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ABSTRACT

The early divergence of monotremes and therian mammals has
resulted in considerable interest in the comparative physiology
of the short‐beaked echidna (Tachyglossus aculeatus), the most
common and widespread living monotreme. However, there are
many and varied interpretations of its physiology, reflecting the
many and varied studies, limitations and uncertainties of aspects
of some previous studies, and potential differences between the
various subspecies. Consequently, we thoroughly examine here
the standardized physiology of the most widely distributed sub-
species of short‐beaked echidna (T. aculeatus acanthion) over a
wide range of ambient temperatures to definitively assess its phys-
iology in a comparative context. We conclude that the low and
variable body temperature of the short‐beaked echidna is phys-
iologically “primitive,” but it also reflects adaptation to its myr-
mecophagous niche. Other aspects of its physiology are more
typically mammalian. A low metabolic rate reflects its low body
temperature, and ventilatory variables are matched to accom-
modate a modest gas exchange requirement. Thermal conduc-
tance is typical for a mammal of equivalent mass. In contrast to
previous studies, we demonstrate that short‐beaked echidnas can
enhance evaporative water loss above thermoneutrality, like other
mammals, with a similar capacity for evaporative heat loss. Cool-
ing of their nasal blood sinuswith nasal mucousmay contribute to
this enhanced evaporative cooling. Their capacity to evaporatively
cool explains how their distribution can include habitats where
ambient temperature, even in shelters, exceeds their supposed
critical thermal limit.
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Introduction

The lineages of modern monotremes and modern therian mam-
mals diverged about 166 million years ago (Bininda‐Emonds
et al. 2007), and in their anatomy and reproductive biology,
monotremes show many characteristics of basal mammals not
shared with therians (e.g., egg laying). Due to this, monotremes
have been of great interest to comparative physiologists hoping
to gain insights into the evolution of mammalian physiology.
There are five extant monotreme species (Strahan and Conder
2007; Nicol 2015): the platypus (Ornithorhynchus anatinus), the
short‐beaked echidna (Tachyglossus aculeatus), and three spe-
cies of long‐beaked echidna (Zaglossus attenboroughi, Zaglossus
bartoni, and Zaglossus bruijni). The ubiquitous distribution of
the short‐beaked echidna throughout Australia and its acces-
sibility for scientific research have made this species a focus for
studies of monotreme physiology. The many and varied phys-
iological studies of the short‐beaked echidna, conducted over a
long period of time using a variety of methodologies, have re-
sulted in a confusing array of interpretations and conclusions
concerning the primitiveness or otherwise of its physiology
(Brice 2009). Added to this confusion is the recognition of five
subspecies of short‐beaked echidna, distinguished by geograph-
ical distribution and anatomical characteristics, which appear to
also vary physiologically (Augee 1978; Nicol 2015). We aim here
to provide the only complete analysis to date of the standard
thermal, metabolic, ventilatory, and hygric physiology of a short‐
beaked echidna over a wide range of ambient temperatures (Ta;
107–32.57C), by measuring one subspecies, Tachyglossus acu-
leatus acanthion, sourced from a single population. Tachyglossus
a. acanthion is the most widely distributed subspecies, occurring
throughout much of the Australian arid zone, whereas most
previous physiological studies of echidnas have been for various
mesic‐zone subspecies.
Short‐beaked echidnas have a low body temperature (Tb)

and basal metabolic rate (BMR) at thermoneutrality, but the
extent of their thermoregulatory capability over a wide range of
Ta, and how this reflects their evolutionary history and pro-
totherian phylogenetic position, remains unclear (Brice 2009).
Early physiological studies (de Miklouho Maclay 1883; Suther-
land 1897) suggested that short‐beaked echidnas are physio-
logically “primitive” due to their low and variable Tb, reflecting
an intermediate position between the “lower” reptiles and “higher”
mammals. Martin (1903) measured the short‐beaked echidna
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over a range of Ta and also concluded that they are poor ther-
moregulators, with a low Tb that fluctuates by up to 107C from Ta

of 57–357C, with higher Ta resulting in death. Robinson (1954),
McMurchie and Raison (1975), and Augee (1976) also subse-
quently concluded that short‐beaked echidnas are poor homeo-
therms, unable to maintain a constant Tb over fluctuating Ta.
However, Schmidt‐Nielsen et al. (1966) concluded that echidnas
are generally very effective thermoregulators, especially at low Ta,
as did McNab (1984); echidnas maintained Tb within the usual
range (307–317C) even at Ta as low as 07C, although Tb increased
by several degrees when exposed to high Ta (307C or above).
Dawson and Hulbert (1970) argued that the pattern of me-

tabolism/endothermy/homeothermy of mammals is a distinct
jump from the reptilian pattern, and differences between mono-
tremes, marsupials, and placentals need not reflect phylogenetic
patterns. However, Dawson et al. (1979, p. 511) interpreted the
low BMR of echidnas (both Tachyglossus and Zaglossus) and to a
lesser extent platypus as “support [of] the idea of a gradual
evolution in metabolic capability,” as did Grigg et al. (2004), who
suggested that the pattern of endothermy of short‐beaked echid-
nas may be a useful model for advanced protoendotherms, rep-
resenting one stage in the evolution of endothermy. Lovegrove
(2012a) has argued that the monotremes are basoendotherms,
fitting within his scheme of the evolution of endothermy along a
plesiomorphic‐apomorphic continuum.
Contributing further to the notion that echidnas have a prim-

