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Bayesian Filtering with Random Finite Set
Observations

Ba-Tuong Vo, Ba-Ngu Vo, and Antonio Cantoni

Abstract— This paper presents a novel and mathematically
rigorous Bayes recursion for tracking a target that generates
multiple measurements with state dependent sensor field of view
and clutter. Our Bayesian formulation is mathematically well-
founded due to our use of a consistent likelihood function derived
from random finite set theory. It is established that under certain
assumptions, the proposed Bayes recursion reduces to the car-
dinalized probability hypothesis density (CPHD) recursion for a
single target. A particle implementation of the proposed recursion
is given. Under linear Gaussian and constant sensor field of
view assumptions, an exact closed form solution to the proposed
recursion is derived, and efficient implementations are given.
Extensions of the closed form recursion to accommodate mild
non-linearities are also given using linearization and unscented
transforms.

Index Terms— Target tracking, Random finite sets, Point
processes, Bayesian filtering, PHD filter, CPHD filter, Particle
filter, Gaussian sum filter, Kalman filter

I. INTRODUCTION

The objective of target tracking is to estimate the state
of the target from measurement sets collected by a sensor
at each time step. This is a challenging problem since the
target can generate multiple measurements which are not
always detected by the sensor, and the sensor receives a set of
spurious measurements (clutter) not generated by the target.
Many existing techniques for handling this problem rest on
the simplifying assumptions that the target generates at most
one measurement and that the sensor field of view is constant.
Such assumptions are not realistic, for example, in extended
object tracking or tracking in the presence of electronic counter
measures, which are increasingly becoming important due to
high resolution capabilities of modern sensors. Nonetheless,
these assumptions have formed the basis of a plethora of
works e.g., the multiple hypothesis tracker (MHT) [1], [2], the
probabilistic data association (PDA) filter [3], the Gaussian
mixture filter [4], the integrated PDA (IPDA) filter [5], and
their variants. However, such techniques are not easily adapted
to accommodate multiple measurements generated by the
target and state dependent field of view. Moreover, it is not
clear how such techniques are mathematically consistent with
the Bayesian paradigm.
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Tracking in the presence of detection uncertainty, data
association uncertainty and clutter can be elegantly cast in
the Bayesian filtering paradigm using random finite set (RFS)
modeling. While this idea has been advocated by various re-
searchers [6]–[8], Mahler’s random finite set approach (coined
as finite set statistics or FISST) is the first systematic Bayesian
framework for the study of multi-sensor multi-target tracking
[9]–[11]. Exciting advances and developments in the random
finite set approach have attracted substantial interest in re-
cent years, especially moment approximations for multi-target
tracking [10]–[15]. In the single-target realm, however, the
RFS approach has not been utilized to further advance single-
target tracking techniques, though connections with existing
techniques such as PDA and IPDA have been addressed [16].

To the best of the authors’ knowledge, this paper is the first
to use the RFS formalism to solve the problem of tracking a
target that can generate multiple measurements, in the presence
of detection uncertainty and clutter. In our Bayesian filtering
formulation, the collection of observations at any time is
treated as a set-valued observation which encapsulates the
underlying models of multiple target-generated measurements,
state dependent sensor field of view, and clutter. Central to the
Bayes recursion is the concept of a probability density. Since
the observation space is now the space of finite sets, the usual
Euclidean notion of a density is not suitable. An elegant and
rigorous notion of a probability density needed for the Bayes
recursion is provided by RFS or point process theory [9], [12],
[10], [13].

The contributions of this paper are

• A novel and mathematically rigorous Bayes recursion
together with a particle implementation that accommo-
dates multiple measurements generated by the target, state
dependent field of view and clutter using RFS theory,

• A closed form solution to the proposed recursion for
linear Gaussian single-target models with constant sensor
field of view, and extensions to accommodate mild non-
linearities using linearization and unscented transforms.

• Under certain assumptions the proposed Bayes recursion
is shown to reduce to Mahler’s cardinalized probability
hypothesis density (CPHD) recursion [14] restricted to a
single target,

• Our approach is compared with conventional techniques
and is shown to be significantly better in terms of track
loss and localization performance.

In contrast to the traditional approaches [1]–[5], our pro-
posed recursion formally accommodates multiple measure-
ments generated by the target, detection uncertainty and
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clutter, thereby providing a formal mechanism for handling
effects such as electronic counter measures and multi-path
reflections. Indeed, assuming no clutter and that the target
generates exactly one measurement, the proposed recursion
reduces to the usual Bayes recursion and the particle filter
implementation reduces to the standard particle filter. Under
additional linear Gaussian assumptions, our closed form re-
cursion reduces to the celebrated Kalman filter (hence our
extensions via linearization and unscented transforms reduce
to the extended and unscented Kalman filters respectively). In
the case of a linear Gaussian model with at most one target-
generated measurement, constant field of view, and uniform
clutter, the proposed closed form recursion reduces to the
Gaussian mixture filter given in [4]. Moreover, if at each time
step, gating is performed and the Gaussian mixture posterior
density is collapsed to a single Gaussian component, then the
proposed recursion reduces to the PDA filter [3].

We have announced some of the results of the current work
in the conference paper [17].

The paper is structured as follows. Section II presents
background information on Bayesian filtering and random
finite sets. Section III then formulates the single-target tracking
problem in the Bayes framework that accommodates multiple
measurements generated by the target, state dependent sensor
field of view, and clutter; this section also establishes the con-
nection between the proposed recursion and Mahler’s CPHD
recursion restricted to a single target. A particle implementa-
tion of the proposed recursion is presented in Section IV along
with a non-linear demonstration and numerical studies. An
exact closed form solution to the proposed recursion is derived
for linear Gaussian single-target models in Section V along
with demonstrations and numerical studies. Extensions of the
closed form recursion to accommodate non-linear Gaussian
models are described in Section VI. Concluding remarks are
given in Section VII.

II. BACKGROUND

A. The Bayes Recursion

In the classical Bayes filter [18], [19] the hidden state
xk is assumed to follow a first order Markov process on
the state space X ⊆ Rnx according to a transition density
fk|k−1(xk|xk−1), which is the probability density that, the
target with state xk−1 at time k− 1 moves to state xk at time
k. The observation zk ∈ Z ⊆ Rnz is assumed conditionally
independent given the states xk and is characterized by a
likelihood gk(zk|xk), which is the probability density that,
at time k, the target with state xk produces a measurement
zk. Under these assumptions, the classical Bayes recursion
propagates the posterior density pk in time according to

pk|k−1(xk|z1:k−1)=
∫

fk|k−1(xk|x)pk−1(x|z1:k−1)dx, (1)

pk(xk|z1:k)=
gk(zk|xk)pk|k−1(xk|z1:k−1)∫
gk(zk|x)pk|k−1(x|z1:k−1)dx

. (2)

where z1:k = [z1, ..., zk]. All inference on the target state at
time k is derived from the posterior density pk. Common
estimators for the target state are the expected a posteriori
(EAP) and maximum a posteriori (MAP) estimators.

The Bayes recursion (1)-(2) is formulated for single-target
single-measurement systems. In practice due to multi-path
reflections, electronic counter measures etc, the target may
generate multiple measurements, in addition to spurious mea-
surements not generated by the target. Note that at any given
time step, the order of appearance of measurements received
by sensor has no physical significance. Hence, at time k the
sensor effectively receives an unordered set of measurements
denoted by Zk, and the observation space is now the space
of finite subsets of Z , denoted by F(Z). Consequently, the
Bayes update (2) is not directly applicable.

To accommodate set-valued measurements, we require a
mathematically consistent generalization of the likelihood
gk(zk|xk) to the set-valued case. In other words, we need a
mathematically rigorous notion of the probability density of
the set Zk given xk. However, the notion of such densities is
not straightforward because the space F(Z) does not inherit
the usual Euclidean notions of volume and integration on
Z . We review in the next subsection how RFS theory or
point process theory provides rigorous notions of volume
and integration on F(Z) needed to define a mathematically
consistent likelihood.

