
NOTICE: This is the author’s version of a work that was accepted for publication in
Computer Networks. Changes resulting from the publishing process, such as peer
review, editing, corrections, structural formatting, and other quality control
mechanisms may not be reflected in this document. Changes may have been made
to this work since it was submitted for publication. A definitive version was
subsequently published in Computer Networks, Vol. 57, Issue 8 (2013). doi:
10.1016/j.comnet.2013.03.006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195644604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Efficient Heuristics for Energy-Aware Routing in Networks with
Bundled Links

Gongqi Lin*, Sieteng Soh*, Kwan-Wu Chin**, Mihai Lazarescu*
*Department of Computing, Curtin University of Technology, Perth, WA, Australia

**University of Wollongong, Northfields Ave, Wollongong, NSW, Australia

Abstract—Current networks are typically over-provisioned to ensure low delays, redundancy

and reliability. These Quality of Service (QoS) guarantees are typically achieved using high

end, high power network equipments. Their use, however, has led to concerns regarding

green house gas emissions, which garnered a lot of attention recently and have resulted in a

number of global initiatives aim at reducing the carbon footprint of Internet Service Providers

(ISPs). These initiatives have motivated ISPs and researchers to design novel network

algorithms and hardware that scale the usage or active time of a network according to traffic

load. To this end, this paper considers the problem of shutting down a subset of bundled links

during off-peak periods in order to minimize energy expenditure. Unfortunately, identifying

the cables that minimize this objective is an NP-complete problem. Henceforth, we propose

several practical heuristics based on Dijkstra’s algorithm and Yen’s k-shortest paths algorithm.

We evaluated our heuristics on the Abilene network - with both real and synthetic traffic

matrices and several larger random topologies with various loads. Our results show that the

proposed heuristics to be effective and efficient. Moreover, our approaches could potentially

reduce the energy usage of cables used in the Abilene network by up to 56.7%, assuming the

traffic demands recorded on September 5, 2004.

Index Terms— Green networks, Bundled links, Dijkstra’s algorithm, Optimization.

1. INTRODUCTION

Today’s computer network infrastructures around the world consume non-negligible amount

of energy. For example, the energy usage of the network infrastructures in Italy in 2006

exceeded 1.4 TWh, which is approximately 0.7% of the total energy usage [1]. Other

examples include Verizon, where in 2006, it consumed 8.9 TWh (about 0.26% of USA

2

energy requirements), while Telecom France recorded 2 TWh [2]. British Telecom reported

that the overall energy consumption for its network and estate during the 2008 financial year

to be 2.6 TWh, making it the biggest single energy consumer in the country [3].

These energy consumption figures are expected to increase further given that today’s

networks are designed to support the maximum number of customers whilst meeting their

Quality of Service (QoS) requirements without any considerations for energy efficiency.

These goals are usually achieved by building many redundant links and adequately over-

provisioning and engineering links to ensure low delays, and to absorb any rise in traffic

resulting from link failures or key events. For instance, high-end IP routers use complex

multi-rack architectures that are able to support increasing network functionalities and

network traffic, which increases 2.5 times every 18 months [4]. These highly engineered links,

however, are usually underutilized. In fact, the average link utilization in backbone networks

of large Internet Service Providers (ISPs) is estimated to be around 30%-40% [5]. Further, the

Global e-Sustainability Initiative (GeSI) reported that, by 2020, the CO2 emissions of wired

network devices (e.g., routers, switches, etc.), and broadband access equipments are expected

to reach 22% and 15%, respectively, of the overall network’s CO2 emissions [6]. The rapid

increase in energy price and awareness of green house effect will eventually trigger more

restrictive government policies on the energy footprint of the Information and

Communication Technology (ICT) sector, which in turn will stimulate demands for effective

energy efficient network solutions [7].

Although green networking research is still in its infancy, a number of interesting works have

already been carried out; see Section 2. In this paper, we use Traffic Engineering (TE) to

reroute traffic across fewest possible number of links and routers. As the energy consumption

of backbone routers and their line cards is essentially independent of link load [8], it is

natural to set all under-utilized routers and line cards during off-peak periods into sleep mode.

In this respect, Intel Corporation has introduced the 0BASE-X concept [9], whereby line-

cards are able to quickly switch from active mode, in which data can be transmitted rapidly,

to idle mode to save energy, and vice versa. The concept is effective in reducing energy

3

consumption of links with low utilization. Note that a router typically contains more than one

line-card slot, thus, reactivating a router from its sleep state requires significantly longer time

as compared to powering on a single line card for a link [10].

This paper considers line cards that have the said active/idle toggling capability, and are

connected by multiple physical cables. These cables form one logical bundled link [11] as

standardized by the IEEE 802.1 AX [12]; that is, the Medium Access Control (MAC) layer

treats each bundled link as a single link. An advantage of using bundled links is that they

afford network operators an easy way to upgrade network capacity. However, during off-peak

periods, where the full network capacity is not required, there is a clear incentive, in terms of

energy cost reduction, to power off cables.

Our main contributions are as follows. We propose an efficient approach - Shortest Single

Path First (SSPF), described in Section 4, to power off redundant cables as long as the

remaining cables provide sufficient capacity to satisfy traffic demands. We build on the work

in [13]. However, it is important to note that our work is different to [13] in two significant

aspects. First, unlike the method in [13] that allows multiple paths, our approach routes each

traffic demand using only a single path; see Section 2 for its advantages. Our extensive

simulations in Section 5 show that this restriction does not reduce the effectiveness of our

approach while significantly reducing time complexity as compared to the approach in [13].

Our heuristic approach only takes 0.385 seconds, as compared to 79.6 seconds using FGH

[13] to find redundant cables to switch-off in the Abilene topology, which translates to a

saving of 50%, versus 46.3% produced by FGH, in energy consumption. Second, the method

in [13], while reducing energy, does not set an upper bound on link utilization. In contrast, we

include the maximum link utilization 0≤UT≤1.0 as a constraint in our model; see Section 3.2.

