
FPGA Implementation of Musical Notes Recognition for
Automatic Transcription System

S. C. Sugiarto and C. Ortega-Sanchez
Department of Electrical and Computer Engineering

Curtin University of Technology
Kent St, Bentley 6102, Western Australia

s.sugiarto@student.curtin.edu.au
c.ortega@curtin.edu.au

ABSTRACT
Musical transcription from musical data into score is
commonly performed by software running on a PC.
This involves significant delay, which can be
considerably reduced by hardware implementation.
This paper presents a hardware design and
implementation of the frequency identification system,
one of the most important function in musical
transcription, accomplished through the use of Fast
Fourier Transform (FFT) algorithm implemented in a
Field Programmable Gate Array (FPGA).

1. INTRODUCTION
Frequency identification is at the heart of automatic
transcription system. Real-time automatic transcription
system can be used in many applications such as
preserving impulses of music talents by translating it to
score or as a means of testing musical ability by
comparing played and original musical score.
Frequency identification system can be implemented in
real-time using the widely known FFT algorithm
performed on an FPGA.

1.1. MUSIC
Two aspects of music are integral in the development
of the musical transcription and frequency
identification: notes and score. The knowledge of
musical notes is necessary to determine the sampling
frequency of the FFT inputs, which is essential in
interpreting the outputs of the FFT. The understanding
on music representation in the form of musical score is
crucial to be able to display the output of musical
transcription system.

1.1.1. MUSIC NOTES
A musical note is used to represent the duration and
pitch of a particular sound. The chromatic scale
(shown in Figure 1), consisting of thirteen notes
(including both ends), is the main scale in music, with
all other scales being a subset of this particular
scale[1]. In the chromatic scale the frequencies of any
two notes are separated by the interval of semitone,
which is 21/12 of the frequency of the lower note[1].
The first and last notes of this scale are C’s with the
second C twice the frequency of the first one as shown
in Figure 1 and 2. This separation is called an octave.

The circled notes in Figure 1 form the diatonic scale in
music. These notes are represented by white keys on a
piano, as shown in Figure 2, and can be combined to
create simple music as shown in Figure 3.

Figure 1: Chromatic scale of 13 notes[1]

Figure 2: Middle octave of a piano

For the practicality of testing and implementation,
diatonic scale is used in the investigation. The
frequencies of the notes in the middle octave with the
central A of 440 Hz are depicted in Table 1.

Table 1: Frequencies of notes in middle octave
Notes Frequencies (in Hz)

C 261.63

D 293.66

E 329.63

F 349.23

G 392

A 440

B 493.88

C 523.25

1.1.2. MUSIC SCORE
Music has been, actively and passively, part of human
lives. Passive music, where the user utilise the music
by listening to it, is usually in the form of recorded
sounds. Active music, on the other hand, needs to have
a more explicit representation than recording. The
most common representation of active music is in the
form of musical score, an example of which is shown
in Figure 3.

Figure 3: Musical score example[2]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195644895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Musical score elucidates aspects of a piece of music
that are not obvious from mere listening. Musical score
is used so people, other than the original author or
original performer, can perform a particular piece of
music and reproduce a musical performance. It is used
to preserve and communicate a musical piece to
oneself and others.

1.2. FAST FOURIER TRANSFORM

The Fourier Transform is used to translate a time-
domain signal into a frequency-domain signal. The
Fast Fourier Transform algorithm is widely used in
computer implementations as it reduces the execution
time compared to the conventional Fourier Transform.
The FFT algorithm is simple and efficient as it only
involves multiple additions and constant
multiplications. The effectiveness of FFT algorithm
can be further exploited by utilizing its parallel nature.

The FFT is an algorithm to compute complex Discrete
Fourier Transform, for complex signals that are
discrete and periodic. In the context of musical note
identification, the input signals are real, discrete and
periodic signals. Due to this reason, only the real DFT
needs to be computed by the FFT and it is necessary to
translate the real DFT data into the complex DFT
format. Complex DFT introduces the terms real part
and imaginary part to the algorithm. For the purpose of
real DFT, these terms simply means the amplitude of
cosine wave amplitude and sine wave amplitude
respectively[3]. An example of the cosine waves is
shown in Figure 4. From Figure 4, k is defined as the
number of full cycle a signal makes in the duration of
π2 and n is the sample number that goes from 0 to 15.

Sample 16 is not taken into consideration as it is a
repeat of sample 0.