B. Random Finite Sets

We describe in this subsection the bare minimum back-
ground on RFS theory needed to develop the results in this
paper. For a classical treatment of the mathematical theory of
RFSs (or point processes), the reader is referred to [20], [21],
while a comprehensive treatment of multi-target tracking using
RFSs can be found in [9]–[11].

Let (Ω, σ(Ω), P ) be a probability space, where Ω is the
sample space, σ(Ω) is a σ-algebra on Ω, and P is a probability
measure on σ(Ω). A random finite set Z on a complete
separable metric space Z (e.g. Z = Rnz ) is defined as a
measurable mapping

Σ : Ω → F(Z), (3)

with respect to the Borel sets of F(Z) [20]–[22]1. The
probability distribution of the RFS Σ is given in terms of
the probability measure P by

Pr(Σ ∈ T ) = P ({ω ∈ Ω : Σ(ω) ∈ T }) (4)

where T is any Borel subset of F(Z). The probability
distribution of the RFS Σ can be equivalently characterized by
a discrete probability distribution and a family of joint proba-
bility distributions. The discrete distribution characterizes the
cardinality (the number of elements) of the RFS, whilst for a
given cardinality, an appropriate distribution characterizes the
joint distribution of the elements of the RFS [20]–[22].

The probability density pΣ of Σ is given by the Radon-
Nikodým derivative of its probability distribution with respect
to an appropriate dominating measure µ. i.e. Pr(Σ ∈ T ) =∫
T pΣ(Z)µ(dZ). The conventional choice of dominating mea-

sure is [23]

µ(T ) =
∑∞

r=0 λr(χ−1(T ) ∩ Zr)/r! (5)

1Technically, F(Z) is embedded in the (complete separable metric) space
of counting measures on Z , and inherits the Borel sets of this space.
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where λr is the rth product (unitless) Lebesque measure, χ
is a mapping of vectors to sets defined by χ([z1, ..., zr]T ) =
{z1, ..., zr}, and Zr is the rth Cartesian product of Z with the
convention Z0 = {∅}. The integral of a measurable function
f : F(Z) → R with respect to µ is defined as follows

∫
T f(Z)µ(dZ) =∑∞

r=0
1
r!

∫
χ−1(T )∩Zr f({z1, ..., zr})λr(dz1...dzr). (6)

The 1st-order moment of a random finite set Σ on Z , also
called the intensity function, is a non-negative function vΣ on
Z with the property that for any closed subset S ⊆ Z

E [|Σ ∩ S|] =
∫

S
vΣ(x)dx

where |Σ| denotes the cardinality of Σ. In other words, for a
given point x, the intensity vΣ(x) is the density of expected
number of targets per unit volume at x.

An important class of RFSs are the Poisson RFSs (or Pois-
son point processes) [20], which are completely characterized
by their intensity functions. The cardinality of a Poisson RFS
Σ is Poisson distributed with mean NΣ =

∫
vΣ(x)dx, and for

a given cardinality the elements of Σ are each independent and
identically distributed (i.i.d) with probability density vΣ/NΣ.
More generally, an RFS whose elements are i.i.d according to
vΣ/NΣ, but has arbitrary cardinality distribution is called an
i.i.d cluster process [20].

For simplicity in notation, we shall use the same symbol
for an RFS and its realizations hereon.

III. THE RFS SINGLE-TARGET BAYES RECURSION

The classical Bayes filter was formulated for the case where
the target generates exactly one measurement and there is no
clutter. Hence in the classical Bayes filter, the measurement is
vector-valued and modelled as a random variable given by
a likelihood function defined on Z . As previously argued,
in the presence of multiple measurements generated by the
target, detection uncertainty and clutter, the measurement is
set-valued. In this section, we describe a RFS measurement
model and derive the corresponding likelihood function on
F(Z).

A. RFS Measurement Model

The collection of measurements obtained at time k is
represented as a finite subset Zk of the original observation
space Z ⊆ Rnz . More concisely, if M(k) observations
zk,1, . . . , zk,M(k) ∈ Z are received at time k, then

Zk = {zk,1, . . . , zk,M(k)} ∈ F(Z). (7)

Suppose at time k that the target is in state xk. The mea-
surement process is given by the RFS measurement equation

Zk = Θk (xk) ∪ Ek(xk) ∪Wk, (8)

where Θk (xk) is the RFS of the primary target-generated mea-
surement, Ek(xk) is the RFS of extraneous target-generated
measurements, and Wk is the RFS of clutter. For example,
Θk (xk) may represent a single direct path measurement,
Ek(xk) may represent measurements generated by multi-
path effects or counter measures, and Wk may represent

state independent spurious measurements. It is assumed that
conditional on xk, Θk (xk), Ek (xk) and Wk are independent
RFSs.

We model Θk (xk) as a binary RFS

Θk(xk)=
{∅ with probability 1− pD,k(xk)
{z∗k} with probability density pD,k(xk) gk(z∗k|xk)

where pD,k (·) is the probability of detection for the primary
measurement, and gk (·|·) is the likelihood for the primary
measurement. Hence, the probability of not obtaining the
primary measurement from a state xk is 1 − pD,k (xk), and
conversely, given that there is a primary measurement the
probability density of obtaining the primary measurement z∗k
from a state xk is gk (z∗k|xk).

We model Ek(xk) and Wk in (8) as Poisson RFSs with in-
tensities vE,k (·|xk) and vW,k (·) respectively. For convenience
we group these RFSs together as

Kk (xk) = Ek (xk) ∪Wk. (9)

Since Kk (xk) is a union of statistically independent Poisson
RFSs, it is also a Poisson RFS with intensity

vK,k (zk|xk) = vW,k (zk) + vE,k (zk|xk) . (10)

The cardinality distribution ρK,k (·|xk) of Kk (xk) is Poisson
with mean

∫
vK,k (zk|xk) dzk. Hence, if the target is in state

xk at time k, the probability of Kk (xk) having exactly nk

measurements is ρK,k (nk|xk), whilst each measurement zk

is independent and identically distributed according to the
probability density

ck (zk|xk) = vK,k (zk|xk) /
∫

vK,k (z|xk) dz. (11)

The following proposition establishes the likelihood corre-
sponding to the above RFS measurement model. See Appendix
A for the proof.

Proposition 1 If the measurements follow the RFS model in
(8), then the probability density that the state xk at time k
produces the measurement set Zk is given by

ηk(Zk|xk) = [1−pD,k(xk)]ρK,k(|Zk| |xk) |Zk|!
∏

zk∈Zk

ck (zk|xk)

+ pD,k (xk) · ρK,k(|Zk| − 1|xk) · (|Zk| − 1)!

×
∑

z∗k∈Zk

gk(z∗k|xk)
∏

zk 6=z∗k

ck (zk|xk) (12)

in the sense that ηk(·|xk) is the Radon-Nikodým derivative of
the probability distribution of Zk given xk with respect to the
dominating measure (6), i.e.

Pr(Zk ∈ T |xk) =
∫
T ηk(Zk|xk)µ(dZk). (13)

Remark: The expression in Proposition 1 is a probability
density, and is derived from first principles using only measure
theoretic probability concepts. A similar expression has been
independently derived by Mahler using finite set statistics
(FISST) in [11]2. However, Mahler stresses that the FISST
derivative is not a Radon-Nikodým derivative [11] (pp. 716)

2The book [11] appeared around the same time that we submitted our
preliminary result [17]
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and hence is not a probability density. We refer the reader to
[10] for more details on the relationship between the FISST
set derivative and probability density of RFS.