In this paper, we have proposed three versions of SSPF: SSPF-1, SSPF-2 and SSPF-R. SSPF-

1 and SSPF-2 are exactly the same except for heuristic functions that are used to determine

candidate cables to be powered off; Section 4 and 5 compare the performance of these two

versions. Given that both SSPF-1 and SSPF-2 may result in a local minimum, we have

4

proposed SSPF-R to overcome local minima and produce better results than SSPF-1 and

SSPF-2.

The rest of the paper is organized as follows. Section 2 discusses the related work. Section 3

formulates the problem at hand. Section 4 describes three efficient heuristics to solve said

problem. Section 5 presents our evaluation methodology and results. Section 6 concludes the

paper.

2. RELATED WORK

Green networking research emanated from the seminal work of Gupta et al. [14]. The authors

examined the energy consumption of networking devices and discussed their impact on

network protocols if they are put to sleep. They showed that packets routed through networks

with coordinated sleeping, called the network-wide approach, require protocol changes,

whilst those with uncoordinated sleeping, called the link layer approach, only require local

information. In a subsequent work, Gupta et al. [15] explore this idea in a wired LAN setting.

However, as argued in [16], this approach is not applicable to backbone networks that have

short packet interval times. Nevertheless, their works [14, 15] have inspired recent research

on conserving energy in networks, including ours.

There has been a handful of works on energy-aware Traffic Engineering (TE), some of which

uses distributed optimization [17, 18, 19, 20] while others utilize centralized optimization [13,

16, 21, 22, 23, 24]. Vasic et al. [17] present EATe, a technique that takes energy consumption

into account while achieving the same traffic rates between source and destination nodes as

energy oblivious approaches. However, they assume fixed end-to-end paths, which make

their approach non-flexible and hard to operate. The authors in [18] propose an energy-aware

source routing protocol for a cognitive packet network. However, their method is usable only

for smart packet networks [18]. The authors of [19] propose a distributed method that

selectively switches off links in an IP-based network to save power. Another distributed

strategy, proposed in [20], generates an energy-aware network topology and weight metrics

5

for each time period. In their design [20], the network control and management system is

responsible for populating a historical demand matrix for each time period.

In [23], the authors propose a centralized algorithm that exploits the algebraic connectivity of

a network to find the set of links that can be put into standby state, thus generating an energy-

aware network topology. Such topology-oriented solution is a planned operation, performed

statically by a network administrator for each time period. Thus, when the algorithm

incorrectly removes a sub-optimal link, it will never backtrack to correct its mistake for the

period. Other centralized optimization solutions on energy-aware TE, like ours, use shortest

paths routing [13, 16, 21, 22, 24]. However, these studies do not consider links with bundled

cables except [13]. In [21], the authors formulate the problem of power consumption as

multi-commodity minimum cost flow problems, and provide methods to switch off routers

according to policies such as random, least link, least-flow and most-power. Their algorithms

in [21], running on a centralized controller, select the minimum set of devices that must be

switched on to meet current traffic demands. Further, they consider a scenario that

reconfigures the network periodically, e.g., every 30 minutes, to match the daily traffic

variation in current backbone networks. Note that fewer network reconfigurations reduce

potential power saving but mitigate latencies incurred when changing power state. Similar to

the model in [21], we assume that a network operator changes network configuration

infrequently, i.e., only during the off-peak periods, to reduce the risk of network oscillations.

The authors of [21] consider different node types, i.e., access and backbone nodes. We, on

the other hand, consider only backbone networks comprising of nodes that cannot be

switched off. As described later, our work is closely related to [13]. The approach in [22]

uses shortest paths routing protocol to find network elements (routers and weighted links)

that can be switched off to minimize the total energy consumption while guaranteeing a given

maximum link utilization (MLU) constraint. For their power saving problem [24], the authors

use an integrated IP layer strategy that is compatible with Open Shortest Path First (OSPF).

Their approach aims to generate a subset of IP links to be powered off, when network traffic

decreases, subject to satisfying a given link load constraint.

6

The authors of [16] propose an intra-domain TE mechanism, called GreenTE, which

maximizes the number of links that can be put into sleep to minimize power consumption

under two performance constraints: maximum link utilization and packet delay. They

modelled the problem as a mixed integer program and proposed a heuristic algorithm. For

each demand d, their algorithm requires all (sd, td) k-shortest paths as the input, and uses the

AMPL/CPLEX solver [25] to generate routes for all traffic demands that use the minimum

number of switch-on links/nodes, and hence minimizes power usage, subject to the given

constraints. Note that the computational time of the algorithm increases significantly with

increasing values of k. However, unlike our work and that in [13], GreenTE considers each

link with only a single cable. Further, similar to [13], their model [16] may route a demand

through multiple paths.

Fisher et al. [13] consider networks in which each pair of core routers is connected by

multiple physical cables that form one logical bundled link [11]. They formulated an Integer

Linear Programming (ILP) that maximizes the total number of powered-off cables, with the

constraint that all traffic demands can be routed through remaining cables. The authors

showed that the problem is NP-complete and proposed three heuristics: FGH, EGH, and

BGH. Each algorithm iteratively selects one candidate cable to be deleted and use a Linear

Program (LP) [13] to check if deleting the cable yields a feasible solution, i.e., the traffic

demands can be routed using remaining cables. They used AMPL/CPLEX [25] to solve the

LP, which may route one traffic demand onto multiple, not necessarily disjoint, paths.

Splitting traffic flow onto multiple paths increases packet delays as well as routing

complexity; moreover, throughput of the Transmission Control Protocol (TCP) can be

affected significantly due to out of order packets [26]. In contrast, our work restricts each

demand to only a single path, which is simpler and more practical. For example, the

Multiprotocol Label Switching (MPLS) is generally used with a working configuration that

avoids splitting demands, and in most router implementations, packets that belong to a

particular TCP session (i.e., going to a specific destination in terms of IP address of the end

computer) are routed on a specific shortest-path (even if multiple shortest paths are available)

7

[27]. Further, Proposition 4.1 in [27] shows that when the number of demands is much larger

than the number of edges, which occurs in most practical cases, most demands can be routed

through single paths. Apart from that, reference [13] does not consider MLU, and therefore

the utilization of remaining links may reach 100%. In contrast, our model includes the

threshold of MLU, 0≤UT≤1.0, as a constraint, which can be flexibly set according to best

current practices, e.g., 30% to 40%. Note that FGH, the fastest among the three algorithms in

[13], may be stuck in a local minimum if it removes an incorrect or sub-optimal cable, and

will never backtrack to correct its mistake. In contrast, our SSPF-R algorithm, described in

Section 4.3, is able to avoid local minima. Further, FGH requires 50 20 minutes and 14 4

minutes to produce results for the Waxman and Hierarchical topologies [13] respectively. In

contrast, our proposed approach, described in Section 4, is able to produce better energy

savings in less than five seconds. Given that about 30% of traffic demands in the Abilene

network change every five minutes [16], we need a more efficient, i.e., faster algorithm, to

adapt quickly to changing traffic conditions whilst achieving energy savings.