Figure 4: Cosine waves of 16-point FFT

decomposition[3]

The algorithm used in this investigation is the
decimation-in-time, radix-2, 16-point FFT algorithm.
Bit reversal is performed on the input data before the
computation begins. The computation consisted of four
stages with each stage computed in one clock cycle.
Eight constants are necessary to perform the 16-point
FFT algorithm. These constants are represented by

Nω where N is the number of points in the FFT. For N

equals to 16, these constants are derived from equation
(1).

(1)
)sin()cos()exp(16

2
16
2

16
2

16 nkjnknkjnk πππω −=−=

where nk = (0, 1, 2, 3, 4, 5, 6, 7). Only these values of
nk are considered as this is a periodic variable.

The output of the FFT consists of two parts that are the
mirror image of one another. An example of this, with

two spikes at frequency
16
3 sω

and
16

13 sω
, is shown in

Figure 5.

Figure 5: An example of output of an FFT

sω represents the sampling frequency of the FFT and

2
sω is half of the sampling frequency. A signal must

be sampled two times as fast as its frequency to be
detected by the FFT. For a 16-point FFT with
particular sampling frequency sω , only eight discrete

signals with frequency between 0 and
2

sω
 can be

distinguished. Any two neighbouring outputs of the
FFT have equal separation in frequency with the first
having 0 Hz frequency (DC) and the last having

2
sω

Hz frequency. However, for the purpose of the

frequency identifier in the automatic musical
transcription, another interpretation of the output was
utilised. In this interpretation, notes with frequency

between
2

sω
and sω are distinguished by sampling the

input signals at sω . This is possible as long as it can be
ensured that inputs are within a fixed range of

frequency of
2

sω
to sω .

1.3. FPGA AND VHDL

FPGA implementation was chosen because it has the
capability to compute highly parallelized algorithms
and exploit the high speed and efficiency of hardware
implementation. This is especially useful in
implementing Digital Signal Processing (DSP)
algorithms such as the FFT. Very High Speed
Integrated Circuit (VHSIC) Hardware Description

Language (VHDL) is one of the standard languages
that can be used to implement designs in FPGAs. As a
Hardware Description Language (HDL), it possesses
characteristics that can handle the complexity of
hardware circuitry that is needed in design
implementation. Beside that, it has the re-
programmable capability which is convenient in the
prototyping phase of a design.

1.4. XILINX ISE DEVELOPMENT SOFTWARE

In this investigation, the development software
platform ISE Foundation from Xilinx is used to
simulate, verify and download the design into and
FPGA board. ISE is a very powerful tool that does
synthesis and implementation of the design, including
place and route[4].

2. AUTOMATIC MUSIC TRANSCRIPTION

 Musical transcription from audio signals is the process
of taking a samples from a digitised sound waveform
and extracting from it the symbolic information related
to the high-level musical structure that are seen on a
score[5]. The two most important features that need to
be extracted from the audio signal are the pitch,
corresponding to the frequency of the sound and the
duration of the sound. Figure 6 shows the proposed
automatic transcription system. The input to the system
is music in its audio format. This input will be
amplified and fed into an analogue to digital converter
(ADC). This ADC determines the sampling frequency
of the input to the frequency identifier system, which is
crucial in the interpretation of the output.

Figure 6: Automatic Transcription System

The frequency identifier system or musical notes
recognition system implemented in FPGA provides the
frequency of each individual note as well as other
information needed for a musical score to be produced
such as the duration of the note. The duration of a note
can be found by detecting the silence between notes.
To detect notes from different octaves multiple FFT
should be utilised, each one running at different
sampling rates. In this way the level of complexity of
the system can be kept to a minimal level. The duration
of the fastest note in music is significantly longer than
the execution time of the FFT on the FPGA. Due to
this, it is possible for a note to be sampled at various
sampling frequencies until the required frequency

range is found. The sampling frequency has to be sent
to the software together with the particular frequency
found by the identifier system. The software in this
system executed on a PC will then convert all the
required information into a musical score. For future
optimization, by performing simple modification of the
model, it should be possible to fully implement this
automatic transcription system in hardware,
eliminating the PC. However, further investigation
needs to be carried out to verify this assumption.

3. FREQUENCY IDENTIFIER SYSTEM

The frequency identifier system is an important
function block automatic transcription system. The
block diagram of this system is shown in Figure 7. For
verification and testing purpose, the ADC in Figure 6,
which provides inputs to the frequency identifier
system, was replaced by file stored in PC containing
all input values representing a particular note. In other
words, instead of the digitized input from the ADC, a
hexadecimal text file is used as an input and
communication between the FPGA and PC is done
through the HyperTerminal.