itive physiology is the fact that they seem unable to enhance evap-
orative cooling at high Ta. They apparently lack sweat glands
(Martin 1903; Schmidt‐Nielsen et al. 1966; Augee 1976), andMar-
tin (1903) concluded that they lack vasomotor adjustments (e.g.,
vasoconstriction, vasodilation). Augee (1976) suggested that (anes-
thetized) echidnas increase ventilation but do not pant in the
heat. In contrast, both long‐beaked echidnas and platypus sweat
to increase their evaporative heat loss (EHL; Augee 1976; Daw-
son et al. 1978), suggesting that if short‐beaked echidnas lack
sweat glands, then this is a derived characteristic. As EHL is the
only mechanism available for an animal to lose heat when envi-
ronmental temperature is greater thanTb, the echidna’s inability to
enhance EHL would indicate a very limited thermoregulatory
capacity and necessitate inactivity and behavioral avoidance dur-
ing periods of high Ta (Martin 1903; Robinson 1954). However,
despite apparent lethal effects of moderately high Ta in the labo-
ratory (357C; Martin 1903; Augee 1976), the Ta of echidnas’ day-
time shelters can exceed what has been reported as their lethal
Ta, so these echidnas must presumably have some physiological
mechanism to tolerate high Ta in the wild (Brice et al. 2002a).
Previous studies of short‐beaked echidnas have reported a

respiratory frequency ( fR) lower than that of marsupials; this fR
did not vary greatly over a range of Ta, except at high Ta, where it
increased (Martin 1903; Robinson 1954; Parer and Hodson 1974;
Bech et al. 1992; Frappell et al. 1994). Tidal volume (VT) and
minute volume (VI) values have been variable between studies.
Parer and Hodson (1974) found that both were considerably
lower for echidnas than other mammals of a similar body size,
presumably reflecting their low Tb and BMR. Bech et al. (1992)
suggest that an especially low VT results in a low ventilatory re-
This content downloaded from 134.
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quirement. Bentley et al. (1967), however, reported higher values
for VT and VI, within the expected range for mammals, and both
Bentley et al. (1967) and Frappell et al. (1994) calculated an
oxygen extraction (EO2) and ventilatory requirement comparable
to that of other mammals.
Clearly, there are considerable differences in the interpre-

tation of the physiology of the short‐beaked echidna, and so
we lack a definitive understanding of the “standard” physiology
of this species. Currently, it is necessary to piece together an
overall picture of standardized echidna thermoregulatory phys-
iology from a variety of disparate studies of different subspecies
that potentially differ physiologically (e.g., Augee 1978; Nicol
2015). Furthermore, asMcKechnie andWolf (2004, p. 509) point
out, “the validity of the conclusions . . . remains strongly de-
pendentondataquality.”Existing studies sometimeshavevery low
sample sizes, limited or unclear experimental design, experimental
aims other thanmeasurement of standard variables, measurement
of only a few physiological variables, and/or only one or a few Ta,
unclear measurement conditions, and, in some cases, methodo-
logical issues such as short measurement duration or physical and
chemical restraint that violate the requirements for standard
physiological measurement (see McNab 1997; Cooper and With-
ers 2009). We therefore present here a comprehensive assessment
of the standardized physiology, over a range of Ta, for the most
widely distributed subspecies of short‐beaked echidna, to allow
robust reevaluation of the various interpretations of echidna phys-
iology in a comparative context. Specifically, we examine how the
evolutionary history and ecological niche of the short‐beaked
echidna impact a suite of standard physiological variables and test
the various hypotheses concerning echidna physiology raised
in the literature. Are they really physiologically primitive, or
do their thermal, metabolic, and hygric physiological capabilities
more closely approximate those of othermammals?
Methods

Seven reproductively mature short‐beaked echidnas (Tachyglos-
sus aculeatus acanthion) were captured by hand at Dryandra
Woodland (317460S, 117710E), 170 km southeast of Perth, West-
ern Australia. The echidnas were housed in a custom‐built out-
door enclosure at Curtin University, Bentley (32700S, 1157530E),
where they experienced natural weather variation and photo-
period. Echidnas were maintained on a diet consisting of tinned
cat food, flaky bran, insectivore powder (Wambaroo), and primate
omnivore and leaf‐eater powders (Specialised Feeds), blended
with water to make a smooth mash. Fresh drinking water was
provided ad lib. All the echidnas were housed together in a large
(10 m # 9 m) enclosure, except the night preceding experi-
mentation, when one or two echidnas were moved into a small
enclosure (approximately 10 m# 1 m) and fasted to ensure that
they were postabsorptive. Four of the echidnas had been housed
in captivity for several months before experimentation, while
three of the echidnas were captured, measured, and released back
into the wild within a week.
Experiments were in late summer, with measurements made

from approximately 0500 to 1400 hours, which is the echidnas’
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inactive phase, at Ta of 107, 157, 207, 257, 27.57, 307, and 32.57C,
measured in random order. Metabolic rate (MR) was measured
as oxygen consumption (V

�
O2) and carbon dioxide production

(V
�
CO2), simultaneously with evaporative water loss (EWL), using

open‐flow respirometry. Each echidna was weighed and then
placed in a 32‐L metabolic chamber located inside a constant‐
temperature room. Air (dried using Drierite) flowed through the
chamber at a constant rate of 11.5–12.8 L min21, regulated by an
Aalborg GFC37 mass flow controller. Excurrent air passed over a
Vaisala MNP45A thin‐film capacitance relative humidity (RH)/
Ta probe, with a subsample flowing through a column of Drierite
before O2 and CO2 were measured with a Sable Systems Foxbox‐C.
The analog outputs of the RH/Ta probe were interfaced via the
analog inputs of the Foxbox to a PC running a custom‐written
Visual Basic (VB) program (P. Withers) that logged the serial
data from the Foxbox every 10 s.
Baseline values of background CO2, O2, and H2O vapor were

recorded for at least 30 min before and after each experiment,
as well as for 15–20min at least once during experimentation to
account for anyO2 baseline drift due toTa and pressure changes.
V
�
O2, V