The likelihood (12) has |Zk|+1 terms each of which admits
an intuitive interpretation. The first term relates to a missed
primary measurement detection, whilst each of the remaining
|Zk| terms relates to a primary measurement detection. To
explain the first term, notice that when there is a missed
primary measurement detection, Zk = Kk (xk). Hence, the
likelihood of Zk comprises: 1 − pD,k (xk), the probability
of a missed primary measurement detection; ρK,k(|Zk| |xk),
the probability that Kk (xk) has exactly |Zk| measurements;∏

zk∈Zk
ck (zk|xk), the joint density of the measurements; and

a factorial term to account for all possible permutations of Zk.
To explain each of the |Zk| remaining terms, notice that when
there is a primary measurement detection, Θk (xk) = {z∗k} and
Kk (xk) = Zk\{z∗k}. Hence, the likelihood of Zk comprises:
pD,k (xk), the probability of a primary measurement detection;
ρK,k(|Zk| − 1|xk), the probability that Kk (xk) has exactly
|Zk|−1 measurements; gk(z∗k|xk)

∏
zk 6=z∗k

ck (zk|xk), the joint
density of the measurements and a factorial term to account
for all possible permutations of Kk (xk).

As a check for consistency, if there is always a pri-
mary target-generated measurement, no extraneous target-
generated measurements and no clutter, i.e. pD,k (xk) ≡ 1 and
ρK,k(nk|xk) = δ0(nk) (δi(j) = 1 if i = j and zero otherwise),
it can be seen that Zk = {z∗k} and ηk({zk}|xk) = gk(z∗k|xk).
In other words, the measurement set is always a singleton
containing the primary measurement, and the likelihood (12)
reduces to the usual single measurement likelihood.

Remark: If Ek(xk) ≡ ∅ (hence vE,k(z|x) = 0 and
ρE,k (n|x) = δ0(n)), and Wk is an i.i.d cluster process in (8)-
(9), then the likelihood (12) still holds. However, if Ek(xk)
and Wk in (8)-(9) are both i.i.d cluster processes, the RFS
Kk (xk) = Wk ∪ Ek (xk) is, in general, no longer an i.i.d
cluster process. Nonetheless if Kk (xk) can be approximated
by an i.i.d cluster process with matching intensity and cardi-
nality distribution

vK,k (zk|xk) = vW,k (zk) + vE,k (zk|xk) , (14)
ρK,k (nk|xk) = (ρW,k ∗ ρE,k) (nk|xk) , (15)

where ∗ denotes convolution, ρW,k (·) and ρE,k (·|xk) are
the cardinality distributions of Wk and Ek (xk), then the
likelihood (12) is still valid.

B. RFS Single-Target Bayes Recursion

The Bayes recursion (1)-(2) can be generalized to accommo-
date multiple measurements generated by the target, detection
uncertainty, and clutter, by replacing the standard likelihood
gk(zk|xk) with the RFS measurement likelihood ηk(Zk|xk) in
(12). Hence, the posterior density pk(·|Z1:k) can be propagated
as follows

pk|k−1(xk|Z1:k−1) =
∫
fk|k−1(xk|x)pk−1(x|Z1:k−1)dx, (16)

pk(xk|Z1:k) =
ηk(Zk|xk)pk|k−1(xk|Z1:k−1)∫
ηk(Zk|x)pk|k−1(x|Z1:k−1)dx

, (17)

where Z1:k = [Z1, ..., Zk].

In general, this recursion does not admit an analytic so-
lution. However, the problem can be solved using sequential
Monte Carlo techniques as shown in Section IV. Furthermore,
a closed form solution to this recursion can be derived under
linear Gaussian assumptions as shown in Section V.

Remark: If there is always a primary target-generated mea-
surement, no extraneous target-generated measurements and
no clutter, then ηk({zk}|xk) = gk(zk|xk) and the recursion
(16)-(17) reduces to the classical Bayes recursion (1)-(2).

Remark: The recursion (16)-(17) can be easily extended
to accommodate multiple sensors. Suppose that there are S
mutually independent sensors, i.e. the product of the individual
likelihoods for each sensor is the joint likelihood for all
sensors. More concisely, if each sensor is modelled by a
likelihood η

(s)
k (·|·) and receives a measurement set Z

(s)
k at

time k where s = 1, . . . , S, then the combined likelihood
accounting for all sensors is

ηk(Z(1)
k , . . . , Z

(S)
k |xk) =

∏S
s=1 η

(s)
k (Z(s)

k |xk). (18)

C. Connection with Mahler’s CPHD Filter
In this section, we show how the proposed RFS single-target

Bayes recursion is related to Mahler’s CPHD recursion [14],
which is a moment approximation of Mahler’s multi-target
Bayes recursion.

The following is a brief review of the relevant results con-
cerning the CPHD recursion. Denote by Pn

j the permutation
coefficient n!

(n−j)! , 〈·, ·〉 the inner product defined between two
real valued functions α and β by 〈α, β〉 =

∫
α(x)β(x)dx (or∑∞

`=0 α(`)β(`) when α and β are real sequences), and ej (·)
the elementary symmetric function of order j defined for a
finite set Z of real numbers by ej (Z) =

∑
S⊆Z,|S|=j

∏
ζ∈S ζ

with e0 (Z) = 1 by convention.
It was established in [15] (Section V-A) that the CPHD

recursion for tracking an unknown and time-varying number
of targets can be simplified when the number of targets is
constant. Let vk|k−1 and vk be the predicted and posterior
intensities respectively at time k. If there are no target births
nor deaths and N ∈ N is the fixed and known number
of targets, then the CPHD cardinality recursion reduces to
ρk−1(·) = ρk|k−1(·) = ρk(·) = δN (·), and the CPHD intensity
recursion reduces to

vk|k−1(x) =
∫

fk|k−1(x|ζ)vk−1(ζ)dζ, (19)

vk(x) = Υ1
k[vk|k−1,Zk](N)

Υ0
k[vk|k−1,Zk](N)

[1− pD,k(x)]vk|k−1(x)

+
∑

z∈Zk

Υ1
k[vk|k−1,Zk\{z}](N)

Υ0
k[vk|k−1,Zk](N)

ψk,z(x)vk|k−1(x)

(20)

where

Υu
k [v, Z](n) =

∑min(|Z|,n)
j=0 (|Z| − j)!ρK,k(|Z| − j)Pn

j+u×
〈1−pD,k,v〉n−(j+u)

〈1,v〉n ej (Ξk(v, Z)) , (21)

ψk,z(x) = 1
ck(z)gk(z|x)pD,k(x), (22)

Ξk(v, Z) = {〈v, ψk,z〉 : z ∈ Z} . (23)

Assuming no extraneous target-generated measurements, the
proposed RFS single-target Bayes recursion reduces to the
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above mentioned CPHD recursion restricted to a single target.
Note that for the purposes of comparison, these particular
conditions ensure that both recursions assume the same un-
derlying dynamic and measurement model for the target. The
restriction in the CPHD recursion for no target births nor
deaths and exactly one target present ensures consistency with
the dynamic model in the RFS single-target Bayes recursion.
Indeed, the CPHD recursion for a single target coincides with
the multiple hypothesis tracker (MHT) for a single target
(see [24]). The restriction in the RFS single-target Bayes
recursion for no extraneous target-generated measurements
ensures consistency with the measurement model in the CPHD
recursion which accommodates at most one target-generated
measurement.

The agreement between these two recursions can be ex-
pected for the following reason. Consider the above CPHD
recursion and recall its assumption that the target state RFS at
any time is an i.i.d cluster process [14], [15] (see subsection
II-B for the meaning of an i.i.d cluster process). Observe that
if the cardinality distribution of an i.i.d cluster process is δ1(·)
(i.e. the value of the process is always a singleton set), then the
intensity is the same as the normalized intensity, and hence the
intensity is actually the probability density (i.e. the intensity
of the RFS is the probability density of the single constituent
point of the RFS). If N = 1 in the above CPHD recursion,
(i.e. exactly one target is present at all times), then the CPHD
cardinality recursion states that ρk(·) = δ1(·) (i.e. the target
state RFS is always a singleton), and hence the CPHD intensity
recursion for vk actually propagates the probability density πk

(i.e. the propagated intensity is actually the probability density
of the single-target state). Thus, since both the RFS single-
target Bayes recursion and the above CPHD recursion assume
the same underlying model, and both recursions propagate the
posterior density of the target state, it would be expected that
their recursions are consistent. This is indeed true and is stated
in the following proposition (See Appendix B for the proof).