This system consists of the clock divider, UART
receiver and shift registers to prepare the inputs of the
FFT. The FFT is the main algorithm used to detect
frequency of a note. The output block modifies the
outputs of the FFT into the required format of the rest
of the automatic transcription system. However, for
testing purposes, the output block receives the FFT
outputs and generates signals to control eight LEDs,
combination of which represents each note in the
diatonic scale. To achieve this purpose, the output
block in Figure 7 converts the FFT outputs into binary
values of either 0 or 1 to control the LEDs.

3.1. MUSICAL NOTES AS INPUTS

Input selection depends solely on the sampling
frequency that is used to obtain the input data. For the
FFT to generate perfect spikes with only two non-zero
outputs, inputs need to follow equation (2). Two
spikes, instead of one, are generated due to the mirror
image property of FFT outputs as shown in Figure 5.

(2)

2sin
N
nkinput π

=

where n is the sample number, k is the number of full
cycle a particular signal can do in 2π and N is the total
number of samples in the FFT. However, musical
notes are not characterised by k and N. A note can only
be distinguished from another note by its frequency.
The relationship between frequency, k and N is stated
in equation (3).

(3) sf
N
kf =

By combining equations (2) and (3), the inputs to the
frequency identifier system are obtained by equation
(4).

(4) 2sin
sf
nfinput π

=

These inputs are scaled up by a factor of 127 to
magnify the spikes given out by the FFT. The
sampling frequency used in this investigation was
523.26 Hz. 16 inputs are generated for each of the
eight notes specified in Table 1.

3.2. CLOCK DIVIDER AND UART RECEIVER

The UART receiver is used to convert serial input to 8-
bit parallel outputs. The clock divider is used to
generate 16 times the baud rate of the UART receiver
from the 100 MHz oscillator on the Virtex 4 board.
Depending on the required baud rate, the clock divider
can be controlled to produce clock with the desired
frequency. The baud rate used in the testing of the
system is 19200. To achieve the requirement of 16
times the baud rate, a clock of period 3.26 sμ was
generated by the clock divider. This is done through
the use of a counter to count 324 times the main
oscillator of the board.

3.3. SHIFT REGISTERS

The shift registers are controlled by the data ready
signal from the UART receiver. On the rising edge of
this signal, a new parallel data from the UART is
latched into the first register and the current data in the
rest of the registers are latched ready to be shifted into
the next register on the falling edge of the data ready
signal. The main purpose of this block is to prepare the
inputs to the FFT. The output of the UART is one 8-bit
signed integer whereas to be meaningful, the FFT
needs the full set of 16 8-bit signed integers as inputs.
The shift registers act as buffers to store the output of
the UART so 16 numbers of integers can be entered in
parallel to the FFT. The implication of this design is
that the first 15 outputs sets of the FFT have to be
discarded and only the 16th output set onward carries
meaningful output from the system.
3.4. FFT

The FFT used in the investigation takes its inputs from
the shift register on the rising edge of the 100 MHz
clock of the FPGA board. The FFT computation itself
requires 4 clock cycles to be executed. One additional
clock cycle is needed to compute the magnitude square
of the outputs as they have real and imaginary part.
Magnitude square instead of magnate is utilised to
simplify the computation. The bit reversal stage is
done on the top level VHDL code which maps the
output of the shift registers in bit reversal order to the
input of the FFT. The inputs from the shift registers are
taken as the real part of the input and the imaginary
parts are all set to zero. This is one of the requirements
of the FFT as shown in Figure 7. As the actual input
from the music only represent the real part, the
imaginary parts are manually assigned to zero values.

Figure 8: Input – output format of complex DFT[3]

As shown in Figure 8, the complex DFT transforms
two N points time domain signals into tow N points
frequency domain signals, which are called the real
part and the imaginary part. This is in contrast to the
real DFT that transforms an N points time domain

signal into two
2
N

+ 1 points frequency domain

signals.

Figure 9: Input – output format of real DFT[3]

To transform time-domain music signals into
frequency domain using the FFT algorithm, it is
necessary to translate the complex DFT into real DFT
format. To do so, it is necessary to move the N points
time domain real signal to the real part of the time
domain the complex DFT and set all of the samples in
the imaginary part to zero[3].