�
CO2, and EWLwere calculated after Withers (2001), using

a custom‐written VB program. Minimal values were calculated
for a 20‐min period where the echidna was resting and inactive
and the values had become minimal and steady. Immediately
after removal from the chamber, Tb was measured using an
Omega‐HH25TC meter with a plastic‐tipped thermocouple in-
serted approximately 6 cm into the cloaca.
The mass flow meters were calibrated using a Gilian Gili-

brator 2 (Sensidyne, Honeywell), traceable to a national stan-
dard. The oxygen analyzers were two‐point calibrated using
compressed nitrogen (0%O2) and dry ambient air (20.95%O2).
A certified gas mix (0.53% CO2; BOCS, Perth, Western Aus-
tralia) and compressed nitrogen (0% CO2) were used to cali-
brate the CO2 analyzers. The calibration of the RH probes
(achieved by bubbling incurrent air through water at various
temperatures and then warming it to a known Ta, hence RH)
was routinely confirmed using 1% RH air (dried using Drierite
to approximately 0.005 mg L21) and 100% RH air (saturated by
breathing on the probe).
Ventilatory data were measured at each temperature using

whole‐body plethysmography (Malan 1973; Withers 1977;
Cooper and Withers 2004b), simultaneous with MR and EWL.
A custom‐built MPX2010 transducer detected pressure changes
due to warming and humidifying of inspired air. A Pico ADC11
A/D converter monitored the voltage output from the pressure
transducer, which was recorded by a computer every 10 ms for
the duration of the experiment (starting approximately 2 h after
placing the animal in the chamber), using Pico Logger software.
Ventilatory variables ( fR, breaths min21; VT, mL; VI, mL min21;
and EO2, %) were calculated after Malan (1973) and Cooper and
Withers (2004b), using the average of several minutes where the
animal was breathing most steadily and consistently andMRwas
minimal. The open‐system plethysmography traces were math-
ematically converted to a closed system to account for the time
course of breaths and calibrated by injecting 3 mL of air into
the chamber with a syringe, after Szewczak and Powell (2003).
This content downloaded from 134.
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Ventilatory variables were calculated using a custom‐written VB
program (P. Withers).
Respiratory exchange ratio (RER) was calculated as V

�
CO2/

V
�
O2 and was used to determine the conversion of O2 and CO2

to joules after Withers (1992). Wet thermal conductance (Cwet;
J g21 h21 7C21) was calculated as MR (joules)/(Tb 2 Ta); Cdry

was calculated as [MR (joules)2 EHL (joules)]/(Tb 2 Ta). EHL
(J g21 h21) was calculated from EWL assuming 2.4 kJ g21

(McNab 2002). Metabolic water production (MWP; J g21 h21)
was calculated after Withers (1992), based on the measured
RER. Relative water economy (RWE) was calculated as MWP/
EWL, with the point of relative water economy (PRWE) being
the Ta at which water balance was achieved (i.e., RWE p 1).
All values are presented as mean 5 standard error, with N

being the number of individuals and n the number of mea-
surements. As not all individuals were measured at each Ta,
linear mixed‐effect models were used to examine Ta while ac-
counting for repeated measurements of each individual (Crawley
2007). We used lmer (Bates et al. 2014) and lmerTest (Kuznet-
sova et al. 2014) libraries in R (R Core Team 2014), with Sat-
terthwaite’s approximations for calculation of degrees of free-
dom. Ta was a fixed factor, individual was a random variable in
each model, and Ta p 27.57C (thermoneutrality) was used as
the reference category to examine pairwise fixed effects of Ta.
BMR,Tb, EWL,Cwet, and ventilatory variableswere compared

to values for other mammals using linear regressions of log10‐
transformed variables (except Tb). Data for comparative anal-
yses were obtained from McNab (2008) for BMR, from White
and Seymour (2004) for Tb, from Van Sant et al. (2012) for
EWL, and from Bradley and Deavers (1980) for Cwet. Ven-
tilatory variables were compared to the combined data sets of
Casey et al. (1979) andCooper et al. (2010), with additional data
from Darden (1972), Arieli and Ar (1979), Chappell (1985,
1992), Schlenker (1985), Chappell and Roverud (1990), Cooper
and Withers (2010, 2014), Mella et al. (2010, 2016), Warnecke
et al. (2010), Withers et al. (2012), Pusey et al. (2013), and
Withers and Cooper (2009). Comparative analyses were made
using both conventional linear regression and autoregression
(Cheverud and Dow 1985; Rohlf 2001) to account for phylo-
genetic history, based on the mammal supertree of Bininda‐
Emonds et al. (2007). Autoregression renders a single trait (X
or Y ) independent of phylogeny by determining the residuals
between the original trait and the phylogenetically predicted
trait. These phylogenetically independent residuals are calcu-
lated by maximizing the correlation between the original trait
and the trait premultiplied by a constant (r; determined by an
iterative procedure, using the maximum‐likelihood function,
and constrained to the range of the reciprocals of the negative
and positive eigenvalues for W closest to 0) and a matrix rep-
resenting the phylogenetic structure (W; determined from a
distancematrix constructed from themammal supertree with the
diagonal set to 1). The residuals (e) from this relationship are then
the phylogenetically independent component of Y (or X), that is,
Y p rWY 1 e (Cheverud and Dow 1985; Rohlf 2001; Withers
et al. 2006). We calculated phylogenetically independent residuals
separately for body mass (X) and various physiological variables
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(Y) and then regressed the Y‐trait residuals against the mass
residuals to obtain the phylogenetically corrected allometric re-
lationship. Individual species (short‐ and long‐beaked echidnas
and the platypus) were assessed as to their conformity to the
relationship by examining their residuals relative to this rela-
tionship. There are several advantages to this approach; first, it
does not assume any particular model of evolution (it is simply a
mathematical “fit” of the data to the phylogenetic tree), and,
second (and importantly for our study), it allows forX andY traits
to be plotted after phylogenetic correction, so that species‐specific
residuals can be compared to the 95% prediction limits for the
phylogenetically independent allometric regression and therefore
a species’ conformity to that relationship can be assessed statis-
tically (see Withers et al. 2006 for a comparison of phylogenetic
approaches). We used these 95% prediction limits to determine
whether echidnas conformed to the conventional and phyloge-
netically independent allometric relationships after Cooper and
Withers (2006) and compared our data for echidnas to allo-
metrically predicted values that were anti–log transformed using
themaximumvariance unbiased estimate (Hayes and Shonkwiler
2006, 2007). StatistiXL (ver. 1.6), SPSS (v17 for Windows), and
custom‐writtenExcelmacrosandVB(VB6)programs(P.Withers)
were used for statistical analyses.
Results