Proposition 2 The special case of the proposed RFS single-
target Bayes recursion (16)-(17) with no extraneous target-
generated measurements (i.e. (16)-(17) with Ek(xk) = ∅
hence vK,k(z|x) = vK,k(z) = vW,k(z) and ck(z|x) =
ck(z) = vW,k(z)/〈1, vW,k〉) is identical to the special case of
the CPHD recursion (19)-(20) with no target births nor deaths
and exactly one target present (i.e. (19)-(20) with N = 1).

This result establishes that under the common dynamic and
measurement model stated above, the proposed derivation of
the RFS single-target Bayes recursion from first principles
using point process theory agrees with Mahler’s derivation
of the CPHD recursion using FISST. This agreement further
consolidates the utility and power of FISST.

IV. SEQUENTIAL MONTE CARLO IMPLEMENTATION

In this section, we describe a generic sequential Monte
Carlo (SMC) (see also [19], [25]) implementation of the RFS
single-target Bayes recursion (16)-(17) and demonstrate the
proposed filter on a non-linear tracking example. Note that the
proposed SMC implementation inherits the usual convergence

properties [26], [27] since the recursion (16)-(17) propagates
the true posterior density of the target state.

A. Recursion

Suppose at time k − 1 that the posterior density pk−1(·) is
represented by set of weighted particles {w(i)

k−1, x
(i)
k−1}N

i=1, i.e.

pk−1(xk−1|Z1:k−1) ≈
∑N

i=1 w
(i)
k−1δx

(i)
k−1

(xk−1). (24)

Then, for a given proposal density qk(·|x(i)
k−1, Zk) satisfying

support(pk) ⊆ support(qk), the particle filter approximates
the posterior density pk(·) by a new set of weighted particles
{w(i)

k , x
(i)
k }N

i=1, i.e.

pk(xk|Z1:k) ≈ ∑N
i=1 w

(i)
k δ

x
(i)
k

(xk) (25)

where

x
(i)
k ∼ qk(·|x(i)

k−1, Zk), (26)

w
(i)
k = w̃

(i)
k /

∑N
i=1 w̃

(i)
k , (27)

w̃
(i)
k = w

(i)
k−1

ηk(Zk|x(i)
k )fk|k−1(x

(i)
k |x(i)

k−1)

qk(x(i)
k |x(i)

k−1, Zk)
. (28)

It can be seen that the proposed algorithm has the same
computational complexity as the standard single-target particle
filter.

The recursion is initialized by generating a set of weighted
particles {w(i)

0 , x
(i)
0 }N

i=1 representing p0. Equations (26)-(28)
then provide a recursion for computing the set of weighted
particles representing pk from those representing pk−1 when
a new measurement arrives.

Resampling is usually performed after each update to min-
imize particle degeneracy, and after resampling, an optional
Markov Chain Monte Carlo (MCMC) step can be used to
increase particle diversity (see [19], [28] for further details).

B. Non-Linear Example

In this section, a non-linear scenario is used to demonstrate
the performance of the particle implementation of the RFS
single-target Bayes recursion. In particular, a nearly constant
turn model with varying turn rate [29] together with bearing
and range measurements is considered. The observation region
is the half disc of radius 2000m. The state variable xk =
[ x̃T

k , ωk ]T comprises the planar position and velocity x̃T
k =

[ px,k, ṗx,k, py,k, ṗy,k ] as well as the turn rate ωk. The state
transition model is

x̃k = F (ωk−1)x̃k−1 + Gwk−1,

ωk = ωk−1 + ∆uk−1,

where

F (ω) =




1 sin ω∆
ω 0 − 1−cos ω∆

ω
0 cos ω∆ 0 − sin ω∆
0 1−cos ω∆

ω 1 sin ω∆
ω

0 sin ω∆ 0 cos ω∆


, G =




∆2

2 0
∆ 0
0 ∆2

2
0 ∆


,

wk−1 ∼ N (·; 0, σ2
wI), and uk−1 ∼ N (·; 0, σ2

uI) with ∆ = 1s,
σw = 5m/s2, and σu = π/180rad/s. The observation region
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is the half disc [−π/2, π/2]rad × [0, 2000]m. The primary
target-generated measurement is a noisy bearing and range
vector

zk =
[
atan(px,k/py,k),

√
p2

x,k + p2
y,k

]T

+ εk,

where εk ∼ N (·; 0, Rk), with Rk = diag([ σ2
θ , σ2

r ]T ), σθ =
2(π/180)rad, and σr = 10m. The sensor field of view is
modelled by

pD,k(x) =
pD,kN ([px,k, py,k]T ; [250, 250]T , 106I2)

N ([0, 0]T ; [0, 0]T , 106I2)
,

where pD,k = 0.98 and In denotes an n× n identity matrix.
Extraneous measurements are modelled as a Poisson RFS with
intensity

vE,k(z|x) = λ
(1)
k N (z;

[
atan(px,k/py,k), 2

√
p2

x,k+p2
y,k

]T

, Dk),

where λ
(1)
k = 3, Dk = σ2

ι I2 and σι = 10m. Clutter is
modelled as a Poisson RFS with intensity

vW,k(z) = λ
(0)
k u(z)

where u(·) is the uniform probability density over the ob-
servation region, λ

(0)
k = λc,kV is the expected number of

clutter returns with V = 2000π(radm) the ‘volume’ of the
observation region and λc,k = 3.2× 10−3 (radm)−1 (giving
an average of λ

(0)
k = 20 clutter returns per scan).

At each time step, N = 1000 particles are used, the
transition is used as the proposal, and resampling is performed.
The filter is initialized with the following initial prior

p0 = N (·; [0, 0.4, 0, 0.7, 0], diag(2500, 25, 2500, 25, 0.0025)).

Figure 1 show the tracks, measurements and expected a poste-
riori (EAP) filter estimates for x and y coordinates versus time
on a typical sample run. Note that extraneous target-generated
measurements are colour coded in red for visual reference.
This figure suggests that the proposed filter satisfactorily tracks
the target in the presence of multiple measurements generated
by the target, clutter and state dependent field of view.

To evaluate the performance of the proposed filter, we
compare it with the non-linear analogue of the Gaussian
mixture filter in [4]. Our reason for choosing this filter is that
it subsumes many popular traditional techniques for tracking
in clutter including the PDA. A typical sample run of this
filter on the same set of data is also superimposed on Figure
1, which suggests that the traditional approach tends to follow
the pattern of extraneous target-generated measurements and
hence is prone to track loss. This is further reinforced in
Figure 2, which shows the root mean square error (RMSE)
and circular position error probability (CPEP) (for 20m error
radius) versus clutter rate for both the proposed filter and the
traditional filter. The RMSE and CPEP for each clutter rate is
obtained from 1000 Monte Carlo (MC) runs on the same target
trajectory but with independently generated measurements for
each trial. Figure 2 suggests that across a wide range of
clutter conditions, the proposed RFS single-target Bayes filter
performs better than traditional methods. The former correctly
identifies the track, whereas the latter consistently looses track.

Moreover, these performance results are consistent with the
fact that the non-linear analogue of the filter in [4] can
essentially be considered a special case of the proposed SMC
RFS single-target Bayes recursion in which the observation
model assumes Ek(xk) ≡ ∅ (hence vE,k(z|x) = 0 and
ρE,k (n|x) = δ0(n)).
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Fig. 1. Estimates from the particle RFS single-target Bayes filter and
traditional approach in x and y coordinates versus time.
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Fig. 2. RMSE and CPEP (20m error radius) from 1000 MC runs for varying
λc,k .