Our problem, described in Section 3, is a special case of the multi-commodity capacitated

network design problem (MCND), a known NP-hard problem [28]. MCND’s reduction, from

the Satisfiability problem, uses as many commodities as there are clauses, while the authors,

in [29], present a reduction of the Satisfiability problem to the two-commodity integral flow

in directed graphs (D2CIF). The problem aims to minimize network costs, e.g., energy, while

satisfying traffic demand requirements and link capacity constraints. Several heuristics [30,

31, 32] and branch-and-cut methods [33, 34, 35] have been proposed to solve this problem.

Reference [36] studies a 0-1 reformulation of MCND, and shows that extended linking

inequalities, derived from variable disaggregation techniques, are equivalent to residual

capacity inequalities. The authors of [36] provide a heuristic method that produces a lower

bound for MCND with a value that is equivalent to one computed by a LP. Note that their

method can be used to generate the initial routes for energy aware routing as an alternative to

the LP approach used in [13] and shortest paths, as used in our algorithm, i.e., Step 1 in

Figure 1, described in Section 4.

±

±

8

3. NETWORK MODEL AND PROBLEM STATEMENT

3.1 Network Model

Consider a computer network that is represented by a weighted directed graph G(V, E) where

V is the set of n nodes, and E is the set of m links. Each node represents a router and each link

(i, j) between nodes i and j represents a bundled link as a communication channel with a

limited capacity/bandwidth cij>0. Each link (i, j) consists of wij≥1 cables. We call wij the

bundle size of link (i, j); we generalize the model in [13] that assumes equal bundle size.

Each cable can be switched-off independently. Let nij≤wij be an integer that represents the

total number of powered-on cables in (i, j). Let Er⊆E be a set of links in which each (i, j)∈Er

has nij>0. Let D be a set of all demands in G(V, E), and (sd, td, bd) denote a traffic demand

d=1, 2, …, |D| between source node sd∈V and terminal node td∈V, where bd is the amount of

traffic exchanged between these nodes. Let Pd be a (sd, td) path that can be used to route the

flow in demand d. Let d
ijx be a binary variable that is set to 1 (0) when the traffic d is routed

(not routed) through link (i, j), and d
ij d ijd D

f b x
∈

= ∑ be the total flow on (i, j). Note that

. Lastly, let 0≤UT≤1.0 be the threshold of MLU, and rij be the

remaining/spare capacity on link (i, j), computed as rij=(nij/wij)UTcij−fij.

3.2 Problem Statement

Given G(V, E) and a traffic demand set D, where each demand is to be routed along a single

path, the optimization problem is to generate (i) the minimum number of powered on or

active cables, and (ii) the set of paths that satisfies traffic demands D using only these

powered on cables, subject to a required maximum link utilization 0≤UT≤1.0. The

optimization problem is formalized in the following Integer Linear Programming (ILP)

formulation:

Minimize (,) iji j E
n

∈∑ (1)

Subject to:

/ (/)ij ij ij ijn f c w =

9

(,) (,)

1,
1, , ,

0,

d
d d
ij ji di j E j i E

i s
x x i t i V d D

Otherwise
∈ ∈

=
− = − = ∀ ∈ ∈

∑ ∑

(2)

() , (,)d
ij d ij ij ij T ijd D

f b x n w U c i j E
∈

= ≤ ∀ ∈∑
(3)

0 , (,)ij ijn w i j E≤ ≤ ∀ ∈
 (4)

The objective in the ILP is to minimize the number of powered-on cables, as per Eq. (1).

Constraint (2) ensures flow conservation, and requires each demand to be routed along a

single path. Eq. (3) constraints the total flow on each link to be less than the capacity

provided by active cables for a given link and a given threshold UT, and Eq. (4) bounds the

number of active cables to be less than the bundle size of each link.

As mentioned in [13], the presented formulation is equivalent to the simple two-commodity

integral flow in directed graphs (simple D2CIF) [29] problem, which is NP complete.

Therefore, in the following sections, we propose a number of heuristics to solve the ILP.

4. EFFICIENT SINGLE SHORTEST PATH FIRST HEURISTICS

This section describes our heuristic approach: Single Shortest Path First (SSPF). Subsection

4.1 describes two versions of SSPF: SSPF-1 and SSPF-2; subsection 4.3 describes its third

version, SSPF-R. This section also provides an example to illustrate SSPF and presents the

running time complexity analysis of all three versions.

4.1 SSPF

Our greedy heuristic approach, SSPF in Figure 1, produces a set of paths P that can be used to

route all demands in D through all powered on cables in link set Er, i.e., P={Pd | (sd, td) path

in G(V, Er)}. SSPF uses Er and nij of each (i, j)∈Er to compute its energy saving. In addition,

SSPF creates a First-In-First-Out (FIFO) history log, Q, that stores the sequence of removed

cables. Specifically, Q is a sequence of a pair ((i, j), nc) that denotes the number of switched

off cables, nc, in (i, j). As described in Section 4.3, our SSPF-R algorithm needs the

information in the set Q to avoid local minima. SSPF initializes Q=Φ, Er=E, and fix((i, j))=

10

false firstly for each (i, j)∈E. Note that fix((i, j))=false means that it is still possible to turnoff

one or more cables in (i, j) while satisfying all demands in D. Then, it executes the following

three main steps.

