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Abstract 

The attenuation and dispersion of elastic waves in fluid-saturated rocks due to the 

viscosity of the pore fluid is investigated using an idealized exactly solvable example of a 

system of alternating solid and viscous fluid layers. Waves in periodic layered systems at 

low frequencies are studied using an asymptotic analysis of Rytov's exact dispersion 

equations. Since the wavelength of shear waves in fluids (viscous skin depth) is much 

smaller than the wavelength of shear or compressional waves in solids, the presence of 

viscous fluid layers necessitates the inclusion of higher terms in the long-wavelength 

asymptotic expansion. This expansion allows for the derivation of explicit analytical 

expressions for the attenuation and dispersion of shear waves, with the directions of 

propagation and of particle motion being in the bedding plane. The attenuation 

(dispersion) is controlled by the parameter which represents the ratio of Biot's 

characteristic frequency to the viscoelastic characteristic frequency. If Biot's 

characteristic frequency is small compared with the viscoelastic characteristic frequency, 

the solution is identical to that derived from an anisotropic version of the Frenkel-Biot 

theory of poroelasticity. In the opposite case when Biot's characteristic frequency is 

greater than the viscoelastic characteristic frequency, the attenuation/dispersion is 

dominated by the classical viscoelastic absorption due to the shear stiffening effect of the 

viscous fluid layers. The product of these two characteristic frequencies is equal to the 

squared resonant frequency of the layered system, times a dimensionless proportionality 

constant of the order 1. This explains why the visco-elastic and poroelastic mechanisms 

are usually treated separately in the context of macroscopic (effective medium) theories, 

as these theories imply that frequency is small compared to the resonant (scattering) 

frequency of individual pores. 
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1. Introduction 

Phenomena associated with the viscosity of the pore fluid represent one of the main 

causes of the attenuation and dispersion of elastic waves in reservoir rocks and other 
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fluid-saturated porous materials. However, there is some uncertainty as to the relationship 

between the two viscosity-related mechanisms: viscoelastic mechanism (viscous shear 

relaxation) and Frenkel-Biot poroelastic mechanism (Frenkel, 1944, Biot, 1956, 1962). 

In this paper we investigate the effect of these two mechanisms using an idealized 

exactly solvable example of a system of periodically alternating fluid and solid layers. 

Although such a configuration is obviously unrealistic, it possesses a number of the key 

features of real porous materials. So far, most of the research on such a periodic layered 

system has been focused either on ideal and low viscosity fluids and relatively high 

frequencies (Schoenberg, 1984, Schoenberg and Sen, 1986, Molotkov and Bakulin, 

1996), or on the low-frequency asymptotes (Gurevich, 1999, 2002). In this paper we 

present a new approach that enables an explicit analysis of solid/viscous fluid layers in a 

broad range of frequencies and of fluid viscosities. 

The properties of waves in periodic layered systems at low frequencies can be studied 

using a long-wave asymptotic analysis of the known exact dispersion equations (Rytov, 

1956, Brekhovskikh, 1981, Christensen, 1979). For the asymptotic analysis to be valid, 

the wavelengths of all waves must be greater than the spatial period of the periodic 

system. Note that the wavelength of shear waves in the fluid (viscous skin depth) is much 

smaller than the wavelength of shear waves in the solid, or of acoustic waves in the fluid. 

This means that the presence of viscous fluid layers requires a careful evaluation of all 

terms in asymptotic expansions as functions of frequency, layer thickness and fluid 

viscosity. 

 

2. Long-wave dispersion equation 

Figure 1 shows a system of periodically alternating solid and fluid layers of period d . 

The elastic solid has density sρ , bulk modulus sK  and shear modulus sμ . The fluid is 

assumed Newtonian with density fρ , bulk modulus (inverse compressibility) fK , and 

dynamic viscosity η . The solid and fluid layer thicknesses are sh  and fh , respectively, 

so that s fh h d+ = .  