V. ANALYTIC SOLUTION FOR LINEAR GAUSSIAN MODELS

In this section, we derive a closed form solution to the RFS
single-target Bayes recursion (16)-(17) for the special class
of linear Gaussian single-target models. In addition to linear
Gaussian transition and likelihood

fk|k−1(x|ζ) = N (x;Fk−1ζ,Qk−1), (29)
gk(z|x) = N (z;Hkx,Rk), (30)

the linear Gaussian single-target model assumes a constant
sensor field of view, i.e. pD,k(x) = pD,k and linear Gaussian
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intensity of extraneous target-generated measurements i.e.

vE,k(z|x) = λ
(1)
k c

(1)
k (z|x), (31)

c
(1)
k (z|x) = N (z;Bkx + bk, Dk), (32)

where λ
(1)
k is the expected number of extraneous target-

generated observations and c
(1)
k (·|·) is the likelihood of indi-

vidual extraneous observations at time k, Bk is the extraneous
observation matrix, bk is a constant vector, and Dk is the
extraneous observation covariance at time k.

Observe that if clutter has intensity

vW,k(z) = λ
(0)
k c

(0)
k (z), (33)

where λ
(0)
k is the mean clutter rate and c

(0)
k (·) is the density

of clutter at time k, then, Kk(xk) in (9) is a Poisson RFS
with intensity vK,k (z|x) = vE,k(z|x) + vW,k(z). Hence, the
cardinality distribution of Kk(xk) is Poisson with rate λ

(0)
k +

λ
(1)
k and individual elements of Kk(xk) are i.i.d according to

the probability density

ck(z|x)=w
(0)
c,kc

(0)
k (z) + w

(1)
c,kN (z; Bkx + bk, Dk), (34)

where w
(i)
c,k = λ

(i)
k /(λ(0)

k +λ
(1)
k ) for i = 0, 1. Note that results

of this section can be easily extended to the case where vE,k

is a Gaussian mixture as outlined in Section V-C.

A. Closed Form Recursion

The following propositions establish an exact closed form
solution to the recursion (16)-(17) for the linear Gaussian
single-target model.

Proposition 3 If at time k − 1 the posterior density pk−1(·)
is a Gaussian mixture of the form

pk−1(x) =
Jk−1∑

j=1

w
(j)
k−1N (x; m(j)

k−1, P
(j)
k−1), (35)

then, the predicted density pk|k−1(·) is also a Gaussian
mixture and is given by

pk|k−1(x) =
Jk−1∑

i=1

w
(i)
k−1N (x; m(i)

k|k−1, P
(i)
k|k−1), (36)

where

m
(i)
k|k−1 = Fk−1m

(i)
k−1, (37)

P
(i)
k|k−1 = Qk−1 + Fk−1P

(i)
k−1F

T

k−1. (38)

For the closed form update equation, it is convenient to
define two intermediate operators Gk,z and Ck,z on the state
space X by

(Gk,zφ)(x) = Ξz[gk, φ](x), (39)
(Ck,zφ)(x) = Ξz[ck, φ](x), (40)

where (Ξz[s, φ])(x) = s(z|x)φ(x). Note that if

s(z|x) = s̄(z) + wsN (z; Hsx + bs, Ps), (41)

φ(x) =
∑U

u=1 w
(u)
φ N (x; m(u)

φ , P
(u)
φ ), (42)

then, (Ξz[s, φ])(·) is a Gaussian mixture and is given by

(Ξz[s, φ])(x) = s̄(z)φ(x) +
U∑

u=1
w

(u)
Ξ (z)N (x; m(u)

Ξ (z), P (u)
Ξ ),

(43)
where

w
(u)
Ξ (z) = wsw

(u)
φ q

(u)
Ξ (z), (44)

q
(u)
Ξ (z) = N (z; Hsm

(u)
φ +bs, Ps+HsP

(u)
φ H

T

s ), (45)

m
(u)
Ξ (z) = m

(u)
φ + K

(u)
Ξ (z −Hsm

(u)
φ − bs), (46)

P
(u)
Ξ = (I −K

(u)
Ξ Hs)P

(u)
φ , (47)

K
(u)
Ξ = P

(u)
φ HT

s (Ps + HsP
(u)
φ H

T

s )−1. (48)

Proposition 4 If at time k the predicted density pk|k−1(·) is
a Gaussian mixture of the form

pk|k−1(x) =
Jk|k−1∑

j=1

w
(j)
k|k−1N (x; m(j)

k|k−1, P
(j)
k|k−1), (49)

then, ηk(Zk|x)pk|k−1(x) is also a Gaussian mixture and is
given by

ηk(Zk|x)pk|k−1(x) = d̄k(x) +
∑

z∗∈Zk

dk(x; z∗) (50)

where

d̄k(x) = ρK,k (|Zk|) · |Zk|! · (1− pD,k)
× ([∏

z∈Zk
Ck,z

]
pk|k−1

)
(x), (51)

dk(x; z∗) = ρK,k(|Zk| − 1) · (|Zk| − 1)! · pD,k

×
([∏

z 6=z∗ Ck,z

] [
Gk,z∗pk|k−1

])
(x), (52)

and by convention, a product of operators denotes a compo-
sition, i.e.

∏N(k)
i=1 Ck,zk,i

= Ck,zk,1 ◦Ck,zk,2 ◦ · · · ◦Ck,zk,N(k) .

Remark: The mixture (50) can also be written as

ηk(Zk|x)pk|k−1(x) =
∑Jk

j=1 w
(j)
k N (x;m(j)

k , P
(j)
k ). (53)

Consequently, the posterior density is given by

pk(x) =
∑Jk

j=1 w̃
(j)
k N (x;m(j)

k , P
(j)
k ), (54)

where w̃
(j)
k = w

(j)
k /

∑Jk

j=1 w
(j)
k and

∑Jk

j=1 w
(j)
k is the normal-

izing constant in the RFS single-target Bayes recursion.
Remark: Proposition 4 can be interpreted as follows: given

that the predicted density pk|k−1 is a Gaussian mixture, then
the posterior density pk is also a Gaussian mixture comprised
of the mixtures d̄k(·) and dk(·; z∗) for each z∗ ∈ Zk. The
mixture d̄k(·) is obtained by recursively applying Ck,z starting
with pk|k−1 for each z ∈ Zk. The mixture dk(·; z∗) is obtained
by applying Gk,z∗ once to pk|k−1 and then recursively apply-
ing Ck,z for each z ∈ Zk\{z∗}.

Remark: The above closed form solution can be extended
to accommodate a state dependent sensor field of view. For
an exponential mixture form of pD,k(·), a closed form update
can easily be obtained following the approach in [13], though
this extension will not be shown here due to space constraints.

It follows by induction from Propositions 3 and 4 that if the
initial density p0 is a Gaussian mixture, then all subsequent
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predicted pk|k−1 and posterior densities pk are also Gaussian
mixtures. Proposition 3 provides closed form expressions for
computing the weights, means and covariances of pk|k−1,
whilst Proposition 4 provides closed form expressions for
computing the weights, means and covariances of pk when
a new set of measurements arrives. Note that Proposition 3
is the prediction step of the Gaussian sum filter [30], whilst
the proof for Proposition 4 is non-trivial, see Appendix C for
further details.

B. Implementation Issues

In the proposed closed form recursion, if the posterior at
time k − 1 has Jk−1 mixture components, then the posterior
at time k has

Jk−1(2|Zk| + |Zk|2|Zk|−1) = O(Jk−1 · 2|Zk|)

mixture components. Our closed form solution has the same
complexity as the traditional Gaussian mixture approach in
[4]. Note that the exponential growth of mixture components
with the number of received measurements results in an
exponential growth of mixture components with time. It can
be seen that the number of mixture components required
to represent the posterior exactly increases without bound.
Thus, the closed form solution does not necessarily guarantee
computational tractability, and additional approximations to
reduce the number of Gaussian components are needed. A
Rao-Blackwellised particle filter [31] (that exploits the closed
form solution) can be employed as a random strategy for
reducing the number of Gaussian components. In this paper,
we consider simpler strategies for mitigating this problem.

1) Gating: To reduce the number of measurements that
the filter has to process, a standard measurement validation
technique [3] can be used before performing the update at
each time step. The idea is to only retain measurements that
are ‘close’ to the predicted measurement. Gating, however,
also reduces the ability of the filter to detect targets.

