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Abstract—In this paper, we consider a sensor net-
work with limited sensing range and present a sensor
selection algorithm for multi-target tracking problem.
The proposed algorithm is based on the multi-Bernoulli
filtering and a collection of sub-selection problems for
individual target. A sub-selection problem for each
target is investigated under the framework of partially
observed Markov decision process. Each sub-selection
problem is solved using a combination of information
theoretic method and limited sensing range. Numerical
studies validate the effectiveness of our method for
multi-target tracking scenario in a sensor network.

Keywords—multi-target tracking, sensor network, hi-
erarchical sensor selection, multi-Bernoulli filter

I. INTRODUCTION

Sensor management is one of important tasks
for efficient and accurate data processing in sensor
networks [1]. Particularly, for multi-target tracking in
sensor networks, intelligent sensor selection algorithm
is necessary because the original problem is naturally
combinatiorial with respect to the number of targets
and number of sensors. This paper aims at developing
a sensor selection algorithm for multi-target tracking
in order to achieve computational efficiency and de-
sirable performance [4], [6]. To this end, a proper
formulation of optimisation problem is required and
it is closely related to underlying multi-object tracking
algorithm and how to define the cost to optimise with
respect to the tracking algorithm and sensor network
topology.

Multi-target filtering has been indepdently inves-
tigated in literature and involves the joint estimation
of the number of targets and their individual states
from a sequence of observations in the presence of
association uncertainty, detection uncertainty and clut-
ter [2], [3], [13]. Conventional multi-target tracking

approach used in literature is a combination of single-
target trackers, such as JPDA and MHT. However,
these methods are not suitable for principled sensor
selection because there is no way of formulating
the selection cost that accomodates multi-target in a
mathematical description.

Due to Mahler’s Finite Set Statistic (FISST) [13],
it is able to treat multi-sensor multi-target system in a
single framework. FISST treats the collection of target
states, referred to as the multi-target state, as a finite
set. The probability hypothesis density (PHD) and
cardinalized PHD (CPHD) filters have been proposed
as approximate solutions to optimal Bayes multi-
target filtering [10], [12]. Sequential Monte Carlo
(SMC) and Gaussian mixture (GM) implementations
of these filters [14], [15], [16] have opened the doors
to many areas of applications and further research
[17], [18], and [19]. Another type of approxmiation
on FISST filter is the multi-Bernoulli filter, which
propagates the parameters of a multi-Bernoulli RFS
that approximates the posterior multi-target density
[20]. A generalization of the filter known as the
generalized labeled multi-Bernoulli filter, or simply
the Vo-Vo filter, is a closed form solution to the
Bayes multi-target filter that produces target tracks
[21], [22].

Sensor selection for multi-target tracking in sen-
sor networks has been recently investigated in a
more principled way due to the advanced multi-
target tracking methodology using random finite set
that accomodates the multi-object filtering density. In
recent literature the sensor management problem for
multi-target tracking is posed as a Partially Observed
Markov Decision Process (POMDP) using FISST [9].
There were several attempts to solve this problem in
recent studies as follows. In [9], [13] the Kullback-
Leibler discrimination and posterior expected number



of targets were proposed as objective functions for
POMDP. Rényi divergence was utilized as the cost
function in [23] the particle multi-object Bayes filter
is employed to propagate the multi-object posterior,
while in [24] the particle probability hypothesis den-
sity (PHD) filter is used for multi-target state esti-
mation. In [25], [26] an efficient sensor management
solution was proposed using the Rényi divergence and
posterior cardinality as cost functions, while the multi-
Bernoulli filter [20] was used for multi-target state
estimation. For the closed form of implementation,
Cauchy-Swarz divergence for poisson point process
[27] was used to design the reward function for multi-
target tracking [28]. In [29], the multi-Bernoulli filter
also used with a different objective function. More
recently in [30], sensor control using RFS has been
investigated for more difficult scenarios where filter
parameters are not known.