In Step 1, SSPF uses each shortest path Pd to route the traffic flow of each demand d; Pd can

be computed using Dijkstra’s algorithm [26] and we assume unitary link delay, i.e., each path

length is measured in hop count. We assume the network has sufficient link capacity to route

all demands in D through their shortest paths. As an example, consider the network in Figure

4 with a set D containing eight traffic demands 1 to 8, (0, 2, 4.2), (0, 5, 1.05), (0, 6, 0.95), (0,

7, 2.25), (0, 10, 8.5), (4, 5, 3.35), (4, 6, 4.35), (10, 5, 1.55) respectively, with wij=2 and cij=10.

Step 1 will generate eight (sd, td) paths for all demands in D, i.e., P={P1=((0, 2)), P2=((0, 2),

(2, 5)), P3=((0, 3), (3, 6)), P4=((0, 1), (1, 4), (4, 7)), P5=((0, 8), (8, 9), (9, 10)), P6=((4, 5)),

P7=((4, 6)), P8=((10, 5))}. Figure 4 shows the total flow fij for each link (i, j); see the number

without bracket for each link.

In Step 2, SSPF first calculates the total number of cables for each link needed to route all

demands in Step 1. Figure 4 shows the total number of needed cables, nij, for each link (i, j);

see each integer in bracket. As an example, for link (4, 6), f46=4.35, and n46 is calculated as

=1; thus one cable in the link is unused. In essence, Step 2 aims to switch off

the maximal number of unused cables from each link, whilst ensuring the remaining cables

are capable of meeting all traffic demands. If nij=0, i.e., link (i, j) is never used, the link is

removed from Er. As an example in Figure 4, the step removes link (9, 6) from Er. This step

also stores the number of switched off cables nc>0 for each link (i, j), i.e., each pair ((i, j), nc),

into Q; for the example in Figure 4, Q=(((9, 6), 2), ((0, 3), 1), ((3, 6), 1), ((2, 5), 1), ((0, 1), 1),

((1, 4), 1), ((4, 7), 1), ((4, 5), 1), ((4, 6), 1)).

In Step 3, SSPF iteratively selects a candidate link (i, j) from Er and aims to switch off one of

its cables. For this step, SSPF considers two different functions to determine the candidate

link. SSPF version 1, called SSPF-1, uses the argmax function from [13], while its version 2,

called SSPF-2, uses our heuristic function, H-Select-e(); both versions are exactly the same

except for the two functions. The argmax function selects a non-fixed link (i, j), i.e., fix((i,

4.35 / (10 / 2)

11

j))=false, that has the largest spare capacity rij while H-Select-e() selects a non-fixed (i, j)

with the smallest average flow per demand, i.e., (i, j) with the smallest fij/ , where ≤|D| is

the total number of traffic demands that use link (i, j). The latter function assumes that

demand with less flow is easier to re-route onto an alternative path. For Figure 4, argmax will

select link (0, 2) because it has the largest r02=(2/2)*1.0*10-5.25=4.75, and H-select-e()

function will select link (0, 3) because it has the smallest fij/ =0.95/1. Note that both

functions may select a link that might lead to a local minimum. Therefore, we propose SSPF-

R in Section 4.3 to heuristically restore all cables in a link and select a candidate cable in

another link to avoid local minima.

For each selected link (y, z), the algorithm uses our Greedy Heuristic function, GH-Flow() in

Figure 2, to check if deleting a cable is feasible, i.e., the remaining nyz-1 cables in (y, z) and

all cables in the other links in Er can still meet the flow of all demands. The function re-

routes all paths that use (y, z) to all possible paths. One cable in (y, z) will be switched off if

re-routing is feasible, and a record, ((y, z), 1), is created and stored in Q, and each fix((i, j)) is

reset to false for (i, j)∈Er. Any unused link (i, j), i.e., nij=0, is removed from Er. Further, this

step ensures that the flow of each (sd, td) demand d is routed only through a single path Pd in

G. Step 3 is repeated until it is not possible to turn off any remaining cable, i.e., fix((i, j))=true

for all (i, j), and thus SSPF terminates after turning off all cables in Q from G. The details of

GH-Flow() is described as follows.

Step 1 of GH-Flow() finds each Pd, for d∈D, that contains the candidate link (i, j), and adds

the capacity of each link in Pd with the previously allocated bd for demand d. As an example,

when (2, 5) is selected, P2=((0, 2), (2, 5)) is affected and thus the value of r02 and r25 is

increased by b2=1.05. If the path is disconnected when the cable is turned off, i.e., nij-1=0, the

step generates a new Pd. Following the previous example, n25-1=0, i.e., the link cannot carry

any traffic when its only cable is switched off. As the result, P2=((0, 2), (2, 5)) is

disconnected, and thus the step generates a new shortest path P2=((0, 1), (1, 4), (4, 5)) for the

affected demand 2. Step 1 stores either the original or new Pd in a temporary path set TP; let

θ θ

θ

12

us call each path in TP for demand d as TPd. Since removing the cable in (2, 5) only affects

demand 2, TP={TP2}.

In Step 2, the function routes the flow of each affected demands in D through its

corresponding paths in TP. Notice that the route of the flow from each unaffected demand

remains unchanged. The function uses path TPd∈TP if it can be used to route demand d, and

subtract the capacity of each link in the path by its flow, bd. Following the above example,

traffic demand 2 can be rerouted through a new path TP2=((0, 1), (1, 4), (4, 5)) and thus the

step subtracts bd=1.05 from r01, r14, and r45. However, if any links in the shortest path cannot

support the demand, the function generates k≥1 shortest paths for demand d; this can be

carried out using Yen’s algorithm [37]. Let SPd be the set of k shortest paths for demand d.