Along the lines of [3], if at time k the predicted density
pk|k−1 is given and is of the form (49), define the valida-
tion region (or prediction gate) of the ith predicted mixture
component for a threshold value δ by

V
(i)
k (δ) = {z : (z − η

(i)
k|k−1)

T [S(i)
k ]−1(z − η

(i)
k|k−1) < δ}

where η
(i)
k|k−1 = Hkx

(i)
k|k−1 and S

(i)
k = Rk +HkP

(i)
k|k−1H

T

k are
the predicted measurement and innovation covariance for the
ith component respectively, and δ ∼ χ2

nz
is chosen a threshold

parameter (note
√

δ is interpreted as the number of sigmas or
standard deviations of the gate). Then, the measurement set
given to the filter Z

′
k is comprised of those measurements

falling within the combined validation region. i.e.

Z
′
k = Zk ∩

[⋃Jk|k−1
i=1 V

(i)
k (δ)

]
.

2) Managing Mixture Components: Firstly, to limit the
growth of the number of mixture components with the number
of received measurements, the following approach can be used.
Since this growth is caused by recursive application of the
operators Gk,z and/or Ck,z (in the calculation of the mixtures

dk(·) and d̄k(·)), a simple way to limit this growth is to
truncate each intermediate result during the update at each
time k. In other words, having applied Gk,z or Ck,z to the
mixture φ(·), the resultant mixture (Gk,zφ)(x) = Ξz[gk, φ](x)
or (Ck,zφ)(x) = Ξz[ck, φ](x) is approximated by a truncated
version, i.e. each resultant mixture (58) is approximated by

(Ξz[s, φ])(x) ≈ ∑
u∈Îk

ŵ
(u)
s (z)N (x; m(u)

s (z), P (u)
s ),

where Îk ⊆ {1, ..., U} is the set of indices of compo-
nents that are retained in the approximation (e.g. Ik contains
the indices of the Ĵmax components or of the top 10%
of components with the highest weights), and ŵ

(u)
s (z) =

w
(u)
s (z)

∑U
u=1 w

(u)
s /

∑
u∈Îk

ŵ
(u)
s (z) ensures that the sum of

the weights before and after truncation are the same.
Secondly, to limit the growth of the number of components

with time, a standard pruning and merging procedure given in
[13] can be used which is summarized as follows. If at time
k the posterior density pk is given and is of the form (54), it
is approximated by a pruned and merged version

p̂k(x) ≈ ∑Jmax
j=1 ŵ

(j)
k N (x; m̂(j)

k , P̂
(j)
k ),

in which components with weights below a threshold T are
discarded, components with peaks within a distance U of each
other are merged, and only the Jmax components with the
highest weights are retained. See [13] for the exact meaning
of these parameters and full details on implementation.

C. Extension to Gaussian Mixture Form vE,k

The closed form solution given by Propositions 3 and 4 can
be easily extended to accommodate the case where vE,k(·|·)
is a Gaussian mixture of the form

vE,k(z|x) =
JE,k∑
i=1

λ
(i)
k N (z; B(i)

k x + b
(i)
k , D

(i)
k ) (55)

as follows. First, note that vK,k(z|x) = vW,k(z) + vE,k(z|x)
and hence

ck(z|x) = w
(0)
c,kc

(0)
k (z) +

JE,k∑
i=1

w
(i)
c,kN (z; B(i)

k x + b
(i)
k , D

(i)
k ), (56)

where w
(i)
c,k = λ

(i)
k /

∑JE,k

j=1 λ
(j)
k for i = 0, 1, . . . , JE,k. Ob-

serve then that the result of Proposition 4 can be extended
by providing a closed form expression for (Ck,zφ)(x) =
Ξz[ck, φ](x) where (Ξz[s, φ])(x) = s(z|x)φ(x) as follows.
Note that if

s(z|x) = s̄(z) +
∑I

i=1 w
(i)
s N (z; H(i)

s x + b
(i)
s , P

(i)
s ), (57)

and φ(x) is of the form (42), then the expression for Ξ[s, φ](·)
is still a Gaussian mixture and becomes

(Ξz[s, φ])(x) = s̄(z)φ(x)+
I∑

i=1

U∑
u=1

w
(i,u)
Ξ (z)N (x; m(i,u)

Ξ (z), P (i,u)
Ξ ),

(58)
where

w
(i,u)
Ξ (z) = w(i)

s w
(u)
φ q

(u)
Ξ (z), (59)

q
(i,u)
Ξ (z) = N(z;H(i)

s m
(u)
φ +b(i)

s , P (i)
s +H(i)

s P
(u)
φ [H(i)

s ]T),(60)

m
(i,u)
Ξ (z) = m

(u)
φ + K

(i,u)
Ξ (z −H(i)

s m
(u)
φ − b(i)

s ), (61)
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P
(i,u)
Ξ = (I −K

(i,u)
Ξ H(i)

s )P (u)
φ , (62)

K
(i,u)
Ξ = P

(u)
φ [H(i)

s ]T (P (i)
s + H(i)

s P
(u)
φ [H(i)

s ]T )−1. (63)

D. Linear Gaussian Example

In this section, a linear Gaussian scenario is used to demon-
strate the performance of the closed form implementation of
the RFS single-target Bayes recursion. The following linear
Gaussian single-target model is used. The target state is a
vector of position and velocity xk = [ px,k, py,k, ṗx,k, ṗy,k ]T

that follows the linear Gaussian transition model (29) with

Fk =
[
I2 ∆I2

02 I2

]
, Qk = σ2

ν

[
∆4

4 I2
∆3

2 I2
∆3

2 I2 ∆2I2

]
,

where In and 0n denote the n×n identity and zero matrices re-
spectively, ∆ = 1s is the sampling period, and σν = 5(m/s2)
is the standard deviation of the process noise. The primary
target-generated measurement likelihood is linear Gaussian
(30) with

Hk =
[
I2 02

]
, Rk = σ2

εI2,

where σε = 10m is the standard deviation of the mea-
surement noise. The observation region is the square Z =
[−1000, 1000] × [−1000, 1000] (units are in m). The corre-
sponding probability of detection is fixed at pD,k = 0.98.
Extraneous target-generated measurements are modelled as a
Poisson RFS with linear Gaussian intensity (31)

vE,k(z|x) = λ
(1)
k N (z; Bkx,Dk),

where λ
(1)
k = 3, Bk =

[
2I2 02

]
, Dk = σ2

ι I2 and σι = 10m.
Clutter is modelled as a Poisson RFS with intensity

vW,k(z) = λ
(0)
k u(z)

where u(·) is the uniform probability density over Z , λ
(0)
k =

λc,kV , λc.k = 1.25×10−5m−2 is the average clutter intensity
and V = 4× 106m2 is the ‘volume’ of Z (giving an average
of λ

(0)
k = 50 clutter returns per scan).

The gating and pruning/merging procedures described in
Section V-B are used. Gating is performed at each time
step using a 99% validation gate3. Pruning and merging is
performed at each time step using a weight threshold of
T = 10−5, a merging threshold of U = 4m, a maximum
of Ĵmax = 100 intermediate components and a maximum of
Jmax = 100 overall components.

In this scenario, the target follows a curved path with
varying velocity. The filter is initialized with

p0 = N (·; [0, 0.4, 0, 0.7]T , diag(104, 102, 104, 102)).

Figure 3 illustrates a typical sample run showing the tracks,
measurements, x and y coordinates of the maximum a poste-
riori (MAP) filter estimates versus time. Note that extraneous
target-generated measurements are colour coded in red for
visual reference. Note also that the solid line of the true track
is difficult to see from this figure as the estimates of the

3The region centered on the predicted measurement with a 0.99 probability
of containing a primary target generated measurement

proposed approach are right on top of the true track. This
figure suggests that our proposed filter correctly identifies the
track, and does not suffer from any track loss in the presence
of multiple measurements generated by the target and clutter.