The problem addressed in this paper is a sensor
management problem for multi-target systems with
limited sensing range (LRS). When a sensor network
monitors multiple objects with LRS, not all sensors
but active sensors should be involved in the selection
process in order to achieve computational efficiency
and guarantee desirable performance. We adopt the
multi-Bernoulli filter [20] as a multi-target filter be-
cause of its parametric structure that is suitable for
proposed sensor selection algorithm in this paper.
The objective function for the optimisation is param-
eterised using the expected probability of detection
and the decomposition of the original problem using
individual Bernoulli components obtained from multi-
Bernoulli filter.

II. MULTI-BERNOULLI FILTER WITH
SEQUENTIAL MULTI-SENSOR UPDATE

In a physical sensor network, each sensor has
a finite field of view (FoV) which represents its
sensing range. Typically, the sensing range for dis-
tance range and bearing sensor is described as a
region [−φ0,+φ0]× [0,d0] in polar coordinates. Each
target moves according to the nearly constant velocity
model:

xk = I2⊗
[

1 ∆

0 1

]
xk−1 + I2⊗

[
∆2/2

∆

]
vk (1)

where xk = [px,k,vx,k, py,k,vy,k]
T , I2 is the 2×2 identity

matrix, ⊗ denotes the Kronecker product; ∆ is the
sampling period, and vk ∼N (0,Qk) is i.i.d. Gaussian
noise. Without loss of generality, we assume that
process noise is time-invariant zero-mean Gaussian,
and identically distributed with Qk = σ2

v I2 where
σv is the given standard deviation. Target generated
observations from sensor l are noisy vectors of range
and bearing zl

k given by

zl
k = hl

k(x)+wl (2)

where hl
k(x) =

[
‖pk− sl‖ ,arctan yl−py,k

xl−px,k

]T
, wl is zero

mean Gaussian noise, i.e. N (wl ;0,Rl), and sl = [xl

yl ]
T is the position of the sensor. The measurement

noise wl is composed of range noise wl
r and bear-

ing noise wl
φ

. The standard deviation of wl
r and

wl
φ

are respectively given by σ l
r and σ l

φ
, and Rl =

diag([(σ l
r)

2,(σ l
φ
)2]).

Contrast to a single-object state system where
objects are represented by random vectors, a multi-
objet system describes multiple objects by using a
random finite set (RFS) of vectors. It is a natural
representation of multi-object system because RFS
contrains not only random vectors as elements of
the set but also the number of objects as cardinality
information of the set.

Suppose the multi-target state set and measure-
ment set of all sensors at time k, are given by

Xk =
{

xk,1, · · · ,xk,N(k)
}

Zk =
{

Z1
k , · · · ,Zl

k, · · · ,Zm
k

}
where N(k) is the cardinality of Xk, m is the number of
sensors, Zl

k = {zl
k,1, · · · ,zl

k,Ml(k)} is the measurement
set of the lth sensor, with Ml(k) denoting the cardi-
nality of Zl

k.
The multi-target state Xk is composed of persisting

targets Sk that survived from the previous time step
and new births Γk, hence Xk = Sk ∪ Γk. For each
l = 1, · · · ,m, each measurement set is represented by
the union of two sets Zl

k = Θl
k∪Kl

k, where Θl
k is a set

of observations generated by real targets and Kl
k is a

set of false measurements, i.e., clutter.
We follow the notation from [20] for the multi-

Bernoulli RFS as π = {(r( j), p( j))}M
j=1, where multi-

target density π is represented by a set of pair of
parameters: existence probability r and spatial density
p. Thus, at time k the posterior multi-target density is
a multi-Bernoulli RFS given by πk = {(r

( j)
k , p( j)

k )}Mk
j=1,

and the density of new births is also multi-Bernoulli
RFS given by πΓ,k+1 = {(r( j)

Γ,k+1, p( j)
Γ,k+1)}

MΓ,k+1
j=1 , then

the predicted density πk+1|k is a union of two multi-
Bernoulli RFSs as

{(r( j)
S,k+1|k, p( j)

S,k+1|k)}
Mk
j=1∪{(r

( j)
Γ,k+1, p( j)

Γ,k+1)}
MΓ,k+1
j=1 .