GH-Flow() aims to route the flow using the shortest possible path among the k paths. When

there is more than one path with the same length, the function selects one randomly. If a flow

in demand d can be routed using any of the k-shortest paths, we subtract the capacity of each

link in the path by bd. However, if none of the path has sufficient capacity to route the flow,

the function knows that the deleted cable needs be turned on to meet all demands in D. As an

example, assume argmax selects (0, 3), which disconnects P3=((0, 3), (3, 6)), and SP3 for

demand 3 contains P3=((0, 1), (1, 4), (4, 6)). Notice that demand 3, with b3=0.95, cannot be

rerouted through P3 since r46=5-4.35=0.65<0.95, and thus the step cannot switch off the cable

in (0, 3). Function GH-Flow() returns false when at least one affected demand cannot be

rerouted. Notice that the function does not roll-back the routes of any demands that have been

successfully rerouted through their corresponding paths in TP or in SP to their original routes.

As an alternative, the function may continue routing the flow of each remaining demand.

Note that the running time of this alternative is longer, and therefore is not suggested. As

shown in Figure 5, SSPF-1 generates a sequence of switched off cables Q=(((9, 6), 2), ((0, 3),

1), ((3, 6), 1), ((2, 5), 1), ((0, 1), 1), ((1, 4), 1), ((4, 7), 1), ((4, 5), 1), ((4, 6), 1), ((2, 5), 1), ((0,

2), 1)), and a path set P={P1=((0, 2)), P2=((0, 1), (1, 4), (4, 5)), P3=((0, 3), (3, 6)), P4=((0, 1),

(1, 4), (4, 7)), P5=((0, 8), (8, 9), (9, 10)), P6=((4, 5)), P7=((4, 6)), P8=((10, 5))} to route the

eight demands, where switched-off links are denoted by dashed lines. For the example, SSPF-

13

1 is able to switch off 12 cables of 28 total cables in the network, and thus saves 42.9% of

energy usage.

4.2 Time Complexity

In Step 1, SSPF uses Dijkstra’s algorithm to generate all-pair shortest paths in O(n3), and

route the flows in O(|D|*m=mn2). Note that n and m are the total number of nodes and links in

G respectively, and |D|≤n(n-1) is the total number of traffic demands; thus Step 1 has a time

complexity no more than O(mn2) since in general m≥n. Step 2 requires searching all links in

G and therefore has time complexity of O(m). Step 3 for SSPF-1 uses the argmax function

[13] which takes O(m) to find each candidate link. On the other hand, Step 3 for SSPF-2 uses

H-Select-e() that has O(|D|)=O(n2) time complexity. The GH-Flow() function has the worst

case time complexity of O(n3(m+nlogn)); the detailed time complexity analysis of the

function is provided below. Since Step 3 is repeated m times, it has complexity of O(m*(m +

n3(m+nlogn)))=O(mn3(m+nlogn)) for SSPF-1, and O(m*(n2 + n3(m+nlogn)))=O(mn3(m+

nlogn)) for SSPF-2; both versions require the same time complexity. Thus, SSPF has worst

case time complexity of O(n3+m+mn3(m+nlogn))=O(mn3(m+nlogn)).

The time complexity of function GH-Flow() is calculated as follows. The worst case of Step

1 requires running Dijkstra’s algorithm for all-pair (sd, td) shortest paths, and thus takes O(n3)

time. However, our simulation in Section 4 shows that on average, each cable deletion affects

only 2% of demands. In the worst case, Step 2 is repeated O(|D|=n2) time. However, as in

Step 1, the loop in Step 2 is repeated only for 2% of demands, far less than the worst case. If

path TPd has sufficient capacity to route the traffic demand then it only needs O(m) time to

update flow of all links on the path, since it has at most m links. Otherwise, we use Yen’s

algorithm to generate k-shortest paths for demand d, which has time complexity

O(kn(m+nlogn)). The worst case scenario is when the feasible path is the last of the ordered

k-shortest paths; this case requires O(km). Therefore this sub-step requires O(kn(m+nlogn) +

km)=O(kn(m+nlogn)), and the worst case time complexity of Step 2 is O(n2*kn(m+nlogn))=

O(kn3(m+nlogn)). Note that we can consider k a constant since our simulation in Section 5

14

uses k≤10. Thus, GH-Flow() has the worst case time complexity of O(n3 + n3(m+nlogn))=

O(n3(m+nlogn)).

The time complexity of SSPF cannot be directly compared with FGH since the latter uses LP

solver such as AMPL/CPLEX [25]. As reported in [13], FGH and its improved version –

EGH and BGH need to call a LP solver up to O(m2) and O(m3) times respectively. In contrast,

SSPF only uses GH-Flow(), which utilizes Dijkstra’s algorithm and Yen’s algorithm to

generate (sd, td) shortest paths and k (sd, td)-shortest paths respectively for each traffic demand

d. Thus, the time complexity of SSPF depends directly on the traffic matrix size |D|=O(n2).

Our simulations in Section 5 show that SSPF runs significantly faster than FGH for various

networks with up to 9900 traffic demands.

4.3 SSPF-R

We propose a heuristic algorithm called SSPF-R to improve the optimality of SSPF. Similar

to FGH [13], either SSPF-1 or SSPF-2 may select a candidate link that leads to local minima.

The authors of [13] proposed EGH and BGH to heuristically solve the problem. However,

they showed that EGH and BGH do not improve FGH significantly whilst incurring a

significantly higher time complexity, particularly for solving large networks, i.e., Wax50 and

Hier50 [13].

Our efficient SSPF-R, shown in Figure 3, greedily avoids local minima. The algorithm

repeatedly assumes that the deleted cables, sequenced in Q, leads to a local minimum, and

aims to correct the mistake by sequentially restoring each deletion in Q at a time, from the

least recent deletion, while assuming that the remaining deleted cables were correct decisions

that will lead to a global minimum. For each of constant number ℜ≤|Q| iterations, Step 1 sets

Er and Q* as a copy of E and Q respectively. Note that in our simulation, outlined in Section 5,

we set ℜ to |Q|/2 since running SSPF-R is faster while producing the same results as

compared to using ℜ=|Q|.

