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ABSTRACT 
Musical transcription from musical data into score is 
commonly performed by software running on a PC. 
This involves significant delay, which can be 
considerably reduced by hardware implementation. 
This paper presents a hardware design and 
implementation of the  frequency identification system, 
one of the most important function in musical 
transcription, accomplished through the use of Fast 
Fourier Transform (FFT) algorithm implemented in a 
Field Programmable Gate Array (FPGA).  

1. INTRODUCTION 
Frequency identification is at the heart of automatic 
transcription system. Real-time automatic transcription 
system can be used in many applications such as 
preserving impulses of music talents by translating it to 
score or as a means of testing musical ability by 
comparing played and original musical score. 
Frequency identification system can be implemented in 
real-time using the widely known FFT algorithm 
performed on an FPGA.  

1.1. MUSIC 
Two aspects of music are integral in the development 
of the musical transcription and frequency 
identification: notes and score. The knowledge of 
musical notes is necessary to determine the sampling 
frequency of the FFT inputs, which is essential in 
interpreting the outputs of the FFT. The understanding 
on music representation in the form of musical score is 
crucial to be able to display the output of musical 
transcription system.  

1.1.1. MUSIC NOTES 
A musical note is used to represent the duration and 
pitch of a particular sound. The chromatic scale 
(shown in Figure 1), consisting of thirteen notes 
(including both ends), is the main scale in music, with 
all other scales being a subset of this particular 
scale[1]. In the chromatic scale the frequencies of any 
two notes are separated by the interval of semitone, 
which is 21/12 of the frequency of the lower note[1]. 
The first and last notes of this scale are C’s with the 
second C twice the frequency of the first one as shown 
in Figure 1 and 2. This separation is called an octave.  

The circled notes in Figure 1 form the diatonic scale in 
music. These notes are represented by white keys on a 
piano, as shown in Figure 2, and can be combined to 
create simple music as shown in Figure 3. 

 
Figure 1: Chromatic scale of 13 notes[1] 

 
Figure 2: Middle octave of a piano 

For the practicality of testing and implementation, 
diatonic scale is used in the investigation. The 
frequencies of the notes in the middle octave with the 
central A of 440 Hz are depicted in Table 1.  

Table 1: Frequencies of notes in middle octave 
Notes Frequencies (in Hz) 

C 261.63 

D 293.66 

E 329.63 

F 349.23 

G 392 

A 440 

B 493.88 

C 523.25 

 
1.1.2. MUSIC SCORE 
Music has been, actively and passively, part of human 
lives. Passive music, where the user utilise the music 
by listening to it, is usually in the form of recorded 
sounds. Active music, on the other hand, needs to have 
a more explicit representation than recording. The 
most common representation of active music is in the 
form of musical score, an example of which is shown 
in Figure 3. 

 
Figure 3: Musical score example[2] 
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Musical score elucidates aspects of a piece of music 
that are not obvious from mere listening. Musical score 
is used so people, other than the original author or 
original performer, can perform a particular piece of 
music and reproduce a musical performance. It is used 
to preserve and communicate a musical piece to 
oneself and others. 

1.2. FAST FOURIER TRANSFORM 

The Fourier Transform is used to translate a time-
domain signal into a frequency-domain signal. The 
Fast Fourier Transform algorithm is widely used in 
computer implementations as it reduces the execution 
time compared to the conventional Fourier Transform. 
The FFT algorithm is simple and efficient as it only 
involves multiple additions and constant 
multiplications. The effectiveness of FFT algorithm 
can be further exploited by utilizing its parallel nature. 

The FFT is an algorithm to compute complex Discrete 
Fourier Transform, for complex signals that are 
discrete and periodic.  In the context of musical note 
identification, the input signals are real, discrete and 
periodic signals. Due to this reason, only the real DFT 
needs to be computed by the FFT and it is necessary to 
translate the real DFT data into the complex DFT 
format. Complex DFT introduces the terms real part 
and imaginary part to the algorithm. For the purpose of 
real DFT, these terms simply means the amplitude of 
cosine wave amplitude and sine wave amplitude 
respectively[3]. An example of the cosine waves is 
shown in Figure 4. From Figure 4, k is defined as the 
number of full cycle a signal makes in the duration of 
π2 and n is the sample number that goes from 0 to 15. 