(3)
At time k + 1, if the predicted multi-
target density is a multi-Bernoulli RFS
πk+1|k = {(r( j)

k+1|k, p( j)
k+1|k)}

Mk+1|k
j=1 , then the updated

multi-Bernoulli density πk+1 is composed of legacy
tracks {(r( j)

L,k+1, p( j)
L,k+1)}

Mk+1|k
j=1 and measurement-

updated tracks {(rU,k+1(z), pU,k+1(·|z))}z∈Zk ,

{(r( j)
L,k+1, p( j)

L,k+1)}
Mk+1|k
j=1 ∪{(rU,k+1(z), pU,k+1(·|z))}z∈Zk

(4)
The multi-Bernoulli prediction (3) and update

(4) can be implemented using Gaussian mixture or
particle approximations as analogous to Gaussian
mixture PHD [15] and particle filtering (i.e., SMC)
[14] for PHD filters. In this paper we consider SMC
approximation due to the nonlinearity of measurement
model appeared in (2). For the details of the SMC



implementation, we refer the readers to subsection
IV-A of [20]. In SMC implementations, the predicted
multi-target density {r( j)

k+1|k, p( j)
k+1|k}

Mk+1|k
j=1 is given as a

weighted sum of dirac delta mass at particle locations

p( j)
k+1|k(x) = ∑

L( j)
k+1|k

i=1 ω
( j)
i,k+1|kδ

x( j)
i,k+1|k

(x). (5)

where L( j)
k+1|k is the number of particles for jth

Bernoulli component; ω
( j)
i,k+1|k represents the associate

weight of ith particle from jth Bernoulli component.
This equation will be used in next section for the
expection of detection probability.

The multi-Bernoulli density update (4) for sensor
network applications can be implemented with dif-
ferent schemes considering given network topology
and communication conatraints. For example, mea-
surements from all sensors in the network can be aug-
mented as one single large vector measurement and
processed at once. It is called a centralized scheme
because all the measurements are transferred to the
processing center and execute one multi-Bernoulli
update. However, as a size of network grows and
due to the non-fully connected network topology, it is
necessary to develop efficient implementation for the
multi-Bernoulli update.

Multiple multi-Bernoulli measurement update can
be implemented using various schemes consider-
ing geographical sensor locations or communication
bandwidth related to LSR. Several measurement up-
date schemes such as parallel, sequential, and random
update have been introduced and compared in [7].
Among them, we adopt the sequential update scheme
due to the simple implementation. It is summarized
in pseudo code in Algorithm 1.

III. SENSOR SELECTION WITH DECOMPOSED
POMDP

In this section, we briefly explain the POMDP
framework and propose a decomposed approxima-
tion using multi-Bernoulli tracks and LSR network
topology. Then, objective function based on the Rény
divergence is subsequently explained.

A. Decomposed POMDP

The POMDP problem can be defined as the opti-
misation problem with expectation cost as follows.

Sk = argmax
U∈S

E[D(U, f (Xk−1|Z0:k−1,S0:k−1),Zk)].

(6)
where D(U, f ,Z) is the individual cost given U , f
and Z, where U , f , and Z denote a possible set of
sensors, the multi-target posterior density, and the
associated measurement set to the set of sensors
U , respectively. Notice that the expectation is with
respect to the multi-object density and the general
formulation of POMDP is a p-step future decision
process, whereas, in this paper we only consider
one-step future decision.