We analyze the propagation of a shear wave in the x  direction parallel to the 

layering, with the displacement in the direction y  normal to x  but also parallel to the 
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bedding (SH wave). For a given frequency ω  the solution can be sought in the form of a 

plane wave 0 exp ( )y yu u i ax tω= − . We seek to obtain the phase velocity /c aω=  as a 

function of ω  for long waves, i.e., for frequencies where ( ) 1a dω . To do this, one can 

utilize known results for solid layered systems, regarding the viscous fluid as another 

solid with a complex shear modulus f iμ ωη= − . Propagation of an SH wave in a periodic 

system of solid layers denoted by s  and f  is governed by Rytov’s exact dispersion 

equation (Rytov, 1956, Brekhovskikh, 1981): 

 

2 2 2tan tan (1 ) tan tan 0.
2 2 2 2

f f f fs s s sh hh hp p
β ββ β⎡ ⎤

+ + + =⎢ ⎥
⎣ ⎦

,   (1 ) 

 

Here ( )2 2 2 21/ 1/s sc cβ ω= − , ( )2 2 2 21/ 1/s sc cβ ω= − , ( )2 2 2 21/ 1/f fc cβ ω= − , where 

( )1/ 2/s s sc μ ρ= , and ( )1/ 2
/f f fc μ ρ=  are shear velocities in the materials s  and f , 

respectively, and /f f s sp μ β μ β= . 

 

Our aim is to solve the dispersion equation (1 ) on a macroscale, that is for long 

waves. In this case the arguments of the tangents in equation (1 ) are small, and the 

tangents can be replaced by their respective arguments. The resulting equation 

 
22

2(1 ) 0
2 2 2 2

f f f fs s s sh hh hp p
β ββ β⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥+ + + =⎜ ⎟⎜ ⎟

⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
    (2 ) 

 

can be solved analytically to give a simple averaging formula  

 
2 .s s f f

s s f f

h h
c

h h
μ μ
ρ ρ

+
=

+
        (3 ) 
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Assuming that layers of type f  are composed of Newtonian fluid, we can write its shear 

modulus as f iμ ωη= −  this yields 

 

2 2
0

(1 ) 1 ,
1

s

s

i ic cφ μ ωηφ φ ωη
ρ φ μ

⎛ ⎞− −
= = −⎜ ⎟−⎝ ⎠

     (4 ) 

 

where /fh dφ =  is the volume fraction of the fluid layers (porosity), (1 ) s fρ φ ρ φρ= − +  

is the average density, and 

 

0 0

(1 )lim sc c
ω

φ μ
ρ→

−
= =      (5 ) 

 

is the static shear velocity in the system. Due to the effect of viscosity, the velocity is 

now complex, implying that attenuation will occur.  

Equation (4 ) is the result given in textbooks and is termed as the low-frequency, 

or long-wavelength approximation (see e.g., Brekhovskikh, 1981) with the obvious 

requirement that s shβ  and f fhβ  must be small. However, the wavelength of the viscous 

wave in the fluid is much shorter than that of the shear wave in the solid. Thus, the 

decrease of frequency ω  also increases the relative magnitude of the terms containing 

fβ , and thus simple replacement of tangents by their arguments is no longer possible. 

Furthermore, the replacement of ( )tan / 2f fhβ  by / 2f fhβ  implies that thickness of the 

fluid layers is small compared with the viscous skin depth in the fluid (wavelength of the 

viscous wave). This unnecessarily restricts the range of frequencies or fluid viscosities. 

To avoid these restrictions, it is necessary to carefully evaluate all the terms in asymptotic 

expansions as functions of frequency, layer thickness, and fluid viscosity. Therefore, we 

define two characteristic frequencies: the viscoelastic characteristic frequency  

 

,s
V

μω
η

=       (6 ) 
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which is the frequency at which the absolute value of the complex shear modulus of the 

viscous fluid equals the solid shear modulus. In turn,  

 

2 ,B
f fh
ηω

ρ
=       (7 ) 

 

defines a so-called Biot's characteristic frequency, at which the wavelength of the viscous 

wave (viscous skin depth in the fluid) equals the thickness of the fluid layers fh . By 

introducing the permeability of the system of parallel slits (Biot, 1956, Bedford, 1986): 

 
2

,
12

fhφ
κ =       (8 ) 

 

Bω  can be also written as  

 

.
12B

f

ηφω
ρ κ

=       (9 ) 

 

The expressions for the two characteristic frequencies may be multiplied to give  

 

2
2 ,s

V B r
f f

A
h
μω ω ω
ρ

= =      (10 ) 

 

where 2 2/ 4 (1 ) fA ρ π φ φ ρ= −  is a dimensionless parameter of order 1 depending only on 

the porosity and the ratio of solid-to-fluid densities, while rω  is the fundamental 

frequency of the layered periodic system,  
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02 ,r
c

d
πω =       (11 ) 

 

at which the wavelength of the shear wave equals the period d  of the system. 