Similar to the non-linear example, for performance compar-
ison purposes, we compare with the Gaussian mixture filter
in [4]. Again, our reason for choosing this filter is that it
subsumes many popular traditional techniques for tracking in
clutter including the PDA. Figure 3 has superimposed a typical
sample run for the same data. It can be seen that the traditional
approach tends to loose the track and erroneously follow the
pattern of the extraneous target-generated measurements. This
observation is supported by the results of 1000 MC runs
performed on the same target trajectory but with independently
generated measurements for each trial. In Figure 4, the MC
average RMSE and CPEP (for 20m error radius) are shown
versus clutter rate for our proposed filter and for the filter
in [4], which suggests that the proposed RFS single-target
Bayes filter performs better than traditional methods. The
former correctly identifies the true tracks, whereas the latter
consistently looses the true track. Again, these performance
results are consistent with the fact that the filter in [4] can
essentially be considered a special case of the proposed closed
form linear Gaussian RFS single-target Bayes recursion in
which the observation model assumes Ek(xk) ≡ ∅ (hence
vE,k(z|x) = 0 and ρE,k (n|x) = δ0(n)).
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Fig. 3. Estimates from the linear Gaussian RFS single-target Bayes filter
and traditional approach in x and y coordinates versus time.

VI. EXTENSION TO NON-LINEAR GAUSSIAN MODELS

In this section, we outline two extensions of the closed
form Gaussian mixture implementation of Section V to accom-
modate mild non-linearities using linearization and unscented
transforms. Here, the form of the dynamical and measurement
models given by the transition density fk|k−1(·|·) and the
likelihood gk(·|·) are relaxed to non-linear Gaussian models

xk = ϕk(xk−1, νk−1),
z∗k = hk(xk, εk),
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Fig. 4. RMSE and CPEP (20m error radius) values from 1000 MC runs for
varying λc,k

where ϕk and hk are the non-linear state and measurement
functions respectively, and νk−1 and εk are independent zero-
mean Gaussian noise processes with covariance matrices Qk−1

and Rk respectively. Additionally, the form of the extraneous
target measurements model given by the likelihood of extra-
neous target measurements c

(1)
k (·|·) is relaxed to a non-linear

function in the state and noise variable

zk = ik(xk, ιk),

where ik is the non-linear extraneous target measurement
function and ιk is an independent zero-mean Gaussian noise
process with covariance matrix Dk.

Analogous to the extended Kalman filter (EKF) [32], [33],
the non-linear prediction and update can be approximated by
linearizing ϕk, hk, ik.

Analogous to the unscented Kalman filter (UKF) [34], a
non-linear approximation to the prediction and update can be
obtained using the unscented transform (UT). The strategy
here is to use the UT to propagate the first and second moments
of each mixture component of pk−1 and pk|k−1 through the
non-linear transformations ϕk, hk, ik.

A. Non-Linear Gaussian Example

In this section, a non-linear example is used to demonstrate
the performance of the EK and UK approximations to the
closed form implementation of the RFS single-target Bayes
recursion. The same motion and measurement model as in
Section IV-B is used, except that the probability of detection
is fixed at pD,k = 0.98. The gating and pruning/merging
procedure of Section V-B is used with the same parameters as
given in the linear Gaussian demonstrations of Section V-D.
The following initial prior is used

p0 = N (·; [0, 0.4, 0, 0.7, 0], diag(2500, 25, 2500, 25, 0.0025)).

Figures 5 and 6 illustrate a typical sample run of the EK
and UK approximations respectively, showing the tracks, mea-
surements and filter estimates for x and y coordinates versus
time. Note that extraneous target-generated measurements are

colour coded in red for visual reference. These figures show
that the proposed EK and UK approximations exhibit similar
performance, and are able to satisfactorily accommodate the
non-linear motion and measurement models. Similar to the
linear Gaussian example, we also compare with the EK and
UK versions of the Gaussian mixture filter in [4]. A typical
sample run for these filters is superimposed on Figures 5 and
6 respectively. Similar to previous experiments, these results
further suggest that our proposed approach performs better
than traditional methods.
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Fig. 5. Estimates from the EK RFS single-target Bayes filter and traditional
approach in x and y coordinates versus time.
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Fig. 6. Estimates from the UK RFS single-target Bayes filter and traditional
approach in x and y coordinates versus time.

VII. CONCLUSION

This paper has presented a novel and mathematically rig-
orous Bayes recursion that formally accommodates multiple
measurements generated by the target, state dependent sensor
field of view, and clutter. It was shown that the special case
of the proposed recursion with no extraneous target-generated
measurements is indeed Mahler’s CPHD recursion restricted
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to the single-target case. A particle implementation has been
given, and a closed form solution has been derived for linear
Gaussian models with constant sensor field of view though
extensions to exponential mixture sensor field of view are
easily derived. The closed formed solution has also been
extended to nonlinear Gaussian models via linearizations and
unscented transformations. The complexity of the particle
implementation is the same as that of the standard particle
filter. The closed form solution does not necessarily guarantee
computational tractability and additional approximations are
needed for implementation, analogous to the case of the Gaus-
sian sum filter. Simulations have suggested that the proposed
approach outperforms traditional techniques in terms of track
loss and localization error.

In light of the proposed Bayesian RFS formulation, all infor-
mation about the target is encapsulated by the posterior density
in a mathematically consistent manner. Hence, it is now
possible to study how clutter, and detection uncertainty affect
tracking performance in the context of Shannon information.
From an applications point of view, our formulation is directly
applicable to tracking with multiple sensors. Moreover, the
provisions for non-constant sensor field of view, multiple
measurements generated by the target, and clutter means that
our approach can be adapted for distributed fusion and tracking
in sensor networks.
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APPENDIX A

This section derives the likelihood (12) corresponding to
the RFS measurement equation (8) using standard measure
theoretic probability. The main steps of the derivation are
summarized first. To begin, the probability distribution of Zk

conditioned on xk is derived from first principles. Then, the
probability density of Zk conditioned on xk is derived by
taking the Radon-Nikodym derivative of the corresponding
probability distribution with respect to an appropriate reference
measure. This probability density is indeed the expression
we seek, i.e. the probability density of Zk given xk is the
likelihood of the measurement set Zk for a given state xk.

Recall that for any Borel subset S ⊆ F(Z), the probability
distribution of Zk given xk is

Pk(S|xk) ≡ Pr(Zk ∈ S|xk). (A.1)

Decomposing S into S =]∞r=0Sr where Sr denotes the subset
of S with exactly r elements, the law of total probability gives

Pk(S|xk) =
∞∑

r=0
Pk(Sr|xk). (A.2)

Expressions for Pk(Sr|xk) = Pr(Zk ∈ Sr|xk) are derived
as follows. Notice that the observation set can be written
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explicitly as {zk,1, ..., zk,r}. For each time k, define the events

ε
(i)
k,r =

{{|Zk|=r, Zk =Kk(xk)} i = 0
{|Zk|=r,Θk(xk)={zk,i}, Kk(xk)=Zk\{zk,i}} i 6= 0

(A.3)

Since the events ε
(i)
k,r for i = 0, . . . , r form a partitioning

of the event Zk ∈ Sr, using the law of total probability
Pk(Sr|xk) can be written as

Pk(Sr|xk) =
r∑

i=0

P (ε(i)k,r)Pk(Sr|ε(i)k,r, xk). (A.4)

From the definition in (A.3), the probabilities P (ε(i)k,r) can
be evaluated as shown. For i = 0, if Zk = Kk(xk), then
there must be a missed primary measurement detection and
|Kk(xk)| = r; thus P (ε(0)k,r) is given by the probability
of a missed primary measurement detection, the cardinality
distribution of Kk(xk) evaluated at r, and a factorial term to
account for the r! possible permutations of the measurement
set, resulting in (A.5). For i 6= 0, if Θk(xk) = {zk,i}, then
there is a primary measurement detection and |Kk(xk)| =
r − 1; thus P (ε(i)k,r) is given by the probability of a primary
measurement detection, the cardinality distribution of Kk(xk)
evaluated at r − 1, and a factorial term to account for the
(r−1)! possible permutations of the measurement set, resulting
in (A.6). That is,

P (ε(0)k,r) = [1− pD,k(xk)]ρK,k(r|xk)(r!) (A.5)

P (ε(i)k,r) = pD,k(xk)ρK,k(r − 1|xk)(r − 1)! (A.6)

where pD,k(·) is the probability of detection and ρK,k(·|·) is
the cardinality distribution of the RFS Kk(xk).