Step 2 aims to correct each possible non-optimal cable deletion by sequentially restoring one

cable in pair ((a, b), nc)∈Q at a time while assuming that the remaining deleted cables in Q*

were correct decisions, leading to a global minimum. If the link had no cable, i.e.,

15

disconnected, the step connects it back, i.e., includes it in Er. The step also initializes the

status of all links, i.e., setting each fix((i, j))=false. As an example, recall that SSPF-1 in

Section 4.1 generates Q=(((9, 6), 2), ((0, 3), 1), ((3, 6), 1), ((2, 5), 1), ((0, 1), 1), ((1, 4), 1),

((4, 7), 1), ((4, 5), 1), ((4, 6), 1), ((2, 5), 1), ((0, 2), 1)). Step 2 sequentially attempts to restore

one cable starting from pairs ((9, 6), 2) to ((2, 5), 1).

For each attempt to restore a cable in (a, b), Step 3 uses either argmax or H-Select-e() to

select one cable from the candidate link (y, z)≠(a, b). Note that Step 3 in SSPF-R is similar to

Step 3 in SSPF. If GH-Flow() function in Step 3 is able to re-route traffic flow from (y, z), the

cable is deleted, and Step 3 is repeated using another candidate link (y, z)≠(a, b) until all

remaining links in Er are checked, i.e., fix((i, j))=true for each link (i, j). Note that the status of

link (y, z) is set to true if GH-Flow() fails to route affected traffic demands with one less

cable in (y, z). Restoring a cable in (a, b) generates a better energy saving if GH-Flow() could

turn-off more than one cable while restoring one cable in (a, b). For this case, Step 4 updates

Best_Q with the better result, which will be returned when SSPF-R terminates.

To illustrate SSPF-R, consider Figure 5 that was generated by SSPF-1. Notice that SSPF-R

finds that cable deletions in the sequence from ((9, 6), 2) to ((4, 5), 1) in Q are optimal and

thus, the Best_Q equals Q. For ((4, 6), 1), Step 2 sets n46=1+1=2, and argmax in Step 3

selects (0, 3), which affect P3=((0, 3), (3, 6)) that was generated in SSPF-1. Thus, GH-Flow()

generates a new path P3=((0, 1), (1, 4), (4, 6)) that has sufficient capacity to route demand 3.

In another iteration, argmax generates link (3, 6). However, since no route is affected by

deleting one cable in (3, 6), GH-Flow() also returns true. Thus, SSPF-R is able to switch-off

two cables, i.e., one in (0, 3) and another in (3, 6) when one cable in (4, 6) is restored, with a

gain of one that further reduces the energy saving result when using SSPF-1; see Figure 5

versus Figure 6.

The time complexity of SSPF-R is calculated as follows. The most time consuming step in

SSPF-R is Step 3. As described in Section 4.2, argmax requires O(m) while H-Select-e()

requires O(n2); here SSPF-R uses either function. Step 3 also takes O(n3(m+nlogn)); see its

calculation in Section 4.2. This step is repeated O(m) times for each deleted cable, and

16

SSPF-R considers ℜ consecutive cable. Thus, SSPF-R has computational time complexity of

O(ℜ*m*(m+ n3(m+nlogn))) when using argmax, and O(ℜ*m*(n2+ n3(m+nlogn))) when

using H-Select-e() functions. In either case, its complexity is O(ℜmn3(m+nlogn))). Since

ℜ≤|Q|≤m, its worst case time complexity becomes O(m2n3(m+nlogn))).

5 EVALUATION

In this section, we evaluate the performance of SSPF; namely, SSPF-1, SSPF-2, and SSPF-R.

We first describe our experimental setup in Section 5.1. Then, in Section 5.2, we evaluate the

performance of SSPF, and its versions, using both synthetic and realistic topologies for

maximum link utilization constraint UT=1.0. For this case, their performance is evaluated in

terms of energy saving and running time for wij=1 (Section 5.2.1) and for variable wij (Section

5.2.2). Further, we analyse the effects of switching off link on link utilization (Section 5.2.3),

and on path length (Section 5.2.4). In Section 5.2, we also compare the performances of our

algorithms against the state-of-the-art technique – FGH [13]. To further evaluate the

performances of our algorithms, in Section 5.3, we evaluate them on networks with variable

UT and bundle sizes. Finally, in Section 5.4, we use our techniques on the Abilene network

with its 288 traffic demands over 24 hours period, each of which corresponds the traffic

demand recorded at every five minutes; these datasets are obtained from [38].

5.1 Methodology

Table 1 summarizes the different network topologies used in our simulations, with nodes

ranging from 12 to 100 and links from 28 to 434. We have included the three topologies used

in [13]; i.e., Abilene and two synthetic topologies - a two level hierarchical graph (Hier50),

and the Waxman graph (Wax50). In the Waxman graph, the probability that two nodes are

connected by a link decays exponentially by the distance between them. We also use the

Abilene topology from [38]. Note that this Abilene topology (herewith called Real Abilene)

has different link connections and capacities than the Abilene in [13]. To further evaluate the

performance of SSPF and FGH, we used GT-ITM [39] to generate three random graphs

Geo10, Geo30, and Geo50 that represent small, medium and large topologies respectively;

17

Geo50 contains 50 nodes and 434 links. Further, we also used GT-ITM [39] to generate a

large hierarchical graph (Hier100) that has 100 nodes and 284 links.

Each link in the Abilene topology has capacity cij=10000 and in Wax50 cij=1000, while the

capacity of links in Hier50 is either 1000 or 200; we assume the same capacity unit (e.g.,

megabytes per second) for both link capacity and traffic demand. Each link in Real Abilene

has either cij=9920 or cij=2480. For the three random topologies, each link has capacity

cij=1000 and Hier100 has capacity cij=10000.

As shown in Table 1, the traffic demands for each topology range from 90 to 9900. For the

three topologies, Abilene, Hier50 and Wax50, we used the traffic demands and flows

provided by the authors of [13]. For each random graph and Hier100, we consider traffic

demands between each (sd, td) pair in the network; i.e., Hier100 with 100 nodes has

100*(100-1)=9900 traffic demands. Each traffic flow is generated using the classical entropy

model for urban traffic, as described in [40]. The model computes each traffic flow

bd=10*rn1*rn2, where rn1and rn2 are two random numbers between 0 and 1; thus, 0≤bd≤10.

Finally, for Real Abilene, we used the traffic matrices from [38], measured every five

minutes over a 24 hours period. We used Real Abilene and their 288 different traffic demands

in Section 5.4.