Sample 16 is not taken into consideration as it is a 
repeat of sample 0.  

 
Figure 4: Cosine waves of 16-point FFT 

decomposition[3] 

The algorithm used in this investigation is the 
decimation-in-time, radix-2, 16-point FFT algorithm. 
Bit reversal is performed on the input data before the 
computation begins. The computation consisted of four 
stages with each stage computed in one clock cycle. 
Eight constants are necessary to perform the 16-point 
FFT algorithm. These constants are represented by 

Nω where N is the number of points in the FFT. For N 

equals to 16, these constants are derived from equation 
(1). 
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where nk = (0, 1, 2, 3, 4, 5, 6, 7). Only these values of 
nk are considered as this is a periodic variable. 

The output of the FFT consists of two parts that are the 
mirror image of one another. An example of this, with 

two spikes at frequency 
16
3 sω

and
16

13 sω
, is shown in 

Figure 5.  

 
Figure 5: An example of output of an FFT 

sω represents the sampling frequency of the FFT and 

2
sω is half of the sampling frequency. A signal must 

be sampled two times as fast as its frequency to be 
detected by the FFT. For a 16-point FFT with 
particular sampling frequency sω , only eight discrete 

signals with frequency between 0 and 
2

sω
 can be 

distinguished. Any two neighbouring outputs of the 
FFT have equal separation in frequency with the first 
having 0 Hz frequency (DC) and the last having 

2
sω

Hz frequency. However, for the purpose of the 

frequency identifier in the automatic musical 
transcription, another interpretation of the output was 
utilised. In this interpretation, notes with frequency 

between 
2

sω
and sω are distinguished by sampling the 

input signals at sω . This is possible as long as it can be 
ensured that inputs are within a fixed range of 

frequency of 
2

sω
to sω  .  

1.3. FPGA AND VHDL 

FPGA implementation was chosen because it has the 
capability to compute highly parallelized algorithms 
and exploit the high speed and efficiency of hardware 
implementation. This is especially useful in 
implementing Digital Signal Processing (DSP) 
algorithms such as the FFT. Very High Speed 
Integrated Circuit (VHSIC) Hardware Description 



Language (VHDL) is one of the standard languages 
that can be used to implement designs in FPGAs. As a 
Hardware Description Language (HDL), it possesses 
characteristics that can handle the complexity of 
hardware circuitry that is needed in design 
implementation. Beside that, it has the re-
programmable capability which is convenient in the 
prototyping phase of a design. 

1.4. XILINX ISE DEVELOPMENT SOFTWARE  

In this investigation, the development software 
platform ISE Foundation from Xilinx is used to 
simulate, verify and download the design into and 
FPGA board. ISE is a very powerful tool that does 
synthesis and implementation of the design, including 
place and route[4].  

2. AUTOMATIC MUSIC TRANSCRIPTION 

 Musical transcription from audio signals is the process 
of taking a samples from a digitised sound waveform 
and extracting from it the symbolic information related 
to the high-level musical structure that are seen on a 
score[5]. The two most important features that need to 
be extracted from the audio signal are the pitch, 
corresponding to the frequency of the sound and the 
duration of the sound. Figure 6 shows the proposed 
automatic transcription system. The input to the system 
is music in its audio format. This input will be 
amplified and fed into an analogue to digital converter 
(ADC).  This ADC determines the sampling frequency 
of the input to the frequency identifier system, which is 
crucial in the interpretation of the output. 

 
Figure 6: Automatic Transcription System 

The frequency identifier system or musical notes 
recognition system implemented in FPGA provides the 
frequency of each individual note as well as other 
information needed for a musical score to be produced 
such as the duration of the note. The duration of a note 
can be found by detecting the silence between notes. 
To detect notes from different octaves multiple FFT 
should be utilised, each one running at different 
sampling rates. In this way the level of complexity of 
the system can be kept to a minimal level. The duration 
of the fastest note in music is significantly longer than 
the execution time of the FFT on the FPGA. Due to 
this, it is possible for a note to be sampled at various 
sampling frequencies until the required frequency 

range is found. The sampling frequency has to be sent 
to the software together with the particular frequency 
found by the identifier system. The software in this 
system executed on a PC will then convert all the 
required information into a musical score. For future 
optimization, by performing simple modification of the 
model, it should be possible to fully implement this 
automatic transcription system in hardware, 
eliminating the PC. However, further investigation 
needs to be carried out to verify this assumption.  