The 16-point, decimation in time FFT takes four stages
to generate output values. Each stage is completed in
one clock cycle. As the input-output mechanism is
much slower (controlled by the data ready signal from
the UART) than the FFT computation (controlled by
the board 100 MHz clock), it can be ensured that by
the time the outputs are collected, the FFT computation
has reached completion and correct outputs are
propagated to the rest of the system. The FFT is
controlled by the falling edge of the clock.

3.5. OUTPUTS INTERPRETATION AND LEDS

The interpretation of the outputs is one of the most
important parts of the design and analysis process. The
FFT produces an output as depicted in Figure 5. With a
sampling frequency of 523.25 Hz, only inputs with the
frequency between 0 and 261.625 Hz could be
distinguished. However, looking again at Figure 4, it
can be noted that the outputs are two parts mirrored at
261.625 Hz and, due to this reason, the frequencies

Figure 7: Frequency Identifier System

between 261.63 Hz and 523.25 Hz can be implicitly
distinguished by using the conversion presented in
Table 2.

One condition of this implicit recognition is that,
despite the frequency of the inputs, it should have been
known to the system that this frequency is limited
within the range of 261.63 Hz and 523.25 Hz. For
simulation purposes, the input values are manually
typed into the system. For implementation, samples
were saved into a text file and fed to the FPGA using
Windows Hyper Terminal on a PC.

Table 2: Representation of FFT Outputs
FPGA
outputs

FPGA outputs
frequencies (Hz) LEDs

0 = ωs 261.63 9
1 =15 294.33 8
2 = 14 327.04 7
3 = 13 359.74 6
4 = 12 392.44 5
5 = 11 425.15 4
6 = 10 457.85 3
7 = 9 490.55 2

8 = ωs/2 523.25 1

Therefore, the signals between 261.625 Hz and 523.25
Hz can be represented as shown in table 3. For six out
of eight, or 75% of the musical notes that want to be
differentiated, one LED lighted up indicating that
particular note. However, for two of the notes, instead
of one, two LEDs lighted up for each note. This is
because the FFT outputs are evenly spaced; whereas
music notes follow a logarithmic scale. The
frequencies of musical notes do not match exactly with
the FFT output frequencies and two of them are
located between two FFT output frequencies, giving
two non-zero outputs instead of one. For the purpose
of frequency identification, this representation of
outputs is acceptable. Pattern of LEDs output can be
used to distinguish one note from another. The LED
pattern for each musical note is presented in Table 3.

Table 3: Outputs of the Frequency Identification
System

Notes Frequency (Hz) LEDs
C 261.63 1
D 293.66 2
E 329.63 3
F 349.23 3 and 4
G 392 5
A 440 6 and 7
B 493.88 8
C’ 523.25 9

4. TESTING AND VERIFICATION

The testing and verification of the system are carried
out through simulation of test benches in the ISE
software. The test benches are created to verify how
the system responds to selected inputs that represent
different musical notes.

 The simulation of the frequency identification system
was done part by part. The UART and clock divider
were verified and tested prior to this investigation. The
shift registers were tested through simulation using
Xilinx ISE software. The screenshot of this simulation
is not included as shift registers are reasonably simple
design and they also are common components of
system design.

Most simulation efforts were dedicated to verify the
functionality of the FFT and LEDs output algorithm.
Due to the specification of the FPGA board, the design
assumes that an LED is turned on when the signal
controlling it is low and turned off when the signal is
high. Figure 10 shows a screenshot of the simulation
generated with the ISE software. In Figure 10, the first
set of input values between 0 and 160 ns represents the
note D with amplitude of 127. The output
corresponding to this set of inputs is propagated to the
LED on the first falling edge of the signal clk_ready,
which is the ready signal generated by the serial
receiver. For note D, xled_2 is turned on when the
output propagates to it. Before this first output is ready
to be propagated to the LED, all the LEDs have
undefined values. The next set of inputs between 160

ns to 310 ns represents the note G, which is shown by
xled_5 taking the value of 0 in the output on the next
falling edge of signal clk_ready. When all of the inputs
are set to zero, all the LEDs in the outputs are turned
off on the next time the outputs are propagated to the
LED or on the next falling edge of the clk_ready
signal.

Figure 10: Simulation result of D and G

One point worth noting from the simulation is
regarding the signal clk_ready. For the purpose of
simulation, this signal is set as an input that can be
manually modified to emulate the data ready signal
generated by the serial receiver. Implemented as a full
frequency identifier system as pictured in Figure 8, the
data ready signal takes a significantly longer time than
the 100 MHz clock of the FPGA board used to control
the FFT algorithm. The difference in the frequency of
the ready signal from the UART with the main clock
of the board is significantly larger than the difference
between clk and clk_ready in the screenshot captured
in Figure 10.

