present study, the eutectic melting point of LiBH4-

NaBH4 was exploited for nanoconfinement by melt infiltration into a high surface area nanoporous 

resorcinol formaldehyde carbon aerogel scaffold [14-17]. Nanoporous carbon based scaffolds may 

enhance hydrogen release/ uptake kinetics and improve reversibility of the nanocomposite, in 

addition more favorable thermodynamic properties may be achieved [18-20]. A few studies have 

been conducted on attempting to enhance the kinetics and reduce the temperature for hydrogen 

desorption of similar complex binary eutectic borohydride systems, by introducing carbon 

scaffolds. Several systems explore the properties of binary complex hydrides for nanoconfinement 
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such as LiBH4-CaBH4 [21-23], LiBH4-Mg2NiH4 [24], LiBH4-Mg(BH4)2 [11-13, 25], LiBH4-LiAlH4 

[26] and LiBH4-NaAlH4 [27]. These systems all form eutectic melts when mixed together which 

makes them suitable for infiltration into porous scaffolds. As reported for the respective systems, 

nanoconfinements either in CAS, CMK-3, IRH-33 and NPC does facilitate hydrogen desorption 

and does improve the rehydrogenation of the hydride. 

The hydrogen storage properties of the nanoconfined and bulk binary metal borohydride system are 

investigated experimentally with powder X-ray diffraction (PXD), temperature programmed 

desorption – mass spectroscopy (TPD-MS), the Sieverts´ method  and Fourier transformed infrared 

spectroscopy (FTIR). We find that LiBH4-NaBH4 can be confined inside the mesoporous carbon 

scaffold via melt infiltration, the presence of the scaffold reduces the temperature for hydrogen 

emission and improves the reversibility of hydrogen release and uptake.  

2. Experimental Details 

2.1 Sample Preparation. 

Synthesis of resorcinol formaldehyde carbon aerogel (CA) was done by mixing 82.87 g resorcinol 

(Aldrich, 99 %), 113.84 mL formaldehyde, (37 wt.% stabilized by ~10-15% methanol, Merck), 

113.28 mL deionized water and 0.0674 g Na2CO3 (Aldrich, 99.999%) during continuous stirring 

until complete dissolution was obtained. The pH of the final sol gel solution was 5.91. The 

following synthesis procedure and characterization of the aerogel was conducted as previously 

described [28-31]. Portions of the prepared CA were CO2-activated according to previous methods 

[28, 30, 32]. Before hydride infiltration, the CA monoliths were degassed at 400 °C under dynamic 

vacuum for five hours to remove adsorbed air and water from within the porous structure. All 

subsequent handling was performed in a glove box with purified argon atmosphere. 
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Commercially available LiBH4 (Aldrich, ≥ 95 %) and NaBH4 (Aldrich, 99.99 %) were mixed in the 

molar ratio 0.62LiBH4-0.38NaBH4 which is reported to show eutectic melting (~220 °C) [5-7]. The 

mixture of bulk hydrides was ball milled according to previously published methods [13] and this 

sample is denoted LiNa. Briefly, a Fritsch P4 planetary mill with a tungsten carbide bowl and balls 

was used at a ball-to-powder (BTP) ratio of 24:1 with 2 minute milling cycles followed by 2 minute 

cooling cycles. The sample was milled for a total of 60 minutes at 250 rpm. The theoretical 

hydrogen content of bulk LiNa, based on the stoichiometric composition 0.62LiBH4-0.38NaBH4, 

was calculated to be m(LiNa) = 12.2 wt.% H2. 

The added amount of hydride was selected in order to obtain a degree of pore filling corresponding 

to ~60 vol%, calculated based on the total pore volume, Vtot, of the scaffold and the average bulk 

densities ρ(LiNa) = 0.787 g/mL. Melt infiltration was performed using gas handling components 

and a stainless steel pressure cell  that heated the sample to T = 240 °C (T/t = 2 °C/min) under 

a H2 pressure of 140 – 168 bar at 240 °C for 30 min. The furnace was then turned off and the 

sample allowed to cool to room temperature. 