Also, the probability distributions Pk(Sr|ε(i)k,r, xk) =
Pr(Zk ∈ Sr|ε(i)k,r, xk) can be evaluated as shown. Recall
by assumption that the RFS Θk(xk) is a binary RFS, the
RFS Kk(xk) is a Poisson RFS, and that these RFSs are
independent. Also recall that a measurement from Θk(xk)
follows the likelihood gk(·|xk) and that measurements from
Kk(xk) are i.i.d according to ck(·|xk). For i = 0, given
that all r measurements are from Kk(xk), Pk(Sr|ε(0)k,r, xk)
is obtained by appropriately integrating over Sr the density∏r

k=1 ck(zk,j |xk) (the product of the densities of each of
the points), resulting in (A.7). For i 6= 0, given that the
ith measurement is from Θk(xk) and independent of the
remaining r− 1 measurements from Kk(xk), Pk(Sr|ε(i)k,r, xk)
is obtained by appropriately integrating over Sr the density
gk(zk,i|xk)

∏r
j 6=i ck(zk,j |xk) (the product of the primary tar-

get measurement likelihood and the densities of the remaining
points), resulting in (A.8). That is,

Pk(Sr|ε(0)k,r, xk) =
1
r!

∫

χ−1(Sr)∩Zr

r∏
k=1

ck(zk,j |xk)λr(dzk,1...dzk,r) (A.7)

Pk(Sr|ε(i)k,r, xk) =
1
r!

∫

χ−1(Sr)∩Zr

gk(zk,i|xk)
r∏

j 6=i

ck(zk,j |xk)λr(dzk,1...dzk,r) (A.8)

where λr is the rth product Lebesque measure on Zr and χ
is a mapping of vectors to sets given by χ([z1, ..., zr]T ) =

{z1, ..., zr}, and Zr is the rth Cartesian product of Z with
the convention Z0 = {∅}.

Hence, noting that χ−1(S) ∩ Zr = χ−1(Sr) ∩ Zr, the full
expression for Pk(S|xk) is obtained by substituting (A.5)-
(A.6) and (A.7)-(A.8) into (A.4) and using (A.2) to give

Pk(S|xk) = (A.9)
∞∑

r=0

1
r!

∫

χ−1(S)∩Zr

ηk({zk,1, ..., zk,r}|xk)λr(dzk,1...dzk,r)

As a check for consistency, it can be easily verified by in-
spection that (A.9) defines a probability measure on B(F(Z))
since it is a countably additive, non-negative function which
satisfies Pk(∅|xk) = 0 and Pk(Ω|xk) = 1. Finally, by
comparison with the integral equation (6), it follows that the
Radon-Nikodým derivative of Pk(·|xk) is ηk(·|xk).

APPENDIX B

The proof of Proposition 2 is given as follows.
To establish the connection for the prediction, note that since

ρk−1(·) = ρk|k−1(·) = δ1(·), we have vk−1 and vk|k−1 are
indeed the previous and predicted densities, and hence (19)
for N = 1 is exactly the single target prediction (16).

To establish the connection for the update, it is necessary
to simplify (20) for N = 1. Before proceeding, note that
Υ0

k[v, Z](1), Υ1
k[v, Z](1), Υ1

k[v, Z\{z}](1) can be simplified
as given in (B.1), (B.2), (B.3) respectively, noting that by
convention P 1

0 = P 1
1 = 1, P 1

2 = 0 and e0(Z) = 1,
e1(Z) =

∑
z∈Z z.

Υ0
k[v, Z](1) = |Z|!pK,k(|Z|) 〈1− pD,k, v〉

〈1, v〉

+(|Z|−1)!pK,k(|Z|−1)

∑
z∈Z

〈v, ψk,z〉
〈1, v〉 (B.1)

Υ1
k[v, Z](1) = |Z|!pK,k(|Z|) 1

〈1, v〉 (B.2)

Υ1
k[v, Z\{z}](1) = (|Z| − 1|)!pK,k(|Z − 1|) 1

〈1, v〉 (B.3)

Now using (B.1),(B.2),(B.3) in (20) with N = 1, the special
case CPHD update for N = 1 can be simplified as shown
in (B.4)-(B.6). From (B.6), multiplying top and bottom by∑

z∈Z ck(z), it follows that

vk(x) =
ηk(Zk|x)vk|k−1(x)∫
ηk(Zk|x)vk|k−1(x)dx

. (B.7)

Furthermore, since ρk|k−1(·) = ρk(·) = δ1(·), we have
vk|k−1 and vk are indeed the predicted and posterior densities,
hence by (B.7) the special case CPHD update (20) for N = 1
is exactly the RFS single-target Bayes update (17).

APPENDIX C

Propositions 3 and 4 are established using the following
standard results for Gaussian functions, for further details, see
e.g. [35], [18].
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vk(x) =

|Zk|!pK,k(|Zk|) 1
〈1,vk|k−1〉 [1− pD,k(x)]vk|k−1(x) +

∑
z∈Zk

(|Zk| − 1)!pK,k(|Zk − 1|) 1
〈1,vk|k−1〉ψk,z(x)vk|k−1(x)

|Zk|!pK,k(|Zk|)
〈1−pD,k,vk|k−1〉

〈1,vk|k−1〉 + (|Zk| − 1)!pK,k(|Zk| − 1) 1
〈1,vk|k−1〉

∑
z∈Zk

〈vk|k−1, ψk,z〉
(B.4)

=

|Zk|!pK,k(|Zk|)[1− pD,k(x)]vk|k−1(x) +
∑

z∈Zk

(|Zk| − 1)!pK,k(|Zk| − 1)
gk(z|x)
ck(z)

pD,k(x)vk|k−1(x)

|Zk|!pK,k(|Zk|)
∫

[1− pD,k(x)]vk|k−1(x)dx +
∑

z∈Zk

(|Zk| − 1)!pK,k(|Zk| − 1)
∫ gk(z|x)

ck(z)
pD,k(x)vk|k−1(x)dx

(B.5)

=

(
|Zk|!pK,k(|Zk|)[1− pD,k(x)] +

∑
z∈Zk

(|Zk| − 1)!pK,k(|Zk| − 1)
gk(z|x)
ck(z)

pD,k(x)

)
vk|k−1(x)

∫ (
|Zk|!pK,k(|Zk|)[1− pD,k(x)] +

∑
z∈Zk

(|Zk| − 1)!pK,k(|Zk| − 1)
gk(z|x)
ck(z)

pD,k(x)

)
vk|k−1(x)dx

. (B.6)

Lemma 1 Given F ,d,Q,m,P of matching dimensions,
where Q and P are positive definite,

∫ N (x; Fζ +
d,Q)N (ζ; m,P )dζ = N (x; Fm + d,Q + FPFT )

Lemma 2 Given H ,b,R,m,P of matching dimensions, where
R and P are positive definite, N (z; Hx+b, R)N (x; m,P ) =
q(z)N (x; m̃, P̃ ), where q(z) = N (z; Hm + b, R +
HPHT ), m̃ = m + K(z −Hm− b), P̃ = (I −KH)P,K =
PHT (R + HPHT )−1.

Proposition 3 is the prediction step of the Gaussian sum
filter [30]. For completeness, it is obtained by substituting
(29) and (35) into (16) and replacing integrals of products of
Gaussians as given in Lemma 1. Proposition 4 is established
as follows. The closed form expression for (Ξzφ)(x) given in
(58) is obtained by multiplying (57) and (42) and replacing
products of Gaussians with single Gaussians as given in
Lemma 2. Proposition 4 is then obtained by substituting (49)
into the numerator of (17) and using the operators Gk,z and
Ck,z to convert products of Gaussian mixtures into a single
mixture as appropriate. The normalizing constant follows
straightforwardly from substituting (53) into (17).