The mean body mass of short‐beaked echidnas over all ex-
periments (Np 7, np 42) was 3.535 0.068 kg, ranging from
2.77 to 4.72 kg. Echidnas rested quietly in the metabolic
chamber during experimentation. They adjusted their posture
at different Ta. In their thermoneutral zone (TNZ), echidnas
rested on their feet, loosely curled. At low Ta, they rested
tightly curled on their feet, often noticeably shivering. At the
highest Ta, they sprawled out across the chamber, lying flat on
their stomach with limbs and beak outstretched. Echidnas
were also observed blowing bubbles from their nostrils at high
Ta; expired air would form a mucous bubble on the tip of the
snout, which would break, creating a moist layer across this
highly vascular region.
Standard Thermal, Metabolic, and Hygric Variables

Tb ranged from 23.97 5 0.727C at Ta p 107C to 32.07 5 0.247C
at Ta p 32.57C (fig. 1A; table 1), being significantly influenced by
Ta (F6, 36 p 59.8, P ! 0.001). Tb was significantly different from
that at Ta p 27.57C (29.57 5 0.327C) at Ta p 107, 157, 207, and
32.57C (t ≥ 4.45, P ! 0.001). There were no significant individual
differences in Tb (x2

1 p 1.83, P p 0.176).
MR, both V

�
O2 and V

�
CO2, was significantly influenced by Ta

(F6, 36 p 10.1, P ! 0.001; F6, 36 p 9.27, P ! 0.001, respectively;
fig. 1B). V

�
O2 ranged from 0.0835 0.010 mL O2 g21 h21 at Ta p

27.57C to 0.25 5 0.045 mL O2 g21 h21 at Ta p 107C and was
significantly higher at Ta p 107, 157, and 207C than at Ta p
27.57C. We consider the lowest MR, at Ta p 27.57C, to be BMR
(table 1). There were significant individual differences in V

�
O2

(x2
1 p 7.3, P p 0.007) but not V_CO2 (x2

1 p 2.0, P p 0.200).
This content downloaded from 134.
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Figure 1. Body temperature (Tb; A), metabolic rate (B; filled circles,
mL O2 g21 h21; open circles, mL CO2 g21 h21), evaporative water loss
(C), relative water economy (RWE; D), and wet (Cwet; filled circles)
and dry (Cdry; open circles) thermal conductance (E) of the short‐
beaked echidna (Tachyglossus aculeatus acanthion). Values are mean5
SE; N p 7, n p 6. Ta p ambient temperature.
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There was no overall effect of Ta on RER (F6, 36 p 2.13, P p
0.073), but RER ranged from 0.62 5 0.025 at Ta p 307C to
0.84 5 0.144 at Ta p 27.57C.
Ta had a significant effect on EWL (F6, 36 p 7.34, P ! 0.001;

fig. 1C). EWL was relatively constant at Ta ≤ 307C (mean
EWL p 0.33 5 0.020 mg H2O g21 h21; table 1) but increased
significantly at Ta p 32.57C to 0.54 5 0.066 mg H2O g21 h21

(P ! 0.001). There were no significant individual differences in
EWL (x2

1 p 0.432, P p 0.511). RWE ranged from 0.145 5

0.015 at Ta p 32.57C to 0.487 5 0.075 at Ta p 107C (fig. 1D),
with a significant Ta effect (F6, 37 p 14.0, P ! 0.001). The
inverse linear relationship RWE p 20.0152Ta 1 0.621 (R2 p
0.62, P ! 0.001) extrapolates to a PRWE of 224.97C.
Both Cwet and Cdry were relatively constant below Ta p 307C

(fig. 1E). There was no statistically significant effect of Ta (107–
307C) on either Cwet (F6, 42 p 0.899, Pp 0.505) or Cdry (F6, 42 p
0.867, P p 0.527). At thermoneutrality (Ta p 27.57C), Cwet

was 0.7895 0.117 J g21 h21 7C21 and Cdry was 0.3595 0.066 J
g21 h21 7C21 (table 1). At Ta p 32.57C, the calculation of
conductance was unreliable, as Tb approximated Ta.
Ventilatory Physiology

Ventilation was measured only at Ta ≤ 257C, as above this
temperature Tb approximated Ta and pressure changes from
warming and humidifying inspired air could not be reliably
detected. We consider that these ventilatory variables at Ta p
257C are sufficiently close to basal to be used in comparison
with those of other mammalian species (MR at Ta p 257C
was statistically indistinguishable from the BMR measured at
Ta p 27.57C; t38 p 0.735, P p 0.467). The fR changed sig-
nificantly (F3, 24 p 4.39, P p 0.013; fig. 2A) from 5.1 5 0.3
This content downloaded from 134.
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breaths min21 at Ta p 257C to 10.9 5 2.5 breaths min21 at
Ta p 107C (t24 p 3.17, P p 0.004). There was no overall Ta

effect on VT (F3, 18 p 1.24, P p 0.324; fig. 2B), which ranged
from 48.0 5 6.56 mL at Ta p 257C to 63.2 mL at Ta p 107C.
Ta did, however, have a significant influence on VI (F3, 24 p
6.00, P p 0.003; fig. 2C). As for fR, VI was significantly higher
at Ta p 107C (621 5 213.2 mL min21) than at Ta p 257C
Table 1: Standard physiological (measured at ambient tem-
perature [Ta]p 277C) and respiratory (measured at Ta p 257C)
variables for the West Australian short‐beaked echidna
(Tachyglossus aculeatus acanthion)
Variables
 Mean
 SE
Physiological variables:

Tb (7C)
 29.5
 .32

Cwet (J g21 h21 7C21)
 .789
 .117

Cdry (J g21 h21 7C21)
 .359
 .066

BMR (mL O2 g21 h21)
 .083
 .010

BMR (mL CO2 g21 h21)
 .065
 .009

EWL (mg H2O g21 h21)
 .356
 .031
Respiratory variables:

fR (breaths min21)
 5.1
 .3

VT (mL)
 48.0
 6.56

VI (mL min21)
 251
 41.7

EO2 (%)
 21.4
 2.38
Note. Tb p body temperature; Cwet and Cdry p wet and dry thermal
conductance, respectively; BMR p basal metabolic rate; EWL p evaporative
water loss; fR p respiratory frequency; VT p tidal volume; VI p minute
volume; and EO2 p oxygen extraction. N p 7, n p 6.
Figure 2. Ventilatory parameters of the short‐beaked echidna
(Tachyglossus aculeatus acanthion) at ambient temperatures of 107–
257C. A, Ventilatory frequency; B, tidal volume; C, minute volume;
and D, oxygen extraction. Values are mean 5 SE; N p 7, n p 6.
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(251 5 41.7 mL min21; P p 0.001). EO2 was independent of
Ta (F3, 18 p 1.64, P p 0.216; fig. 2D), with an overall mean for
all echidnas at all Ta (N p 7, n p 24) of 21.4% 5 2.38%. The
only significant individual difference for respiratory variables
was for EO2 (x2

1 p 5.2, P p 0.020).
Comparisons with Other Mammals

The thermoneutral Tb of the short‐beaked echidna measured
here of 29.57C was significantly lower (by 7.27C) than that of a
generalizedmammal (fig. 3A). The BMRwas significantly lower
than that of a generalized mammal (22% of the allometrically
predicted value; fig. 3B), falling below the 95% prediction limits
both before and after accounting for phylogeny. EWL statis-
tically conformed to that of other mammals, both before and
after considering phylogeny, despite being only 48% of the
allometrically predicted value (fig. 3C). Cwet of echidnas was
127% of the predicted value for a mammal of their size but was
within the 95% prediction limits for the allometric relationship
for Cwet, both before and after accounting for phylogeny (fig. 3D).
The fR of echidnas was statistically lower than that of other
mammals (only 20% of predicted), as was their VI, which was
only 33% of predicted. The VT (121% of predicted) and EO2 (1%
lower), however, statistically conformed to the respective allo-
metric relationships for other mammals, falling well within the
95% prediction limits.

Discussion

Our study of the thermal, metabolic, hygric, and ventilatory
physiology for Tachyglossus aculeatus acanthion provides a
more complete picture of the basic physiology of the short‐
beaked echidna than any previous study. We conclude that its
low and thermolabile Tb reflects both a phylogenetic and adap-
tive effect, and other physiological variables are as expected for
a mammal with its Tb and MR. We use our findings to assess
previous disparate conclusions concerning the physiology of this
species.
Basal Physiology

Our measured basal Tb of 29.57C for Western Australian
echidnas was 0.67–2.97C lower than other basal Tb estimates for
this species (atTa between 237 and 307C;Martin 1903; Schmidt‐
Nielsen et al. 1966; Augee 1976; Dawson et al. 1979; Frappell
et al. 1994). It is unclear whether this reflects differences be-
tween subspecies (e.g., a lower Tb of the Western Australian
T. a. acanthion as an adaptation to its more arid environment;
Withers et al. 2006) or whether it is a consequence of vary-
ing methodology between studies; our long measurement dura-
tions, consideration of circadian minima, and postabsorptive
condition ensured that our echidnas were truly basal before Tb

measurement (see Cooper and Withers 2009; Page et al. 2011;
Connolly and Cooper 2014). Indeed, Nicol and Andersen (2003)
suggested that posture of echidnas in some previous physiological
studies indicated defensive, vigilant animals likely to have an
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elevated Tb (and other associated physiological variables). Waugh
et al. (2006) observed a decrease in Tb of 2.27C over 5 h for
echidnas placed in a metabolic chamber (despite their being able
to bury in a substrate that would reduce heat loss), reinforcing
the need for long experimental duration to attain thermal equi-
librium by the time of measurement.
Despite differences between studies in Tb, our low value for

T. a. acanthion confirms the general conclusion that basal Tb

of short‐beaked echidnas is low compared to that of other
mammals (e.g., Clarke and Rothery 2008; Lovegrove 2012b),
in our case 7.27C lower than expected for a mammal of similar
size. Other monotremes also have a low Tb, for example, 31.77
C for long‐beaked echidnas (Zaglossus bruijni; Dawson et al.
1978) and 32.07C for platypus (Grant and Dawson 1978; fig. 3A).
This suggests that a low Tb is indeed a plesiomorphic mam-
malian trait. Lovegrove (2012b) predicted that the Tb of an-
cestral mammals was 34.27C, but all monotremes and partic-
ularly short‐beaked echidnas have a Tb lower than this. The
short‐beaked echidna’s low Tb, even after accounting for its
phylogenetic history, is consistent with adaptation to its low‐
energy myrmecophagous lifestyle, semifossoriality, and being
spinous (“armored”); all of these characteristics are associated
with low Tb in other mammals (e.g., McNab 1984; Lovegrove
2001; Cooper and Withers 2002).
The low BMR that we measured here for T. a. acanthion