 

2.2 Sample Characterization  

Synchrotron radiation powder X-ray diffraction (SR-PXD) data were collected at beamline I711 at 

MAX-lab in Lund, and at PETRA III beamline P07 of DESY in Hamburg. While in the glovebox, 

the samples were mounted in a sapphire capillary tube (0.79 mm. I.D.), in an airtight sample holder 

inside an argon filled glovebox [33]. The sample holder was removed from the glovebox and 

attached to a gas control system at the synchrotron diffractometer. The data was collected using a 

CCD detector with a selected wavelength of λ = 0.99185 Å (MAX-lab) and λ = 0.23088 Å (PETRA 

III). 
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A Perkin Elmer STA 6000 coupled with a Hiden Analytical quadrupole mass spectrometer was 

used to perform thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) mass 

spectroscopy (MS) measurements. Thus, temperature-programmed desorption mass spectroscopy 

(TPD-MS) data is provided. The measurements were performed in constant flow (64 mL/min) of 

argon (99.99%). A powdered sample (< 5 mg), was placed in an Al2O3 crucible with lid and were 

heated in the temperature range of 40 to 500 °C (T/t = 2 °C/min). The MS signals at m/e = 2, 

18 and 34 were monitored so as to detect the presence of H2, H2O and B2H6. Kissinger plots were 

obtained from the DSC data by heating selected samples at 2, 5 10 and 15 °C/min from which the 

temperature for maximum DSC signal of hydrogen desorption is utilized. 

Sieverts’ measurements were conducted on nanoconfined and bulk 0.62LiBH4-0.38NaBH4 during 

four hydrogen release and uptake cycles. Hydrogen desorption data was collected on a PCTPro 

2000 Sieverts’ apparatus in the temperature range of RT to 500 °C (T/t = 2 °C/min), with the 

temperature maintained at 500 °C for 10 h, at p(H2) = 1 bar. Hydrogen absorption was performed in 

the pressure range of 140 to 150 bar, at a temperature of 400 °C (T/t = 5 °C/min) during 10 h, 

and then the sample was cooled naturally to RT. 

The Fourier transform infrared spectrometry (FTIR) analyses were carried out on a NICOLET 380 

FT-IR from Thermo- Electronic Corporation with a permanently aligned optics and proprietary 

diamond-turned pinned-in-place mirror optics. A small amount of sample was placed on the base 

plate and subsequently the diamond pin was pressed on to the sample, forming a thin film. The 

samples were examined within the wave number range of 4000 - 400 cm
-1

. 

3. Results and Discussion  

The structural parameters of pristine carbon aerogel (CA) are determined from nitrogen adsorption 

analysis using the BET, BJH and t-plot method [34, 35] and are given in Table 1. CA has a specific 

BET surface area of SBET = 690 m
2
/g, a total pore volume of Vtot = 1.03 mL/g and a pore size 
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distribution centered around Dmax = 37 nm. CO2-activation of CA for 4 hours (CA-4) results in 

significant increase of structure parameters; SBET = 2358 m
2
/g, Vtot = 2.64 mL/g and Dmax = 38 nm. 

The amount of LiNa added to the scaffold is also provided in gravimetric and volumetric quantities, 

corresponding to a pore filling of ~60 vol% which ensures complete infiltration of the hydride. 

After infiltration of LiNa, the structure parameters of the carbon composite are significantly reduced 

(see supporting information) suggesting infiltration into the pores of the scaffold. 

 

3.1 In situ SR-PXD study of nanoconfined LiBH4-NaBH4 

The eutectic melting composite prepared by mechanical ball milling of LiBH4NaBH4 forms a 

physical mixture of the two hydrides. In-situ synchrotron radiation powder X-ray diffraction (SR-

PXD) is used to follow the melt infiltration process of LiNa into scaffold CA under hydrogen 

pressure, as shown in Figure 1. Initially, the diffraction patterns of the low temperature polymorphs 

NaBH4 and o-LiBH4 are present, which during heating to 110 °C gives rise to a phase transition to 

h-LiBH4. The melting of the eutectic composite occurs at ~225 °C. As expected, at 240 °C, the 

Bragg peaks of NaBH4 and h-LiBH4 almost completely disappears, which is associated with the 

eutectic melting regime. After 15 min at 240 °C the sample is cooled to RT allowing the eutectic 

hydride composite to recrystallize inside the pores of the carbon aerogel. During cooling, h-LiBH4 

transforms to o-LiBH4 and the diffraction pattern at RT also exhibit NaBH4 peaks, as shown in 