The three characteristic frequencies Vω , rω  and Bω   lead to the introduction of three 

dimensionless frequencies:  

 

/ / ,V V sω ω ωη μΩ = =      (12 ) 

 

0/ / 2 ,r r d cω ω ω πΩ = =      (13 ) 

and 
2/ / .B B f fhω ω ω ρ ηΩ = =      (14 ) 

 

Note that for our long-wave analysis, rΩ  is small since the period d  is small compared 

with the wavelength 02 /cλ π ω= . Furthermore, Newtonian fluid model can only be valid 

if fi Kωη  (Landau and Lifshitz, 1987). Assuming that fK  is of the same order as the 

shear modulus sμ  of the solid layers, we can conclude that /V sωη μΩ =  must also be 

small. Seeking a solution to the dispersion equation (1 ) as a Taylor series in VΩ  and rΩ , 

we obtain the following expression for the complex velocity of the shear waves 

propagating parallel to the layering (Appendix A)  

 

( )
( )

1

2

1 tan1 1 ,
1 1

s f
V

s

L L
i

c
ρ φ ρ φ φ

μ φ φ

−− + ⎡ ⎤
= + ΛΩ⎢ ⎥− −⎣ ⎦

   (15 ) 

or 

 

2 2
0

1 1 tan1 1 1 .
1

f
V

L i
c c L

φρ φ
ρ φ

⎡ ⎤ ⎛ ⎞⎛ ⎞= + − + ΛΩ⎢ ⎥ ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠⎣ ⎦
   (16 ) 
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where 

 

( )
1/ 2

1/ 21
2 2

f f
B

h i
L i

ωρ
η

⎛ ⎞
= Ω = ⎜ ⎟

⎝ ⎠
    (17 ) 

 

and  

 
1 21 tan tan .

2
L L L−+ +

Λ =      (18 ) 

 

Equation (15 ) is the central result of this paper. It expresses the long-wave velocity 

 
1 1(Re )v c− −=        (19 ) 

 

and attenuation  

 
2

1
2

Im 
Re 

cQ
c

−
−

−=        (20 ) 

 

of the shear wave propagating parallel to the layering, as a function of the frequency ω . 

This frequency dependence is controlled by two physical mechanisms associated with 

two characteristic frequencies Vω  and Bω . The long-wave approximation means equation 

(15 ) is valid for frequencies both below the fundamental frequency, rω ω , and the 

characteristic viscoelastic frequency, .Vω ω  As mentioned earlier, this last condition 

must be satisfied for the fluid to be considered Newtonian. 

 

 

3. Asymptotic analysis 
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To analyze the dispersion equation (15 ), we define a fundamental parameter of the 

layered solid/fluid system  

 
2

.
12

B

V s f

B ω η φ
ω μ κρ

= =        (21 ) 

 

This parameter shows which of the two viscosity-related dissipation mechanisms 

dominates at frequencies rω ω , when the macroscopic description is realistic. We 

emphasize that the parameter B  does not depend on the frequency, but only on the 

physical and geometrical properties of the layered system (or a porous rock). For a 

permeability of 1 darcy and a viscosity of that of water, the parameter B  is about 810− . 

However, this may be much larger for more viscous fluids (heavy oil, bitumen) and/or 

lower permeabilities.  

 
Note that 1 20, tan 0, tan 1 / 3L L L L L−→ → ∼ +  for low frequencies, Bω ω , and 

1 10, tan , tan 0L L i L L− −→ → →  at higher frequencies Bω ω . 