3. FREQUENCY IDENTIFIER SYSTEM 

The frequency identifier system is an important 
function block automatic transcription system. The 
block diagram of this system is shown in Figure 7. For 
verification and testing purpose, the ADC in Figure 6, 
which provides inputs to the frequency identifier 
system, was replaced by file stored in PC containing 
all input values representing a particular note. In other 
words, instead of the digitized input from the ADC, a 
hexadecimal text file is used as an input and 
communication between the FPGA and PC is done 
through the HyperTerminal. 

This system consists of the clock divider, UART 
receiver and shift registers to prepare the inputs of the 
FFT. The FFT is the main algorithm used to detect 
frequency of a note. The output block modifies the 
outputs of the FFT into the required format of the rest 
of the automatic transcription system. However, for 
testing purposes, the output block receives the FFT 
outputs and generates signals to control eight LEDs, 
combination of which represents each note in the 
diatonic scale. To achieve this purpose, the output 
block in Figure 7 converts the FFT outputs into binary 
values of either 0 or 1 to control the LEDs.   

3.1. MUSICAL NOTES AS INPUTS 

Input selection depends solely on the sampling 
frequency that is used to obtain the input data. For the 
FFT to generate perfect spikes with only two non-zero 
outputs, inputs need to follow equation (2). Two 
spikes, instead of one, are generated due to the mirror 
image property of FFT outputs as shown in Figure 5.  

(2)          
 

2sin
N
nkinput π

=  

where n is the sample number, k is the number of full 
cycle a particular signal can do in 2π and N is the total 
number of samples in the FFT. However, musical 
notes are not characterised by k and N. A note can only 
be distinguished from another note by its frequency. 
The relationship between frequency, k and N is stated 
in equation (3).  

(3)          sf
N
kf =  

By combining equations (2) and (3), the inputs to the 
frequency identifier system are obtained by equation 
(4). 



(4)          2sin
sf
nfinput π

=  

These inputs are scaled up by a factor of 127 to 
magnify the spikes given out by the FFT. The 
sampling frequency used in this investigation was 
523.26 Hz. 16 inputs are generated for each of the 
eight notes specified in Table 1.  

3.2. CLOCK DIVIDER AND UART RECEIVER 

The UART receiver is used to convert serial input to 8-
bit parallel outputs. The clock divider is used to 
generate 16 times the baud rate of the UART receiver 
from the 100 MHz oscillator on the Virtex 4 board. 
Depending on the required baud rate, the clock divider 
can be controlled to produce clock with the desired 
frequency. The baud rate used in the testing of the 
system is 19200. To achieve the requirement of 16 
times the baud rate, a clock of period 3.26 sμ was 
generated by the clock divider. This is done through 
the use of a counter to count 324 times the main 
oscillator of the board.  

3.3. SHIFT REGISTERS 

The shift registers are controlled by the data ready 
signal from the UART receiver. On the rising edge of 
this signal, a new parallel data from the UART is 
latched into the first register and the current data in the 
rest of the registers are latched ready to be shifted into 
the next register on the falling edge of the data ready 
signal. The main purpose of this block is to prepare the 
inputs to the FFT. The output of the UART is one 8-bit 
signed integer whereas to be meaningful, the FFT 
needs the full set of 16 8-bit signed integers as inputs. 
The shift registers act as buffers to store the output of 
the UART so 16 numbers of integers can be entered in 
parallel to the FFT. The implication of this design is 
that the first 15 outputs sets of the FFT have to be 
discarded and only the 16th output set onward carries 
meaningful output from the system. 
3.4. FFT 

The FFT used in the investigation takes its inputs from 
the shift register on the rising edge of the 100 MHz 
clock of the FPGA board. The FFT computation   itself 
requires 4 clock cycles to be executed. One additional 
clock cycle is needed to compute the magnitude square 
of the outputs as they have real and imaginary part. 
Magnitude square instead of magnate is utilised to 
simplify the computation. The bit reversal stage is 
done on the top level VHDL code which maps the 
output of the shift registers in bit reversal order to the 
input of the FFT. The inputs from the shift registers are 
taken as the real part of the input and the imaginary 
parts are all set to zero. This is one of the requirements 
of the FFT as shown in Figure 7. As the actual input 
from the music only represent the real part, the 
imaginary parts are manually assigned to zero values. 