Figure 1. This indicates that no reaction occurs between LiBH4 and NaBH4 but miscibility results in 

formation of a molten phase. The Bragg peaks are significantly reduced and broadened, indicating 

nano crystallite formation of LiNa inside the pores of CA. Unfortunately, ball milling of 

0.62LiBH4-0.38NaBH4 resulted in contamination by the ball-milling media, tungsten carbide WC, 

as indicated by three distinct diffraction peaks at 2 values 21°, 23° and 31°.  

3.2 Hydrogen Desorption  
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Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and temperature 

programmed desorption mass spectroscopy (TPD-MS), has been used to investigate the first 

hydrogen desorption of bulk 0.62LiBH4-0.38NaBH4 (LiNa) and LiNa physically mixed with CA 

(CA mix) and melt infiltrated in CA (CA melt), see Figure 2. The TPD-MS of bulk LiNa exhibits 

two minor hydrogen release peaks with onset at 200 and 270 °C i.e. peak a and b, respectively. The 

first desorption peak may be assigned to the eutectic melting of LiNa, which is expected to occur 

around 224 °C [5, 6]. The major hydrogen desorption event begins at 350 °C and the release of 

hydrogen continues until 500 °C with two local maxima observed at 380 and 440 °C (denoted c and 

d, respectively). The total amount of released hydrogen from the bulk LiNa hydride is only 7.56 

wt.% in the temperature range of 50 to 500 °C and corresponds to 62 % of the available hydrogen in 

the sample content, possibly due to partial decomposition of both LiBH4 and NaBH4.  

The addition of carbon aerogel (CA), whether as physically mixed with LiNa or melt infiltrated into 

the scaffold, significantly improves the hydrogen release kinetics compared to that of bulk LiNa i.e. 

the major hydrogen desorption rate of sample CA occurs at 333 °C (d’ is 107 °C lower than for that 

of bulk, d). The reduced temperature is elucidated in Figure 2C, as peaks a’, c’ and d’, in which 

these peaks are equivalent to those presented in the bulk desorption profile. Furthermore, the onset 

temperature for hydrogen release is as low as 150 °C, possibly assigned to the effect induced by 

nanoconfinement or the presence of the carbon surface, acting as a catalyst for hydrogen desorption 

[18]. Comparing the mixed and nanoconfined samples, it is worth noting that the hydrogen 

desorption profile of the physical mixed sample displays an intense peak at 232 °C (a’), which is 

not present in the nanoconfined sample. This is due to the pretreated process during melt infiltration 

and states that a fraction of hydrogen is desorbed during the melting of LiBH4-NaBH4. The weight 

loss fraction of hydrogen release for the melt infiltrated sample (CA melt) is 3.95 wt.%, upon 

heating from 50 to 500 °C, corresponding to 98 % of the samples theoretical available hydrogen 
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content (4.0 wt.% H2). However, the physical mixed sample only releases 2.73 wt.% H2, in the 

same temperature range, corresponding to 66 % of the available hydrogen content. This 

demonstrates that the nanoconfined sample facilitate destabilization of LiNa and larger hydrogen 

loss, in contrast to the physically mixed sample. From the DSC curve (Figure 2B) of bulk LiNa, the 

polymorphic transformation from o- to h-LiBH4 (T = 98 °C) and the endothermic signal of the 

eutectic melting (T = 224 °C) is observed. In the case of the physically mixed sample the signal for 

the melting occur at significantly lower temperature and in addition, a subsequent exothermic peak 

(T = 226 °C) is observed which could possibly be assigned to the wetting of CA by molten LiNa 

[8]. The DSC signals of the melt infiltrated sample, CA-LiNa, are also shifted towards lower 

temperatures compared to bulk LiNa. Three endothermic signals are displayed at 96, 214 and 

316 °C, see Figure 2B. The first signal corresponds to the polymorphic transformation of LiBH4 and 

is shifted 2 °C lower than for bulk LiNa. The second corresponds to the melting of the eutectic 

mixture and occurs 10 °C lower than the bulk. Finally, the third broad peak is assigned to the major 

hydrogen desorption of LiNa. 