5. OPTIMIZATION AND IMPLEMENTATION

For the purpose of the musical notes recognition
system, resolution of the FFT computation is not a
main factor. As long as the FFT provides
distinguishable spikes at the correct output location,
the magnitude of the spike itself is less of an issue.
Due to this reason, optimization can be achieved by
scaling the value of inputs, outputs and intermediate
values of the FFT computation down. In this

investigation the inputs and outputs were chosen to be
8-bit signed integer to ease interfacing of this block
with others such as the UART, that provides 8-bit
outputs. Moreover, the intermediate values are scaled
to be 17-bit signed integer due to the realisation that
the multiplication of two 8-bit values will result in a
maximum value of 16-bit and the addition of two 16-
bit values will result in a maximum value of 17-bit.

The design was implemented in the Xilinx Virtex 4
SX35 development board with the XC4VSX35-
10FF668C FPGA. The SX family of the Virtex 4 is
especially designed to perform DPS applications
effectively. The SX 35 contains 192 Xtreme DSP
slices, each containing one 18x18 multiplier, an adder
and an accumulator [6]. As the design is optimised and
with the powerful capability of the FPGA the
utilisation of the board can be as low as 10%.

6. CONCLUSIONS

The purpose of this paper is to investigate the musical
notes recognition system design and implementation
on an FPGA board. This system will eventually be
implemented as part of the automatic transcription
system; however the integration of the two systems is
subject to further investigation. From this
investigation, it was found that the musical notes
recognition system can be implemented for an octave
of musical notes through the simple 16-point FFT
algorithm with significantly low resolution of 8-bit
signed integer inputs and outputs. This investigation
also suggests that it is possible to implement multiple
FFT to recognise all notes in the full scale of music.
However, further investigation is needed to verify this
prospect.

7. ACKNOWLEDGMENTS

The authors wish to thank Kim Bourne Ng and Dr.
Kelvin Tan for their supports in the writing of this
paper.

REFERENCES

[1] "Wikipedia, The free encyclopedia", 2006.
Retreived: 1st September, 2006, from:
http://en.wikipedia.org/wiki/Main_Page

[2] "Mary Had A Little Lamb sheet music", 2000.
Retreived: 20th August, 2006, from:
http://www.8notes.com/scores/572.asp?ftype=
gif

[3] S. W. Smith, The Scientist and Engineer's
Guide to Digital Signal Processing, 2nd ed.
San Diego, California: California Technical
Publishing, 1999.

[4] "ISE Data Sheet", 2006. Retreived: 1
September, 2006, from:
http://www.xilinx.com/publications/prod_mkt
g/pn0010867.pdf

[5] J. P. Bello, G. Monti, and M. Sandler,
"Techniques for Automatic Music
Transcription," n.d.

[6] "Virtex-4 MB Development Board User's
Guide," 2005.

http://en.wikipedia.org/wiki/Main_Page
http://www.8notes.com/scores/572.asp?ftype=gif
http://www.8notes.com/scores/572.asp?ftype=gif
http://www.xilinx.com/publications/prod_mktg/pn0010867.pdf
http://www.xilinx.com/publications/prod_mktg/pn0010867.pdf

[7] E. Scheirer, "Extracting expressive
performance information from recorded
music," MIT, 1995.

[8] "Virtex-4 Family Overview", 2006. Retreived:
1st September 2006, 2006, from:
http://direct.xilinx.com/bvdocs/publications/d
s112.pdf

[9] "A Framework for Hardware-Software Co-
Design of Embedded Systems", 2006.
Retreived: 2nd August 2006, from:
http://embedded.eecs.berkeley.edu/Respep/Re
search/hsc/abstract.html#motivation

[10] J. C. Brown and B. Zhang, "Musical
Frequency Tracking using the methids of
conventional and narrowed autocorrelation,"
Acoustic Society of America, vol. 5, 1991.

http://direct.xilinx.com/bvdocs/publications/ds112.pdf
http://direct.xilinx.com/bvdocs/publications/ds112.pdf
http://embedded.eecs.berkeley.edu/Respep/Research/hsc/abstract.html#motivation
http://embedded.eecs.berkeley.edu/Respep/Research/hsc/abstract.html#motivation