 
Figure 8: Input – output format of complex DFT[3] 

As shown in Figure 8, the complex DFT transforms 
two N points time domain signals into tow N points 
frequency domain signals, which are called the real 
part and the imaginary part. This is in contrast to the 
real DFT that transforms an N points time domain 

signal into two 
2
N

+ 1 points frequency domain 

signals.  

 
Figure 9: Input – output format of real DFT[3]  

To transform time-domain music signals into 
frequency domain using the FFT algorithm, it is 
necessary to translate the complex DFT into real DFT 
format. To do so, it is necessary to move the N points 
time domain real signal to the real part of the time 
domain the complex DFT and set all of the samples in 
the imaginary part to zero[3].  

The 16-point, decimation in time FFT takes four stages 
to generate output values. Each stage is completed in 
one clock cycle. As the input-output mechanism is 
much slower (controlled by the data ready signal from 
the UART) than the FFT computation (controlled by 
the board 100 MHz clock), it can be ensured that by 
the time the outputs are collected, the FFT computation 
has reached completion and correct outputs are 
propagated to the rest of the system. The FFT is 
controlled by the falling edge of the clock. 

3.5. OUTPUTS INTERPRETATION AND LEDS 

The interpretation of the outputs is one of the most 
important parts of the design and analysis process. The 
FFT produces an output as depicted in Figure 5. With a 
sampling frequency of 523.25 Hz, only inputs with the 
frequency between 0 and 261.625 Hz could be 
distinguished. However, looking again at Figure 4, it 
can be noted that the outputs are two parts mirrored at 
261.625 Hz and, due to this reason, the frequencies 



 
Figure 7: Frequency Identifier System

between 261.63 Hz and 523.25 Hz can be implicitly 
distinguished by using the conversion presented in 
Table 2. 

One condition of this implicit recognition is that, 
despite the frequency of the inputs, it should have been 
known to the system that this frequency is limited 
within the range of 261.63 Hz and 523.25 Hz. For 
simulation purposes, the input values are manually 
typed into the system. For implementation, samples 
were saved into a text file and fed to the FPGA using 
Windows Hyper Terminal on a PC.  

Table 2: Representation of FFT Outputs 
FPGA 
outputs 

FPGA outputs 
frequencies (Hz) LEDs 

0 = ωs 261.63 9 
1 =15 294.33 8 
2 = 14 327.04 7 
3 = 13 359.74 6 
4 = 12 392.44 5 
5 = 11 425.15 4 
6 = 10 457.85 3 
7 = 9 490.55 2 

8 = ωs/2 523.25 1 
 
Therefore, the signals between 261.625 Hz and 523.25 
Hz can be represented as shown in table 3. For six out 
of eight, or 75% of the musical notes that want to be 
differentiated, one LED lighted up indicating that 
particular note. However, for two of the notes, instead 
of one, two LEDs lighted up for each note. This is 
because the FFT outputs are evenly spaced; whereas 
music notes follow a logarithmic scale. The 
frequencies of musical notes do not match exactly with 
the FFT output frequencies and two of them are 
located between two FFT output frequencies, giving 
two non-zero outputs instead of one. For the purpose 
of frequency identification, this representation of 
outputs is acceptable. Pattern of LEDs output can be 
used to distinguish one note from another. The LED 
pattern for each musical note is presented in Table 3.  