The TPD peaks c and d seems to relate to the decomposition of LiBH4 and NaBH4, respectively. 

However, it is not clear from the data collected which peak corresponds to which borohydride. The 

temperature difference between c’ and d’ compared to c and d may be due to the difference in the 

interaction between the carbon scaffold and the respective borohydrides, i.e. a possible catalytic 

effect [18]. 

Employing the high surface area scaffold (CA-4), for nanoconfinement of LiNa, does not facilitate 

major alterations in hydrogen desorption kinetics compared to the as prepared scaffold (CA), i.e. the 

temperature for maximum hydrogen release rate is 336 °C, see Figure S3 in supporting information. 

Interestingly, sample CA-4 rehydrogenated for 10 hours at 140 bar H2 pressure (after 4 desorption 

cycles) shows reduced hydrogen release temperatures compared to the nanoconfined sample CA-4, 
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with the maximum temperature for hydrogen released reduced to 315 °C. However, in the first 

hydrogen desorption, the binary hydride composite possibly reacts to the scaffold facilitating an 

earlier release of hydrogen.   

The kinetics for hydrogen release of LiNa, CA and CA-4 is further analyzed the Kissinger 

approach, see Figure 3. A significant decrease in apparent activation energy, EA, for hydrogen 

release of nanoconfined LiNa compared to bulk LiNa is observed. The apparent activation energies 

(EA) of hydrogen desorption of bulk and nanoconfined LiNa, in CA and CA-4 and are estimated to 

be 139, 116 and 118 kJ·mol
-1

, respectively (see Figure 3). Thus, CO2-activation has no significant 

effect on the activation energy. Nanoconfinement and different carbon materials have previously 

been shown to have a significant improvement of kinetics and a reduction of the apparent activation 

energy for hydrogen release reactions [18].  

 

3.3 Cyclic stability and reversibility 

Sieverts´ measurements have been conducted to investigate the stability of the hydrogen capacity 

over four desorption/absorption cycles. The four desorption profiles of bulk 0.62LiBH4-0.38NaBH4 

(LiNa) and LiNa nanoconfined in ‘as-prepared’ (CA) and CO2-activated (CA-4) carbon aerogels are 

displayed in Figure 4. The amount of hydrogen released is presented relative to the gravimetric 

amount of 0.62LiBH4-0.38NaBH4 in the samples (wt.% H2 / LiNa), as a function of time and 

temperature. 

Bulk LiNa releases 7.2 wt.% H2 / LiNa during the first desorption that corresponds to 59 % of the 

available hydrogen content in the sample, m(LiNa) = 12.2 wt.% H2. This compares well with the 

result obtained from the TGA measurement. A significant decrease of more than 70 % is observed 

during the second, third and fourth desorption i.e. 2.1, 1.6 and 1.6 wt.% H2, corresponding to 29.2, 

22.2 and 22.2 % of the calculated hydrogen content of the LiNa, respectively, see Table 2. 
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Hydrogen release of LiNa nanoconfined into CA is significantly enhancing the cyclic stability 

compared to bulk LiNa. During the first desorption 10.5 wt.% H2 / LiNa (corresponding to 86 % of 

the theoretical available hydrogen content). In the second, third and fourth desorption 6.3, 5.8 and 

5.4 wt.% H2 / LiNa is released which is equivalent to 60, 55 and 51 % of the initial hydrogen 

content, respectively. The amount of hydrogen released relative to the total mass of LiNa-CA  

nanoconfined is 3.4 wt.% H2 during the first desorption and is in good agreement with the TGA 

data (Figure 2). The increased amount of released hydrogen during the second to fourth cycle may 

be due to facilitated hydrogen absorption for the nanoconfined sample.  

The gravimetric hydrogen storage capacity and the cyclic stability of LiNa nanoconfined into CO2 

activated carbon aerogel CA-4 are further improved compared to sample CA-LiNa, in well 

agreement with previous studies [13, 23, 32]. The first desorption releases 11.5 wt.% H2 / LiNa 

(~94 % of the theoretical available hydrogen content), corresponding to 6.4 wt.% H2 / sample. 