Algorithm 1 Multi-sensor multi-Bernoulli filter with
sequential update

Require: multi-target density πk = {r
( j)
k , p( j)

k }
Mk
j=1, se-

lected sensor set s′l(l = 1, · · · ,m′)
1: for l = 1, · · · ,m′ do
2: if l = 1 then
3: compute r( j),l

S,k+1|k, p( j),l
S,k+1|k (x), r( j),l

Γ,k+1,

p( j),l
Γ,k+1 (x)

4: to obtain π l
k+1|k

5: else
6: pseudo-predict π l

k+1|k = π
l−1
k+1

7: end if
8: compute r( j),l

L,k+1, p( j),l
L,k+1(x) to obtain π l

L,k+1
9: for each zl

k+1 ∈ Zl
k do

10: compute r( j)
U,k+1(z

l
k+1), p( j)

U,k+1(x;zl
k+1)

11: to obtain π l
U,k+1(z

l
k+1)

12: end for
13: π l

k+1 = π l
L,k+1∪π l

U,k+1(z
l
k+1)

14: end for
Ensure: πk+1 = πm′

k+1

In general solving (6) is intractable because all
possible sensor combinations need to be explored,
which is an NP-hard problem [31]. As a tractable
suboptimal solution, we propose an approximated
sensor selection scheme by decomposing the global
POMDP with multi-target density into multiple
POMDPs with independent track densities. A
similar idea has been shown to be effective in robot
navigation [32], [33].

Given the multi-target density π =
{(r( j), p( j))}M

j=1, the objective function E[D(U,π,Z)]
can be approximated by

E[D(U,π,Z)]'
M

∏
j=1

E[D(U,{(r( j), p( j))},Z)] (7)

where M is a distinct number of Bernoulli components
that represents independent target tracks. Thus, note
that individual Bernoulli component {r( j), p( j)} is up-
dated using a set of sensors with respect to the target
j. Hence, Sk ' ∪M

j=1S
( j)
k , where S( j)

k is the selected
sensor set for the single target density of target j.
The underlying rationale behind this decomposition
is the assumption that the expectation with repect to
the multi-Bernoulli density can be approximated by
the product of expectations with respect to indepen-
dent Bernoulli components if target states are well
separated in the LSR sensor network. In order to
obtain distinct Bernoulli components for independent
target tracks, pruning and merging of multi-Bernoulli
components are used and k-mean clustering with
estimated cardinality that represents M target tracks.

B. Information Theoretic Method

The objective function plays a crucial role in
POMDP based sensor selection problem. Information



theoretic method is a typical objective function for
sensor management. Here, we propose to maximize
the information gain of single object density as the
subgoal of sensor selection, which is the product of
existence probability and state distribution given in
[13] as following

v( j)
k = r( j)

k · p
( j)
k (8)

for Bernoulli set {r( j)
k , p( j)

k }. Notice that the density is
the product of a scalar and a probability distribution.

In this paper, Rényi divergence is used to design
an objective function by measuring an information
theoretic distance beteween the future updated pos-
terior density and the predicted density. The Rényi
divergence, also known as alpha divergence, measures
the information gain between any two probability
densities. Specifically, the objective function for target
j with sensor l is defined as the Rényi divergence
between the target information gain and the predicted
information gain given as the follows.

D( j),l
k+1 ,R

l(v( j),l
k+1 ||v

( j)
k+1|k) =

r( j),l
k+1

r( j)
k+1|k

Rl(p( j),l
k+1 ||p

( j)
k+1|k)

(9)
where Rl(p( j),l

k+1 ||p
( j)
k+1|k) is the Rényi divergence be-

tween the future measurement updated posterior and
predicted distribution of target j denoted by R( j),l for
short. Given the Bayesian recursion, R( j),l is given as
following

R( j),l =
1

α−1
log

∫
[gl

k+1(z|x
( j)
k+1)]

α p( j)
k+1|k(x)dx( j)

k+1

[p(z|Zk)]α
(10)

where gl
k+1(z|x) denotes the measurement likelihood

function of the sensor l where the specific form is
given in (2), p(z|Zk) =

∫
gl

k+1(z|x
( j)
k+1)p( j)

k+1|k(x)dx( j)
k+1

and α is a parameter that determines how much we
emphasize the tails of two density in the metric. The
Rényi divergence becomes the Kullback-Leibler dis-
crimination and Hellinger affinity respectively when
α → 1 and α = 0.5 [35].