 

Table 3: Outputs of the Frequency Identification 
System 

Notes Frequency (Hz) LEDs 
C 261.63 1 
D 293.66 2 
E 329.63 3 
F 349.23 3 and 4 
G 392 5 
A 440 6 and 7 
B 493.88 8 
C’ 523.25 9 

 
4. TESTING AND VERIFICATION 

The testing and verification of the system are carried 
out through simulation of test benches in the ISE 
software. The test benches are created to verify how 
the system responds to selected inputs that represent 
different musical notes. 

 The simulation of the frequency identification system 
was done part by part. The UART and clock divider 
were verified and tested prior to this investigation. The 
shift registers were tested through simulation using 
Xilinx ISE software. The screenshot of this simulation 
is not included as shift registers are reasonably simple 
design and they also are common components of 
system design. 

Most simulation efforts were dedicated to verify the 
functionality of the FFT and LEDs output algorithm. 
Due to the specification of the FPGA board, the design 
assumes that an LED is turned on when the signal 
controlling it is low and turned off when the signal is 
high. Figure 10 shows a screenshot of the simulation 
generated with the ISE software. In Figure 10, the first 
set of input values between 0 and 160 ns represents the 
note D with amplitude of 127. The output 
corresponding to this set of inputs is propagated to the 
LED on the first falling edge of the signal clk_ready, 
which is the ready signal generated by the serial 
receiver. For note D, xled_2 is turned on when the 
output propagates to it.  Before this first output is ready 
to be propagated to the LED, all the LEDs have 
undefined values. The next set of inputs between 160 



ns to 310 ns represents the note G, which is shown by 
xled_5 taking the value of 0 in the output on the next 
falling edge of signal clk_ready. When all of the inputs 
are set to zero, all the LEDs in the outputs are turned 
off on the next time the outputs are propagated to the 
LED or on the next falling edge of the clk_ready 
signal.  

 
Figure 10: Simulation result of D and G 

One point worth noting from the simulation is 
regarding the signal clk_ready. For the purpose of 
simulation, this signal is set as an input that can be 
manually modified to emulate the data ready signal 
generated by the serial receiver. Implemented as a full 
frequency identifier system as pictured in Figure 8, the 
data ready signal takes a significantly longer time than 
the 100 MHz clock of the FPGA board used to control 
the FFT algorithm. The difference in the frequency of 
the ready signal from the UART with the main clock 
of the board is significantly larger than the difference 
between clk and clk_ready in the screenshot captured 
in Figure 10.  

5. OPTIMIZATION AND IMPLEMENTATION 

For the purpose of the musical notes recognition 
system, resolution of the FFT computation is not a 
main factor. As long as the FFT provides 
distinguishable spikes at the correct output location, 
the magnitude of the spike itself is less of an issue. 
Due to this reason, optimization can be achieved by 
scaling the value of inputs, outputs and intermediate 
values of the FFT computation down. In this 

investigation the inputs and outputs were chosen to be 
8-bit signed integer to ease interfacing of this block 
with others such as the UART, that provides 8-bit 
outputs. Moreover, the intermediate values are scaled 
to be 17-bit signed integer due to the realisation that 
the multiplication of two 8-bit values will result in a 
maximum value of 16-bit and the addition of two 16-
bit values will result in a maximum value of 17-bit.  

The design was implemented in the Xilinx Virtex 4 
SX35 development board with the XC4VSX35-
10FF668C FPGA. The SX family of the Virtex 4 is 
especially designed to perform DPS applications 
effectively. The SX 35 contains 192 Xtreme DSP 
slices, each containing one 18x18 multiplier, an adder 
and an accumulator [6]. As the design is optimised and 
with the powerful capability of the FPGA the 
utilisation of the board can be as low as 10%.  

6. CONCLUSIONS 

The purpose of this paper is to investigate the musical 
notes recognition system design and implementation 
on an FPGA board. This system will eventually be 
implemented as part of the automatic transcription 
system; however the integration of the two systems is 
subject to further investigation. From this 
investigation, it was found that the musical notes 
recognition system can be implemented for an octave 
of musical notes through the simple 16-point FFT 
algorithm with significantly low resolution of 8-bit 
signed integer inputs and outputs. This investigation 
also suggests that it is possible to implement multiple 
FFT to recognise all notes in the full scale of music. 
However, further investigation is needed to verify this 
prospect.   
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