 

3.1. Poroelastic case 

For high-permeability reservoir rocks and soils, 1B ,  

 

B r VAω ω ω< <        (22 ) 

 

so that VΩ  is negligible compared to BΩ . Thus equation (15 ) reduces to 

 

( )
( )

1

2

1 tan1 .
1

s f

s

L L
c

ρ φ ρ φ
μ φ

−− +
=

−
     (23 ) 

 

Equation (23 ) can be rewritten in the form  
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2 2

2
12

1 1 .
( )

f

c
ρ φ

ρ
μ ρ ω
⎡ ⎤

= −⎢ ⎥
⎢ ⎥⎣ ⎦%

       (24 ) 

 

In equation (24 ) 

 

( ) 2
01s cμ μ φ ρ= − =        (25 ) 

 
is the static shear modulus of the system, and 12ρ%  is the generalized virtual mass 

coefficient of the porous medium, which, for a system of plane slits, is given by Bedford 

(1986). In our notation 12ρ%  can be written in the form  

 

( ) 11
12 ( ) 1 tan .f L Lρ ω φρ

−−= −%       (26 ) 

 

Equation (24 ) is identical to the dispersion equation for shear waves in a saturated 

porous medium with the virtual mass (26 ) and frame shear modulus (25 ), as obtained 

from the theory of poroelasticity (see e.g. Berryman, 1985). Thus, when viscoelastic 

effects are negligible, 0VΩ → , the shear wave attenuation and dispersion as described by 

equation (15 ) are identical to the attenuation and dispersion predicted by the theory of 

poroelasticity. 

In particular, the attenuation 1/ Q  corresponding to the dispersion equation (23 ) is  

( ) ( )1 1Im tan
1

f

s

Q L L
ρ φ

μ φ
− −=

−
      (27 ) 

 
Note that the characteristic frequency of this attenuation mechanism is controlled by the 

frequency dependence of 12ρ% , and equals Bω . 

In the theory of poroelasticity the viscoelastic phenomenon is ignored as the fluid 

shear stress is neglected in the microscopic (pore-scale) constitutive equations. Pride et 

al. (1992) analyzed the effect of this approximation and showed that it requires the 
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parameter /V sωη μΩ =  to be small. Indeed, if VΩ   is very small, the viscoelastic 

attenuation is also very small, (equation (16 )). However, if at the same time the 

parameter  BΩ  is even smaller than VΩ , i.e., 1B VΩ < Ω , the poroelastic effects on 

attenuation would be even less pronounced than the viscoelastic ones. The condition on 

which the viscoelastic attenuation can be neglected relative to the poroelastic attenuation 

is / 1V BB = Ω Ω . And, most importantly, this condition involves parameters pertaining 

to the medium only, and is independent of the frequency. If this condition holds for a 

particular medium, poroelasticity theory would apply for all frequencies below the 

resonant frequency of the individual pores. This is consistent with the observations of 

Bedford (1986), who compared numerically the solutions of the exact dispersion equation 

for a layered solid/fluid system (with very small parameter B ) with the prediction of 

Frenkel-Biot theory of poroelasticity, and found an excellent agreement in a wide 

frequency range. This is not surprising. Schoenberg and Sen (1986) and Molotkov and 

Bakulin (1996) showed analytically that in the case of low viscosity V BΩ Ω  and small 

viscous skin depth 1BΩ , the exact constitutive equations for a solid/fluid layered 

medium represent a partial case of anisotropic equations of poroelasticity. 

 

3.2. Viscoelastic case 

For low-permeability reservoir rocks and soils, such as clays, and for porous rocks 

saturated with very viscous fluids, such as bitumen, 1B , and 

 

V r BAω ω ω< <        (28 ) 

 

so that at frequencies below rω   the ratio BΩ   is negligible compared to VΩ . Then 

equation (15 ) reduces to  

 

( ) ( )2

1 1 .
1 1V

s

i
c

ρ φ
μ φ φ

⎡ ⎤
= + Ω⎢ ⎥

− −⎢ ⎥⎣ ⎦
     (29 ) 
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Equation (29 ) is equivalent to the classical viscoelastic solution (4 ) with attenuation 

given by  

 