In order to compute the expectation of (9), we
adopt a predicted ideal measurement set proposed by
Mahler [11] generate one future measurement z for
sensor l based on the predicted state assuming no
clutter and unity detection rate as illustrated in [26],
and r( j),l

k+1 = r( j),l
U,k+1(z), i.e., unity detection rate.

In the SMC implementation, the objective function
is represented using the predicted multi-Bernoulli
density as given in (5). Substitute (5) into (10), then,
we obtain

E[D( j),l
k+1 ] =

r( j),l
U,k+1(z)

(α−1)r( j)
k+1|k

log
∑

L( j)
k+1|k

i=1 ω
( j)
i,k+1|k[g

l
k+1(z|x

( j)
k+1)]

α

[∑
L( j)

k+1|k
i=1 ω

( j)
i,k+1|kgl

k+1(z|x
( j)
k+1)]

α

(11)
The benefits of maximising the information gain

as objective function are two-fold: first, maximising
the measurement-updated existence probability tends

Algorithm 2 Maximise Rényi divergence

Require: πk+1|k,sl(l = 1, · · · ,m)
1: for j = 1, · · · ,Mk+1|k do
2: for l = 1, · · · ,m do

3: predict z = ∑
L( j)

k+1|k
i=1 ω

( j)
i,k+1|khl(x( j)

i,k+1|k)

4: compute E[D( j),l
k+1 ] given by (11)

5: end for
6: S( j)

k+1 = {arg max
l∈{1,··· ,m}

E[D( j),l
k+1 ]}

7: end for
Ensure: Sk+1 = unique(∪M

j=1S
( j)
k+1)

Algorithm 3 Sensor selection by maximisation of
detection probability

Require: πk+1|k,sl(l = 1, · · · ,m)
1: for j = 1, · · · ,Mk+1|k do
2: for l = 1, · · · ,m do

3: E[P l,( j)
D ] = ∑

L( j)
k+1|k

i=1 ω
( j)
i,k+1|k pl

D,k(x
( j)
i,k+1|k)

4: end for
5: S( j)

k+1 = {arg max
l∈{1,··· ,m}

E[P l,( j)
D ]}

6: end for
Ensure: Sk+1 = ∪M

j=1S
( j)
k+1

to avoid losing targets; second, Rényi divergence
between the predicted and updated distribution ob-
tains more information from future measurements and
makes target state estimation more accurate. Assume
the sensor network contains m candidate sensors
with fixed and known position sl(l = 1, · · · ,m), then
Algorithm 2 provides the SMC implementation of
sensor selection by maximising the proposed objective
function. The unique() function eliminates repeatedly
chosen sensor to ensure each sensor will be used in the
update only once during information fusion process.

C. Limited Sensing Range-based Method

As we consider the sensor network with LSR,
the individual cost is defined using the probability of
detection that is dependent on the pair of each track
and each sensor. Thus, we optimise the expected cost
of the probability of detection pD,k+1|k for each pair
of target track and sensor. Typically, the probability
of detection for a sensor with bearing and range
measurements decreases proportional to the target-
sensor distance and reduces to zero if the target-

Algorithm 4 Sensor selection by information theo-
retic method and LSR
Require: πk+1|k,sl(l = 1, · · · ,m)

1: Algoritm 3
Ensure: S̃k+1
Require: S̃k+1

2: Algorithm 2
Ensure: Sk+1



sensor distance is larger than a threshold. Thus, we
use a simple state dependent probability of detection
model with minimum R1 and maximum R2 distance
thresholds as

pl
D(xk)=


qmax, ‖pk− sl‖ ≤ R1

qmax−λ‖pk−sl‖, R1<‖pk−sl‖≤ R2

0, ‖pk− sl‖> R2
(12)

where λ controls the shape of the profile. Then,
the pseudo-code for the proposed sensor selection
is given in the following. Here, the expectation of
the probability of detection is approximated by SMC
method as follows which is a convolution between the
predicted spatial density (5) and the state dependent
detection profile given in (12).