We have implemented SSPF in Java 6. We computed the energy saving for a given topology

by taking the percentage of the total number of off cables over the total number of cables.

The power consumption of line-cards used in our simulations is specified in Table 2. For

FGH, we used its implementation provided by the authors of [13]. The authors of [13] ran

FGH on a Window machine and used the AMPL/CPLEX to solve the LP in [13]. In our

simulation, we replaced AMPL/CPLEX with a Linux-based GLPK [41]. Note that FGH’s

running times reported in [13] are significantly slower compared to those generated in our

simulations. For example, the authors of [13] reported that FGH for Wax50 required up to 50

±20 minutes while in our simulation, the algorithm took only 5±2 minutes. However, the

energy savings reported in [13] for FGH on the three topologies (i.e., Abilene, Wax50, and

Hier50) are equivalent to our results; we used the results obtained in our simulations for the

18

FGH’s running time and energy saving. We compute the energy saving as the ratio between

total powered-off cables and all cables in the network.

We ran all the algorithms on a Linux machine with Fedora 10 (2.6.x kernel), 1024 MB

memory and 28GB hard disk. For SSPF-1, SSPF-2 and SSPF-R, we set k=100, and SSPF-R

uses the argmax function. We ran each algorithm five times, and calculated its average CPU

time.

5.2 Performance Evaluation for UT=1.0

5.2.1. Energy Savings and Running Times for wij=1

Table 2 shows the energy savings and running times for all versions of SSPF when each link

has equal bundle size wij=1 and required link utilization UT=1.0. We see that all algorithms

are able to save energy ranging from 37.2% to 86.6%. SSPF-1 and SSPF-2 produce almost

equivalent energy savings for all tested networks. However, SSPF-1 runs faster than SSPF-2

since the latter uses H-Select-e(), which has a time complexity of O(|D|=n2), in contrast to the

argmax function in SSPF-1 which takes O(m). As SSPF-2 may also produce better result for

certain type of networks, e.g., Wax50, we suggest running both alternative algorithms and use

their best results. However, when faster running time is important, SSPF-1 is the better

alternative. Table 2 shows that SSPF-R always produces better energy savings than SSPF-1

and SSPF-2. Since SSPF-R, as described in Section 4.3, runs either SSPF-1 or SSPF-2

repeatedly and selects the best result from all possible outcomes, SSPF-R is guaranteed to

always produce at least the energy savings of SSPF-1 or SSPF-2. However, as a trade-off, the

running time of SSPF-R is always slower than either SSPF-1 or SSPF-2.

To further evaluate the efficiency and effectiveness of our SSPF, we have compared it with

FGH [13]. As described in Section 2, FGH allows a demand to be routed through more than

one path while SSPF restricts its routing through only a single path, allowing simpler routing

protocol. As shown in Table 2, FGH, in most cases, produces inferior results compared to all

versions of SSPF while using significantly more computational time. FGH produces energy

savings ranging from 1.9% to 25.3% worse than SSPF-1, and up to 28% worse than SSPF-2.

Further, while producing better results, SSPF-1, SSPF-2, and SSPF-R take only, respectively,

19

0.21% to 13%, 0.49% to 13.09%, and 2.54% to 35.1% running time of FGH. Note that FGH

failed to produce a result, denoted as ‘N/A’, for Hier100 after running for three hours.

To further evaluate the performances of our algorithms, we compare their results with the

upper bound (UB) and lower bound (LB) of energy savings. To generate the bounds, like in

[13], we first consider the linear-programming version of our ILP problem stated in Eq. (1) to

(4), i.e., replace (,) iji j E
n

∈∑ in Eq. (1) with (,) iji j E
f

∈∑ to minimize the total flow over

all links. Then, we use GLPK [31] to obtain the minimum flow of each link while satisfying

the constraints in Eq. (2) to (4). To obtain a UB on the energy saving, like in [13], we “round

down” the number of cables for each link needed to carry the traffic obtained by the solution.

For example, for f08=8.5 in Figure 4, the upper bound of powered-off cables in e08 is

=1. Note that as stated in [13], no flow assignment that satisfies

all the demands can use fewer cables than those used in the upper bound. A lower bound is

obtained similarly by “rounding up” the number of cables in each link, i.e., for the example,

the lower bound of powered-off cables for e08 is =2.

As shown in Figure 7 to 9, the energy savings produced by our SSPF algorithms and FGH are

in between their LB and UB. In particular, the energy savings produced by SSPF-1 are

between 3.7% at wij=10 and 20% at wij=1 off from the UB on Waxman network. Further,

SSPF-1 could improve the energy saving generated by LB between 4.6% at wij=10 and 42%

at wij=2 on Waxman network; for wij=1, LB could not power-off any cable.

5.2.2. Energy Savings and Running Times for Variable wij

We further evaluated SSPF-1 using the Abilene, Hier50 and Wax50 topologies when their

bundle size, wij, increases from 1 to 10. For Abilene, as shown in Figure 7, the energy savings

produced by the algorithm increases sharply when wij increases from one to three; i.e., 50%

to 82.1%. Similarly, for Hier50 and Wax50, increasing wij from 1 to 3 also significantly

reduces the energy consumption. As a comparison, the figure shows the results for FGH; as

shown, SSPF-1 slightly outperforms FGH in term of energy saving for all topologies. The

result contradicts the intuition that the less restrictive problem (i.e., to allow demand routed

through one or more paths, and hence more path selection flexibility) would lead to a better

/ (/) 8.5 / (10 / 2)ij ij ijf c w =

/ (/) 8.5 / (10 / 2)ij ij ijf c w =

20

energy saving. We believe SSPF produces better results due to its novel approach. Further,

consistent with the reported running time in Section 5.2 for wij=1, Figure 7, 8 and 9 show that

SSPF-1 requires significantly less CPU time than FGH for wij>1; i.e., on average 0.512

seconds versus 62.99 seconds for Abilene, 2.068 versus 315.62 for Hier50, and 2.33 versus

345.59 for Wax50.