During the second, third and fourth desorption cycles, sample CA-4 releases 7.9, 7.8 and 7.7 wt.% 

H2 / LiNa i.e. ~67 % of the initial hydrogen capacity is retained during four cycles. 

 

In general the employment of CA for nanoconfinement of LiNa is associated with 51 % retention of 

hydrogen capacity after four desorption cycles, in contrast to only 22 % for bulk LiNa under the 

selected physical conditions for hydrogen release and uptake. However, further enhancement in 

cyclic stability is obtained using the high surface area scaffold CA-4 maintaining 67 % of the total 

capacity after four desorption cycles. This is considered a significant enhancement of the hydrogen 

storage properties of eutectic nano composite of LiBH4-NaBH4, which is a rather unexplored 

system. 
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The FTIR spectra indicate reversible hydrogen storage of 0.62LiBH4-0.38NaBH4 and formation of 

metal borohydrides during rehydrogenation. In Figure 5, bulk LiBH4 and NaBH4 both demonstrates 

three characteristic B-H stretching modes in the range of 2000 - 2500 cm
-1

 as well as B-H bending 

bands at 1093, 1236 and 1298 cm
-1

 in LiBH4 and a single signal at 1095 cm
-1

 for that of NaBH4. 

The bulk eutectic LiNa mixture evidently exhibits a combination of the previously mentioned B-H 

bending and stretching bands (red spectrum), however after nanoconfinement, these signals are 

significantly reduced due to the presence of the carbon scaffold (green spectra). As the 

nanoconfined sample has been completely dehydrogenated i.e. heated to 500 °C for 10 hours, the 

FTIR spectrum (blue) only displays a single B-H stretch at 2345 cm
-1

. This stretch is at a slightly 

higher wave number than for the stretch originating from the borohydrides, and therefore could be 

assigned to another borohydride compound e.g. closo-borane, though it is amorphous as 

demonstrated with PXD in Figure 6. The FTIR spectra closely resemble that of Li2B12H12 [36]. 

Furthermore, rehydrogenation of the decomposed sample at 400 °C for 10 hours at a hydrogen 

pressure of 140 bar (orange spectra) results in the observation of low intensity B-H stretching in the 

wave number range between 2000 - 2500 cm
-1

. The sharp signals in this range can be clearly 

assigned to the B-H stretching of NaBH4. From powder diffraction it is confirmed that NaBH4 is 

formed during rehydrogenation at 400 ˚C, 140 bar hydrogen after 10 hours. Decomposition of 

nanoconfined LiNa facilitates the formation of the product Li3BO3 and the lack of B-H stretching 

modes for LiBH4 in the rehydrogenated FTIR spectrum (orange spectrum) may be due to the 

oxidation of a significant proportion of the initial LiBH4. However, once this reaction has taken 

place and all of the framework oxygen has been converted to stable Li3BO3, the remaining 

nanoconfined LiBH4-NaBH4 is reversible. These results suggest that the reversible source may be 

an amorphous compound of LiBH4 and NaBH4. Weak LiH diffraction peaks are observed after 

rehydrogenation of the nanoconfined sample (see Figure 6). This implies that metallic Li should be 
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formed after decomposition, which is converted to LiH after rehydrogenation under the applied 

conditions. However, the lack of metallic Li diffraction peaks in the decomposed sample might 

suggest that Li nanoparticles are present, and combined with the fact that even having the 

theoretical amount of Li in the carbon aerogel means that it is only a small proportion of the sample.  

 

4. Conclusion 

The eutectic melting composite 0.62LiBH4-0.38NaBH4 (LiNa) is a physical mixture of the 

respective borohydrides with a melting point of Tmelt ~ 225 °C. This composite has been 

successfully melt infiltrated into a pristine carbon aerogel scaffold (CA) and a CO2-activated high 

surface area carbon aerogel scaffold (CA-4). The effect of CO2-activated carbon aerogel allows 

infiltration of larger quantities of hydride. Furthermore, the activation procedure appears to make 

the carbon more inert, thereby reducing the amount of possible formed borates and oxides which 

could contribute to the improved reversibility. The employment of CA significantly improves the 

hydrogen desorption kinetics compared to bulk 0.62LiBH4-0.38NaBH4 and facilitates a reduction in 

hydrogen release temperature of ~107 °C. There is no substantial impact on the kinetics between the 

two types of carbon. This is also illustrated by the apparent activation energies (EA) of hydrogen 

desorption of bulk and nanoconfined LiNa, in CA and CA-4 which is estimated to be 139, 116 and 