E[P l,( j)
D ] =

L( j)
k+1|k

∑
i=1

ω
( j)
i,k+1|k pl

D,k(x
( j)
i,k+1|k) (13)

where L( j)
k+1|k is the number of particles for jth target

in the prediction step;
(

ω
( j)
i,k+1|k,x

( j)
i,k+1|k

)
is the ith

associate weight and particle for jth target.

D. Sensor Selection with Two Schemes

Aforementioned two selection schemes can be
simply combined to enhance the performance. As the
sensor selection scheme based on the probability of
detection gives rough choices, it can be used as an
initial solution for the information theoretic method.
This combination of two schemes is described in
Algorithm 4.

IV. NUMERICAL STUDIES

In this section we present numerical results for
a multi-target tracking scenario in an LSR sensor
network, with 9×9 sensors laid out uniformly over a
square of size [−1000m,1000m]2.

Unknown time-varying number of targets are
observed in clutter. Each target has a survival
probability pS = 0.95. New born targets ap-
pear spontaneously according to a Poisson RFS
with intensity γk = ∑

3
i=1 0.2N (·; x̄i,Q), where Q =

diag([(50m,2m/s,50m,2m/s]2) and

x̄1 = [200m;−10m/s;600m;−20m/s]T ,
x̄2 = [−300m;15m/s;200m;−10m/s]T ,
x̄3 = [−850m;25m/s;−450m;5m/s]T .

Each target moves according to the constant velocity
model given by (1) with standard derivation for the
process noise σv = 1m/s for both vx,k and vy,k.

The sensing range of each node is [−π/2,+π/2]×
[0,300m], with clutter uniformly distributed over this
area with rate λc = 5 per scan. The detection profile
(12) for each sensor is specified by qmax = 0.99,
R1 = 100m, R2 = 300m, and λ = 0.002m−1. The
measurement noise covariance for sensor l at time k
is Rl

k = diag([(σ l
r,k)

2,(σ l
φ ,k)

2]), where (σ l
r,k)

2 = σ0 +

Fig.1. Target tracks. Start/stop positions for each track are
shown with •/�

Fig.2. Comparison of OSPA distance

βr ‖pk− sl‖2 , and (σ l
φ ,k)

2 = σ1 + βφ ‖pk− sl‖, with
σ0 = 1m, βr = 5× 10−5m−1, σ1 = π/180rad, βφ =
10−5rad ·m−1. Three targets appear in the scene
as illustrated in Fig. 1. Since nearest-neighbouring
strategy has been widely used in sensor selection,
we implement minimum expected distance as another
objective function for comparison. It is intuitive for
this scenario that to select the proper sensor with
respect to a target should choose the nearest sensor
that target falls in its FoV. The Optimal Subpattern
Assignment (OSPA) metric composed of location
error and cardinality error, is adopted for tracking per-
formance evaluation [34]. Fig. 2 shows the OSPA dis-
tance (c = 300m, p = 1) comparison from 500 Monte
Carlo runs. It is obvious that the proposed tracker
with maximizing the expected information gain of
PHD is better than nearest-neighbouring strategy. Our
hierarchical selection with maximizing the PHD can
choose proper sensors to perform effective multi-
target tracking. However, the nearest-neighbouring
strategy ignores sensor’s FoV and may choose sensors
cannot observe targets instead.

Both algorithms were implemented in MATLAB
R2012a on a computer with an IntelCore E5500
CPU and 2GB of RAM. A comparison of the two
objective functions with regard to the total sample
size and computation time shows that the probability
of detection based selection is about 20% cheaper.



V. CONCLUSION

This paper represents an efficient sensor selection
approach using decomposed global objective function.
The proposed deomposed sensor selection approach
considers suboptimization problems for individual tar-
gets to avoid combinatorial search over all sensor
combinations in the original global problem. The
multi-sensor multi-target tracking is performed using
the sequential multi-Bernoulli filter. A combination of
information theoretic method and LSR based method
is proposed. Simulations shows encouraging results.
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