1 .
1 (1 )V

s

Q φ ωηφ
φ μ φ

− = Ω =
− −

      (30 ) 

 

3.3. Low frequencies 

Suppose that both characteristic frequencies Bω  and Vω  are large and are comparable 

to each other. Then, taking in equation (15 ) the limit of low frequencies, we obtain 

 

( )2

1 1 .
1 1 12

f
V B

s

i i
c

φρρ φ
μ φ φ ρ

⎛ ⎞
= + Ω + Ω⎜ ⎟− −⎝ ⎠

    (31 ) 

 

This equation extends the viscoelastic result (29 ) to low but non-zero BΩ , and is 

equivalent to the low-frequency asymptotic analysis of Gurevich (1999). In particular, it 

shows that, at low frequencies, the viscoelastic and poroelastic attenuation effects are 

additive,  

 
2

1 .
1 12 (1 )

f f
V B

s

Q
φρ ωρ κφ ωηφ

φ ρ μ φ ρη
− = Ω +Ω = +

− −
   (32 ) 

 

3.4. Static limit 

In the limit of zero frequency ( 0V Bω = Ω = Ω = ), equation (15 ) gives  

 

2
0

(1 ) ,sc φ μ
ρ

−
=        (33 ) 
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which is the same as the static result (4 ). 

 

3.5. General case 

Finally, suppose that the parameter B  is of order 1. This is an intermediate situation, 

when all three frequencies Bω , rω  and Vω   are of the same order of magnitude. The 

parameter rω  is primarily controlled by the dominant grain size of the rock, and thus is 

very high (1 MHz for grains smaller than 1mm size). As the poroelastic and viscoelastic 

effects are controlled by the ratios / Bω ω , / Vω ω , it is clear that at typical seismic 

exploration frequencies both effects are negligible. These effects may become important, 

however, at the ultrasonic frequencies used in sonic logs and laboratory experiments. In 

these cases the contributions of the viscoelastic and poroelastic effects are comparable, 

and the general relation (15 ) which accommodates both, should be used. However, as 

noted before, due to the limitations of the Newtonian fluid model, 1Vω , and thus 

1Bω  as well. Therefore, Λ  as given by equation (17 ) can be replaced by its low-

frequency value,  

 

1,Λ =         (34 ) 

 

and equation (15 ) reduces to  

 

( )
( )

1

2

1 tan1 1 .
1 1

s f
V

s

L L
i

c
ρ φ ρ φ φ

μ φ φ

−− + ⎡ ⎤
= + Ω⎢ ⎥− −⎣ ⎦

  (35 ) 

 

Moreover, the simplified equation (35 ) is valid for any relation between the 

characteristic frequencies (that is, for any value of B ). Indeed, it has just been shown to 

be valid for 1B ∼ . For 1B , 1Λ =  and equations (15 ) and (35 ) both reduce to the 

same asymptotic result (29 ). For 1B   the dimensionless viscoelastic frequency VΩ  is 

negligible, and thus the term containing Λ  has no effect on the velocity or attenuation, 

which are given by equation (23 ). Therefore, equation (35 ) can be considered as a 
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simplified version of equation (15 ) for any B   and for any frequencies for which the 

model considered in this paper is valid. 

The interplay between poroelastic and viscoelastic attenuation for different values of 

parameter B  is shown in Figures 2-4, where inverse quality factor is a function of 

normalized frequency /r rω ωΩ = . Because of this normalization, zero on the horizontal 

axis corresponds to 1rΩ = , or rω ω= . The solid line correspond to the full solution, as 

derived from equation (15 ) or (35 ), the dashed line to the prediction of Frenkel-Biot 

theory, equation (24 ), and the dash-dotted line to the pure viscoelastic solution, equation 

(29 ). For comparison, the circles in these plots show the direct numerical solution of the 

exact Rytov’s dispersion equation (1 ). In Figure 2 we show the deviation of the derived 

approximation from the exact numerical solution of Rytov’s equation. This appears at 

frequencies higher then rω , which validates the assumption of derived equation (15 ). 