118 kJ·mol
-1

, respectively. However, the reversible hydrogen storage capacity during hydrogen 

release and uptake is significantly improved by nanoconfinement into the high surface area scaffold 

CA-4, releasing 6.4 wt% H2 relative to the sample mass, using only 60 vol% pore filling. In fact 

considering 100 vol% pore filling of 0.62LiBH4-0.38NaBH4 into CA-4, would give rise to an 

available hydrogen storage capacity of ~11 wt.% H2 after the first desorption and possibly ~7 wt.% 

H2 after four desorption cycles.  
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6. Table and Figure Captions 

Table 1 Structural parameters; BET surface area, (SBET), micro, meso and total pore volume, (Vmicro, 

Vmeso, Vtot), and pore size (Dmax) of as prepared carbon aerogel scaffold (CA) and CO2-activated 

scaffold (CA-4). The added amount of 0.62LiBH4-0.38NaBH4, in the samples is also provided 

gravimetrically and volumetrically. 

 

Table 2 The theoretical hydrogen content, ρm(H2) relative to the amount of hydrogen storage 

material 0.62LiBH4-0.38NaBH4 (LiNa). The measured hydrogen release during the first desorption 

calculated relative to the mass of the sample, and in percentage of the relative theoretical content (in 
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brackets). The amount of released hydrogen relative to the amount of added LiBH4-NaBH4 during 

desorption cycles one to four. The data is extracted from Figure 4. 

 

Figure 1 In-situ synchrotron radiation powder X-ray diffraction (SR-PXD) of CA mixed with 

0.62LiBH4-0.38NaBH4 measured between RT and 240 °C (T/t = 2 °C/min) with the 

temperature held constant at 240 °C for 15 min at p(H2) = 120 bar (λ = 0.99185 Å). Afterwards the 

sample was naturally cooled to RT. 

Figure 2 Thermal analysis of bulk 0.62LiBH4-0.38NaBH4, LiNa (red), a physical mixture of LiNa 

with CA (pink) and LiNa melt infiltrated into CA (blue). A) shows TGA data, B) DSC data and C) 

TPD-MS profiles of H2
 
signals (m/e = 2). Samples are heated from 50 to 500 °C (T/t = 

2 °C/min).  

Figure 3 Kissinger plot obtained from DSC data at heating rates of 2, 5, 10 and 15 °C/min for bulk 

0.62LiBH4-0.38NaBH4 (LiNa) and LiNa nanoconfined in CA and CA-4. 

Figure 4 Sieverts´ measurement showing hydrogen release for cycles 1 to 4 for bulk 0.62LiBH4-

0.38NaBH4 (LiNa) (top), LiNa infiltrated into CA (middle) and into CA-4 (bottom). Hydrogen 

desorption was performed at a fixed temperature of 500 °C (T/t = 2 °C) for 10 hours and at 

p(H2) = 1 bar. Hydrogen absorption was performed at 400 °C and p(H2) = 140 bar for 10 hours.  

Figure 5 FTIR spectra of bulk LiBH4 and NaBH4, and (a) ball milled 0.62LiBH4-0.38NaBH4, (b) 

sample CA-4 post melt infiltration of LiNa, (c) CA-4-LiNa after being dehydrogenated at 500 °C 

for the fourth time and (d) CA-4-LiNa rehydrogenated for 10 h at 400 °C after four desorption 

cycles. The intensity of spectrum d has been upscaled corresponding to added amount of LiNa for 

better comparison.  
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Figure 6 Ex-situ SR-PXD of bulk 0.62LiBH4-0.38NaBH4 (LiNa) (red), nanoconfined into CA-4 

(green), CA-4 after being dehydrogenated at 500 °C in 10 h for the fourth time (blue) and CA-4 

rehydrogenated at p(H2) = 140 bar and 400 °C in 10 h after being desorbed four times (orange). The 

unknown compound in the dehydrogenated and rehydrogenated samples could possibly be an oxide 

(λ = 0.23088 Å).  
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