(0.083 mL O2 g21 h21) supports previous conclusions for
short‐beaked echidnas. Our value is even lower (one‐sample t‐
tests; P ≤ 0.005) than that reported for short‐beaked echidnas
from previous studies (range, 0.132–0.217 mL O2 g21 h21;
mean, 0.163 mL O2 g21 h21; Martin 1903; Schmidt‐Nielsen
et al. 1966; Augee 1976; Dawson et al. 1979; McNab 1984; Bech
et al. 1992; Frappell et al. 1994), except that of Waugh et al.
(2006) of 0.108 mL O2 g21 h21 (t5 p 2.45, P p 0.058).
Approximately 80% of the difference between our estimate of
BMR and these varying estimates for the species can be ac-
counted for by differences in Tb (i.e., increased BMR is related to
a higher Tb). The remaining 20% is most likely either due to
adaptive differences between subspecies and/or measurement
variation reflecting differing technology and methodology. In-
deed, the only previous estimate of echidna MR to statistically
conform to our measurement is also for T. a. acanthion (Waugh
et al. 2006), although they measured buried echidnas. How-
ever, Augee (1978) measured three echidna subspecies (acan-
thion, aculeatus, and setosus) from disparate climatic regions
(central Queensland, eastern Victoria, and Tasmania) and ob-
tained near‐identical BMR for each of the three (although
higher than our acanthion value) but differences in MR at lower
Ta for the subspecies. The potential for geographic variation in
echidna metabolic physiology merits further study at a range
of Ta and using consistent methodology to compare between
subspecies.
The low BMR of short‐beaked echidnas that we confirm

here has commonly been interpreted as a plesiomorphic charac-
teristic of prototherians (e.g., protoendotherms; Grigg et al. 2004;
Lovegrove 2012a), but it has also been considered to be a derived
character related to their overall low‐energy lifestyle (Brice 2009).
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Figure 3. Allometric relationships for standard body temperature (A; data from White and Seymour 2004), basal metabolic rate (B; data from
McNab 2008), evaporative water loss (C; data from Van Sant et al. 2012), and wet thermal conductance (D; data from Bradley and Deavers
1980) of marsupial and placental mammals (white circles), with the regression line (thick line) and 95% prediction limits (thin line). The short‐
beaked echidna (Tachyglossus aculeatus acanthion; this study) is shown with a black square, the long‐beaked echidna (Zaglossus bruijni;
Dawson et al. 1978) with a gray square, and the platypus (Ornithorhynchus anatinus; Grant and Dawson 1978) with a gray diamond. Insets are
the allometric relationships for phylogenetically independent autoregression residuals.
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Short‐beaked echidnas are primarily myrmecophagous; their
ant/termite diet has a low energy density, poor digestibility,
and low‐energy feeding behavior (McNab 1984; Redford and
Dorea 1984; Cooper and Withers 2004a), and a low BMR is
characteristic of myrmecophagous mammals in general (Coo-
per and Withers 2002). Short‐beaked echidnas are also ar-
mored, with a dense dorsal covering of sharp spines, and
semifossorial; both of these characteristics are also associated
with a low BMR (McNab 1979, 2008; Lovegrove 2000, 2001). In
addition, echidnas use both short‐term torpor and long‐term
hibernation (e.g., Augee andEaley 1968; Brice et al. 2002b; Nicol
and Andersen 2002), and a low BMR is also a characteristic of
heterothermic mammals (McNab 1970; Cooper and Geiser
2008). This idea of an adaptively low BMR for short‐beaked
echidnas (and to a lesser extent the long‐beaked echidna)
is supported by the considerably higher BMR of the aquatic
platypus (Grant and Dawson 1978), which statistically con-
forms to that of other mammals (fig. 3B), probably as a con-
sequence of its semiaquatic lifestyle. After accounting for
phylogeny, both the platypus and the long‐beaked echidna
conformed to the BMR of other mammals, but the short‐beaked
echidna was still significantly low, further suggesting adaptive
reduction in BMR.
Despite these two contrasting hypotheses (ecology, phy-

logeny) accounting at least in part for the low BMR of short‐
beaked echidnas, their low BMR also reflects their low Tb.
BMR increases about 10% for every 17C increase in Tb (if Q10

for MR is about 2.5; Guppy and Withers 1999). Dawson and
Hulbert (1970) and Dawson (1973) concluded that using Q10

to “correct” the BMR of monotremes, marsupials, and pla-
cental mammals to a common Tb (387C) accounted for ob-
served differences in BMR between these groups, although
Dawson et al. (1979) concluded that Q10 correction of BMR
did not fully explain these differences. However, a Q10‐based
correction of BMR also changes thermal conductance (C),
which is not necessarily realistic; insulation would not change
F
p
c
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just because the Tb set point is higher. We therefore corrected
for the effect of Tb on BMR with a constant conductance
correction method, using the formula Cwet p MR(1)/(Tb(1) 2
Ta) p MR(2)/(Tb(2) 2 Ta), where Cwet is our measured wet
thermal conductance (0.789 5 0.117 J g21 h21 7C21), MR(1) is
our measured BMR (0.083 mL O2 g21 h21) at the actual Tb(1) of
29.57C and thermoneutral Ta of 27.57C, and MR(2) is the
predicted BMR at a Tb(2) of 35.57 or 387C. Our calculations
support the conclusions of Dawson and Hulbert (1970) and
Dawson (1973); if short‐beaked echidnas had the same Tb as a
generalized marsupial or placental mammal (35.57 or 387C,
respectively), then they would have a BMR of 0.31 or 0.41 mL
O2 g21 h21, respectively, both of which conform closely to
allometric predictions (fig. 4). Therefore, we interpret the low
BMR of short‐beaked echidnas not as a primitive character-
istic indicative of poor metabolic capacity or as an energy‐
conserving adaptation to a low‐energy ecological niche, as
previously proposed, but simply as a consequence of their low
Tb—albeit their low Tb is likely both a plesiomorphic character
and an adaptive character.
In terms of the respiratory physiology of the short‐beaked

echidna, we confirmed the previous observations of Bech et al.
(1992) that a very low fR accounts for the low basal VI, with
basal VT conforming closely to that of other mammals. Our
values for fR do not differ from those of Bech et al. (1992; 6 min21)
or Waugh et al. (2006; 4.6 min21), but other studies have re-
ported significantly higher fR (7–17.5 min21; one‐sample t‐test,
t5 1 5.38, P ! 0.003; Bentley et al. 1967; Augee et al. 1971; Parer
and Hodson 1974; Frappell et al. 1994; Nicol and Andersen
2003). Our VT measurement is similar to that of Frappell et al.
(1994; 44.8 mL), but other studies report significantly lower
values (19–24 mL; t5 1 3.21, P ! 0.024; Bentley et al. 1967; Parer
and Hodson 1974; Bech et al. 1992). These differences in ven-
tilatory variables are most likely due to methodological differ-
ences such as short measurement durations, measurement of
awake or buried animals, and the use of restraints and/or tactile
igure 4. Basal metabolic rate for the short‐beaked echidna (Tachyglossus aculeatus acanthion; black square) adjusted from its body tem-
erature of 29.57C to a typical marsupial body temperature (Tb) of 35.57C (gray triangle) and a typical placental Tb of 387C (gray diamond)
ompared to the allometric relationship for mammals (white circles; data from fig. 1), with the 95% prediction limits.
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stimuli. These may lead to hyperventilation, with elevated fR and
reduced VT (Larcombe 2002; Cooper andWithers 2004b; Waugh
et al. 2006).
Bech et al. (1992) measured a lower than expected VT in

their study and in addition found a low fR, resulting in a very
low VI and a lower ventilatory requirement (VI/V