Thus we conclude that our approximate solution is valid at all frequencies much smaller 

than rω  and Vω . At low values of B  attenuation is dominated by the poroelastic 

mechanism (Figures 2-3), with viscoelastic attenuation beginning to build up at 

frequencies close to Vω . However, at larger values of B  (Figure 4) the viscoelastic 

attenuation dominates. 

 

4. Discussion and conclusions 

The shear wave attenuation and dispersion studied in this paper are controlled by 

three dimensionless frequencies VΩ , rΩ  and BΩ . Asymptotic dispersion equations for 

both compressional and shear wave at low frequencies 1VΩ , and 1BΩ  are given in 

(Gurevich, 2002). The present paper extends these results for the shear waves to arbitrary 

values of BΩ . Apart from the macroscopic assumption rω ω , the only limitation is that 

the viscoelastic attenuation is small, 0/ 1V ωη μΩ = , but this is not restrictive since this 

condition must be satisfied for the fluid to be considered Newtonian (Landau and 

Lifshitz, 1987). Although an assumption of a Newtonian pore fluid is quite common for 

porous media, it does impose a limitation on the type of fluid, especially if a large 

frequency range is considered (Bird et al. 1987). Non-Newtonian fluid effects can be 
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incorporated using the approach of Tsiklauri and Beresnev (2003). Note also that the 

original dispersion equation (1) was derived for a stack of solid layers with no-slip 

condition on interfaces between the layers. This condition is thus also implied when one 

of the solids is replaced by a Newtonian fluid. Although recent experiments show that 

slip may occur on a boundary between a real fluid and solid, indications are that this is a 

nonlinear effect which may only become significant at finite displacement amplitudes 

(Craig et al., 2001). 

The highly idealized model of a periodic system of flat parallel layers considered in 

this paper embeds two mechanisms of attenuation. Which of the two mechanisms, 

viscoelastic or poroelastic, is dominant for a given material depends on the parameter B , 

which is independent of frequency. In other words, if for a certain material at a given 

frequency poroelastic or viscoelastic effects are dominant, the same effects would be 

dominant at all frequencies below the resonant frequency of the individual pores. This is 

in contrast with a common perception that, for given material, poroelastic and 

viscoelastic effects may dominate at different frequencies. 

The fact that the dominant mechanism of attenuation is controlled by the frequency 

independent parameter B  has been demonstrated in the present paper for an idealized 

porous medium consisting of solid and fluid layers. For a general three-dimensional 

periodic porous medium with a single characteristic pore size, this fact was proved 

mathematically by Boutin and Auriault (1990). Their approach is based on the theory of 

asymptotic homogenization of periodic structures, the theory which explicitly uses the 

ratio / rω ω  as a small parameter (Levy, 1979, Auriault, 1980, Burridge and Keller, 

1981). It should be emphasised however that real porous materials usually have a wide 

range of pore sizes, and therefore for real media the scaling behaviour of the type derived 

here may at best serve as zero-order approximation. 

Explicit expressions for the frequency dependence of the velocity and attenuation of 

shear waves in a periodic system of flat solid and viscous fluid layers have been derived 

by solving the exact Rytov's dispersion equation in the long-wavelength approximation. 

Dispersion and attenuation are related to the well known mechanisms of wave attenuation 

in porous media: viscoelastic mechanism (viscous shear relaxation) and poroelastic visco-

inertial mechanism. This is the first time the expressions describing the effects of these 
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two mechanisms in a broad frequency range have been derived from the same standpoint. 

The asymptotic expressions for various limiting cases coincide well with the results of 

previous studies. The validity of the derived approximate dispersion equation has been 

demonstrated by comparison with the numerical solution of the exact Rytov's dispersion 

equation. 

The procedure described above can also be applied to longitudinal waves propagating 

in the direction of layering. This will be the subject of a future paper. 
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Appendix A: Derivation of the long-wave dispersion equation 

For long waves s shβ  is always small, and equation (1 ) reduces to  

 
2

2 2tan (1 ) tan 0,
2 2 2 2

f f f fs s s sh hh hp p
β ββ β⎡ ⎤⎛ ⎞ + + + =⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
  (36 ) 

 

where  

 
1/ 2

2 2

1 1 ,s s s
s

h h
c c

β ω
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

      (37 ) 

 
1/ 2

2 2

1 1 ,f f f
f

h h
c c

β ω
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

      (38 ) 

 

and 

 

.f f

s s

p
μ β
μ β

=         (39 ) 

 

Equation (36 ) must be solved for the phase velocity c , which must be close to its 

static value 0c  (small attenuation and dispersion), and always enters equation (36 ) in the 

form 21/ c . Therefore, it is convenient to make a substitution  

 

2 2
0

1 1 ,
c c

α=         (40 ) 

 

where (1)Oα =   is dimensionless quadratic slowness to be determined. 
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To find the asymptotic solution of equation (36 ), it is necessary to represent each of 

its terms in the non-dimensional form. Using definitions (12 ) and (13 ), equations (37 ) 

and (38 ) may be written in the form 

 
1/ 2

(1 )2 (1 ) ,s
s s rh φ ρβ π φ α

ρ
⎡ ⎤−

= Ω − −⎢ ⎥
⎣ ⎦

    (41 ) 

 
1/ 2

1(1 )
2 ,f

f f r Vh i
φ ρ

β π φ α
ρ

−−⎡ ⎤
= Ω Ω −⎢ ⎥

⎣ ⎦
    (42 ) 

and 

.f
V

s

p i
β
β

= − Ω         (43 ) 

 

With the definitions (40 )-(43 ) equation (36 ) becomes non-dimensional. This 

equation has to be solved for 1VΩ  and 1rΩ  while allowing for arbitrary value of 

BΩ , so that  

 

(1).B OΩ =         (44 ) 

 

Taking into account equation (10 ), the condition (44 ) can be written in the form  
2( ),V rOΩ = Ω         (45 ) 

or 
2 ,V rγΩ = Ω         (46 ) 

 

where γ  is a proportionality constant. Substitution of equation (46 ) into equations (42 ) 

and (43 ) yields 
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1/ 2
2(1 )

2 ,f
f f rh i

φ ρ
β πφ α

γρ
−⎡ ⎤

= −Ω⎢ ⎥
⎣ ⎦

     (47 ) 

and 

2 .f
r

s

p i
β

γ
β

= − Ω        (48 ) 

 

Substitution of equations (41 ), (47 ), and (48 ) into equation (36 ) results in an 

equation for unknown α  with a single small parameter rΩ . Seeking its solution in the 

form of a power series in rΩ , 

 
2

0 1 ...,rα α α= + Ω +        (49 ) 

 

yields the following result  

 

( )
( ) ( )

1
2 1 21 tan

1 1 tan tan .
2 1

s f
r

L L
i L L L

ρ φ ρ φ φα γ
ρ φ

−
−⎡ ⎤− +

= + Ω + +⎢ ⎥
−⎢ ⎥⎣ ⎦

 (50 ) 

 

Substituting this result back into (40 ) and taking into account equation (46 ), one obtains 

equation (15 ). 
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Figure Captions 
 

Fig. 1. Medium of alternating solid and viscous fluid layers. 

 

Fig. 2. Attenuation ( 1Q − ) versus normalized frequency r rω ωΩ =  for 610B −= . The 

solid line correspond to the full solution (derived equation 15), the dashed line to the 

prediction of Biot’s theory (equation 23), the dash-dotted line to the pure viscoelastic 

solution (equation 29) and the circles to the numerical solution of exact Rytov’s 

dispersion equation 1. 

 

Fig. 3. The same as Figure 2 for 310B −= . The difference between poroelastic and 

viscoelastic solutions decreases. 

 

Fig. 4. The same as Figure 2 for 210B = . The viscoelastic solution coincides with the full 

solution and dominates over the poroelastic one. 
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FIGURE 1 
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FIGURE 2 
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FIGURE 3 

 

-6 -5 -4 -3 -2 -1 0
-7

-6

-5

-4

-3

-2

-1

0

Log frequency Ωr (Hz)

Q
-1

B~10-3

full solution
poroelastic solution
viscoelastic solution
numerical solution

 

 

 

 

 

 

 

 



 27

 

FIGURE 4 
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