�
O2 p 17.9)

than expected for an equivalent‐sized mammal (VI/V
�
O2 p 34).

Our results here (VI/V
�
O2 p 31.1) are similar to those of Frappell

et al. (1994; VI/V
�
O2 p 37.1), with a low VI proportionate to the

low BMR, so that EO2 of short‐beaked echidnas in this study is
the same as for other mammals.
Low Ta Physiology

Our results support early observations that under resting
conditions, nonreproductive short‐beaked echidnas are very
thermolabile (e.g., Martin 1903; Robinson 1954; McMurchie
and Raison 1975; Augee 1976); Tb varies considerably over a
wide range of Ta (fig. 1A), unlike the relative constancy expected
for an endothermic mammal. For thermoconformers, Tb fol-
lows Ta quite closely (Tb/Ta slope ∼1), whereas effective ther-
moregulators maintain Tb near constant regardless of Ta and
Tb/Ta slope ∼0 (Withers 1992). The overall Tb/Ta slope of 0.35
for our short‐beaked echidnas, although closer to that of ef-
fective thermoregulators (0) than thermoconformers (1), nev-
ertheless suggests that echidnas are less effective thermoreg-
ulators than other mammals, at least when inactive and
nonreproductive. Indeed, the thermolability below thermo-
neutrality of a 3.5‐kg echidna of 0.282 7C 7C21 is much greater
than for various small heterothermic dasyurid marsupials
(0.064 7C 7C21; Pusey et al. 2013). Nevertheless, they are clearly
able to maintain a considerable Tb‐Ta differential.
Is the short‐beaked echidna’s thermolability a plesiomor-

phic or derived trait? Both the smaller (0.7‐kg) semiaquatic
platypus and the larger (13.6‐kg) long‐beaked echidna have
limited or no thermolability at low Ta (Dawson et al. 1978;
Grant and Dawson 1978), suggesting that the short‐beaked
echidna’s thermolability is probably not a plesiomorphic mono-
treme trait but possibly an energy‐conserving adaptation to their
low‐energy niche. Thermolability results in substantial energy
savings for short‐beaked echidnas (in addition to that from their
already low Tb). By reducing Tb by 5.67C at Ta p 107C from their
basal value, MR is only 0.25 mL O2 g21 h21 compared with
0.36 mL O2 g21 h21 calculated if Tb were maintained at 29.57C;
this represents a 30% (0.11 mL O2 g21 h21) energy saving. Martin
(1903) also noted that echidnas saved energy by their “imperfect
homeothermism.” Energy conservation by thermolability is con-
sistent with an overall low‐energy physiology being an adapta-
tion to a myrmecophagous, armored, semifossorial niche. How-
ever, thermolability is not a general characteristic of the various
myrmecophagous mammals measured by McNab (1984; but
note that the short‐beaked echidnas measured in his study were
not thermolabile either) or the termitivorous numbat (Cooper
and Withers 2002) or aardwolf (Anderson et al. 1997). Interest-
ingly, female short‐beaked echidnas incubating eggs and young
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have a very closely regulated Tb, suggesting that they are capable
of more precise homeothermy when required (Beard et al. 1992;
Beard and Grigg 2000; Nicol and Andersen 2006), as observed
for other thermolabile mammals (see Farmer 2000). More pre-
cise homeothermy during reproduction presumably enhances
the development of embryos and young, and, as such, parental
care has been proposed as a driver of the evolution of endo-
thermy (Farmer 2000).
The increased thermoregulatory O2 demand of echidnas at

low Ta (like other endotherms) is accommodated mainly by
increasing fR to increase VI; VT remains relatively constant.
This pattern of respiratory accommodation is surprising con-
sidering their moderate body mass; generally, small species
increase fR while larger species increase VT. Ventilatory data for
the other species of monotreme at a range of Ta are required to
unequivocally determine whether this ΔfR/ΔVT pattern for
short‐beaked echidnas is a general characteristic of monotremes
compared with placental and marsupial mammals. Ventilatory
variables have been measured for normoxic platypus only at
thermoneutrality, but theydo respond tohypoxiaby increasingVT

rather than fR (Frappell 2003).
For short‐beaked echidnas, RWE (MWP/EWL) increases

linearly with decreasing Ta (fig. 1D), as is generally observed
for mammals (Cooper et al. 2005). Their PRWE of about
224.97C is very low (and this calculation of PRWE requires a
considerable Ta extrapolation). Generally, PRWE is dependent
on body mass, with smaller mammals having higher values
(Cooper et al. 2005), so echidnas would be expected to have a
reasonably poor PRWE (about 07C) due to their size (Pusey
et al. 2013), although arid‐adapted mammals have a higher
PRWE than those from more mesic environments (MacMillen
and Hinds 1983; MacMillen 1990). The very low PRWE of
echidnas is also a consequence of their low‐energy physiology
and myrmecophagous diet. Echidnas have a low MR (and thus
MWP) but a normal mammalian EWL, so their RWE is low. A
termite diet has a high water content and a relatively low
energy return (Cooper and Withers 2004a), which also lowers
RWE. Consequently, it is unsurprising that T. a. acanthion has
a poor RWE despite its predominately arid‐zone distribution.
High Ta Physiology

Heat‐challenged mammals typically increase heat loss by various
nonevaporative (e.g., vasodilation, posture) and evaporative (e.g.,
panting, licking, sweating, insensible) avenues. However, previ-
ous studies have suggested that short‐beaked echidnas do not
pant, lick, or sweat (Robinson 1954; Schmidt‐Nielsen et al. 1966;
Augee 1976) or use vasomotor adjustments (Martin 1903) to
enhance heat loss at high Ta, despite evidence that both the
platypus and Zaglossus do increase EWL for thermoregulation
(Dawson et al. 1978; Grant and Dawson 1978). We found here
that EWL of short‐beaked echidnas does unequivocally increase
at high Ta (fig. 1C), as is typical of other mammals, but we could
not accurately quantify any changes in Cwet or Cdry at high Ta due
to the close approximation of Ta and Tb.
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The EHL of short‐beaked echidnas at Ta p 32.57C was 1.29
J g21 h21, equivalent to half (51%) of an echidna’s metabolic
heat production at that Ta and considerably more than the
33% observed by Schmidt‐Nielsen et al. (1966) for echidnas at
Ta of up to 347C. It is possible that our arid‐habitat subspecies
has a greater propensity for EHL or that differing measure-
ment techniques may account for these differences. Our mea-
surement for EHL is at the upper end of the range of 25%
(Pseudomys hermannsburgensis; MacMillen et al. 1972) to
56% (Macropus rufus; Dawson et al. 2000) for a variety of arid‐
habitat Australian mammals at Ta approaching Tb, including
the termitivorous marsupial numbat (Myrmecobius fasciatus;
45%; Cooper and Withers 2002) from the same study location
as our short‐beaked echidnas. Therefore, the echidna’s ca-
pacity for dissipating metabolic heat by EHL appears com-
parable to other mammals inhabiting similar environments.
It is not clear how our short‐beaked echidnas increase EWL

at high Ta. Augee (1976) reported that they do not sweat or
pant (although he did note an increase in VI for lightly anes-
thetized echidnas after a short exposure to heat); however, this
is not necessarily plesiomorphic or thermoregulatorily limiting.
Various other mammals lack sweat glands but are effective
thermoregulators in the heat; for example, rodents do not have
sweat glands but can increase EWL at high Ta (MacMillen and
Lee 1970; MacMillen et al. 1972; Barker et al. 2012), and at least
in some species this reflects increased insensible cutaneous
EWL (Tracy andWalsberg 2000). Dawson et al. (1978) reported
that Zaglossus increases EHL at high Ta, by possibly increasing
insensible EWL and sweating, and the platypus can sweat (Augee
1976; Grant and Dawson 1978), so short‐beaked echidnas might
also increase insensible heat loss and/or sweat. We never
observed our echidnas to lick or salivate during measurements,
but at high Ta, air expired from the nostrils formed bubbles of
nasal mucous that broke and moistened the tip of the snout,
which contains a blood sinus. This bubble blowing by echidnas
presumably enhances EHL in a similar way to the salivation and
licking by kangaroos of their highly vascular forearms (Dawson
1995), as well as its normal role of facilitating electrosensory
reception (Proske et al. 1998).
Although many previous studies have concluded that short‐

beaked echidnas rely on behavioral adaptations and low heat
production to survive thermal extremes (Martin 1903; Robin-
son 1954; Griffiths 1968, 1978; Augee 1976), some more recent
studies have suggested that enhanced physiological heat loss is
necessary to avoid lethal Tb at high Ta. For example, Wilkinson
et al. (1998) and Brice et al. (2002a) noted that echidnas were
commonly found in logs during summer, when temperatures
varied as much as shaded outside Ta and often rose above 357C
for 10 h (the previously reported lethal Ta) and reached 427C in
hot weather (Brice et al. 2002b). When Ta exceeds Tb, as observed
by Brice et al. (2002b) for echidnas in logs in summer, evapo-
rative cooling is the only mechanism available for heat dissi-
pation, so it is significant that we confirm here that echidnas can
physiologically enhance EWL at high Ta.
The echidna’s presumed low environmental heat tolerance

must also be considered in perspective with its low Tb and
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therefore increased propensity for heat gain in hot environ-
ments. The reported lethal Tb of 387C for echidnas is some 8.57
C above their thermoneutral Tb; for other mammals, lethal Tb

(typically 427–437C) exceeds normothermic Tb (377C) by only
57–67C (Adolph 1947). So, the low Tb of echidnas means that
their upper lethal temperature is expected to be comparatively
low and is not indicative of poor thermoregulatory ability.
Indeed, echidnas have considerable thermal tolerance of high
environmental Ta of ≥357C for long periods in the field (Brice
et al. 2002a).

Conclusion

We conclude that most aspects of the physiology of the short‐
beaked echidna (Tachyglossus aculeatus acanthion) are similar
to those of other mammals, after their low Tb is accounted for.
Although the low Tb of short‐beaked echidnas might be con-
sidered a plesiomorphic trait, there is likely an additional re-
duction in Tb associated with the echidna’s ecological niche
(myrmecophagous, spiny armored, semifossorial). Their low
MR reflects their low Tb, their lower than expected respiratory
ventilation is sufficient to accommodate their modest gas ex-
change requirements, and their thermal conductance is as ex-
pected. Short‐beaked echidnas are flexible thermoregulators,
being considerably thermolabile over a range of Ta, but it is
unclear whether this is a plesiomorphic trait or whether it is
derived and reflects their low‐energy myrmecophagous niche.
In contrast to previous studies, our findings indicate that echid-
nas increase EWL above thermoneutrality. Cooling of their nasal
blood sinus with nasal mucus may contribute to this enhanced
evaporative cooling, along with increased respiratory EWL and
presumably also cutaneous EWL. This capacity for evaporative
cooling explains how their distribution can include hot envi-
ronments, where Ta even in daytime shelters would exceed their
critical thermal limit.
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