5.2.3. Effects on Link Utilization

This section analyses the effects of using fewer cables, thus saving energy, on the average

Link Utilization (LU), for UT=1.0 and wij=1, calculated using the following Eq. (5):

'

(,)
() ((() ())) /ij ij ij iji j E

Ave LU f w n c m
∈

= ∑ (5)

Note that m’ is the total number of powered-on links, (() ())ij ij ij ijf w n c is the link utilization

of (i, j) that is ignored when nij=0 since the link is switched off when its cables are all off.

Table 3 shows the MLU and average LU of the generated topology (after turning off cables)

using SSPF and FGH; both approaches produce equivalent results. As a benchmark, we have

compared the results with MLU and average LU, before turning off cables, when each traffic

demand is routed through its shortest path (SP). Table 3 shows that the SP routing using all

cables in the Abilene, Hier50, and Wax50 results in MLU of 65.5%, 100%, and 92.9%,

respectively; the MLU for the other networks is less than 30%. Further, the average LU using

SP ranges from 0.9% to 24.1%; low average link utilization is expected during off-peak

period, and in general, all algorithms achieve high percentage of energy savings because the

network has low link utilization. As shown in the table SSPF and FGH increase the MLU and

average LU of the networks as compared to SP. The results are expected because when fewer

cables are used to carry the same amount of flow, each cable carries more flow. However, we

observe that it is possible to power-off higher percentage of cables in a network that has the

higher average link utilization; see Wax50 and Geo10 with average LU of 24.1% and 0.9%

(Table 3) but with energy savings of 63.3% and 57.1% (Table 2), respectively.

To further evaluate the effects of shutting down cables on the remaining link’s utilization, we

show in Figure 11(a), Figure 12(a) and Figure 13(a) the cumulative distribution function

(CDF) of the link utilizations in Abilene, Wax50 and Hier100 networks, respectively using

SSPF-1, SSPF-2, SSPF-R, FGH and SP routings. The results for other topologies are similar

21

and thus not shown here. All four energy-saving routing algorithms increase link utilization

as compared to using SP, but to no more than 0.85 and 0.6 for Abilene and Hier100

respectively; FGH cannot obtain any results in a reasonable time for Hier100, and thus Figure

13(a) omits FGH. Among the four algorithms, SSPF-2 and SSPF-R perform the best for

Abilene and Hier100, respectively; for Wax50, they produce similar results. Notice that,

SSPF-2 increases the number of links with utilization above 0.4 from 3% to 14% as a tradeoff

for reducing Abilene’s energy by about 37%; see Figure 11(a) and Table 2. Similarly, for

Hier100, SSPF-R increases the number of links with utilization above 0.1 from 3% to 23%

while reducing energy usage using SP by 53%; see Figure 13(a) and Table 2. As expected,

when the traffic demands are considerably larger than available link resources, i.e., for

Wax50 as shown in Figure 12(a), all energy-saving routing algorithms, while reducing energy

usage by close to 60% (see Table 2), result in larger ratio of link utilizations as compared to

SP. However, as will be discussed in Section 5.3.2, our SSPF approach allows different MLU

settings, e.g., no more than 0.4 as the standard practice in ISP, while maximizing energy

savings.

5.2.4. Effects on Path Length

Table 4 shows the effect of turning off cables, using SSPF and FGH, on the average path

length L(Pd), for UT=1.0 and wij=1, calculated as follows,

(()) (())/ | |d dd D

Ave L P L P D
∈

= ∑ (6)

Note that L(Pd) is the length of the path used to route demand d, i.e., its hop counts. For FGH,

as demands may be routed through multiple paths, we used the maximum path length. As

shown in Table 4 turning off cables, either using SSPF or FGH, have a significant impact on

the average path length; SSPF and FGH produced similar results. The results are expected

since turning off cables forces some part of the traffic to be routed through longer (non-

shortest) paths. Notice, however, that our simulation considers only hop counts as the path

lengths, which do not reflect the actual path delays that include several other factors such as

the queuing delays.

22

Figure 11(b), Figure 12(b) and Figure 13(b) show the CDF of the path lengths in Abilene,

Wax50 and Hier100 networks using SSPF-1, SSPF-2, SSPF-R, FGH and SP routings, which

evaluate the impact of energy savings in path delay. The results for other topologies are

similar and thus not shown here. All energy-saving routings produce similar results except

FGH that cannot obtain the results in reasonable time for Hier100, and Figure 13(b) omits

FGH. For Abilene, as shown in Figure 11(b), while decreasing energy by 51.2%, the energy

saving routings, e.g., SSPF-R, reduces the percentage of routes that have delay of one hop

from 37% using SP to 11%, and those with two hops from 74% using SP to 25%. Notice that

the longest path using SP is five hops, while that using SSPF-R is 8 hops, an increase of 60%.

However, the longest path in SSPF-R is shorter than the network diameter of Abilene, i.e., 9

hops. As shown in Figure 12(b) and Figure 13(b), the effects of shutting down cables on path

length on Wax50 and Hier100 are similar to in Abilene in Figure 11(b). Further, similar to

Abilene, the longest path of routes using SSPF-R for Wax50 and Hier100 is also shorter than

the network diameter.

5.3 Energy Savings for Different UT

As discussed in the Section 5.2.3, SSPF affects link utilization as fewer links are used to

carry traffic, In this section, we investigate the effect of using 10 different MLU bounds, i.e.,

UT between 0.1 and 1.0 – with 0.1 increments, on energy savings achievable using our SSPF

approach, for bundle size wij between 1 and 10 while running SSPF-R; we obtained similar

results using SSPF-1 and SSPF-2. Table 5 and 6 shows results for the Real Abilene and

Hier100, respectively where UT_X denotes MLU bound X; e.g., UT_0.4 means UT=0.4, and

(,)
()ij iji j E

ND w n
∈

= −∑
be the total number of switched-off cables. The results for other

topologies have the similar trend when the bundle size increases from 1 to 10 under different

UT, and thus not shown here. For Abilene, SSPF-R fails to save energy with UT≤0.3; these

results are also omitted. Further, for each algorithm, increasing UT from 0.5 to 0.6, or from

0.7 to 0.8, or from 0.9 to 1.0 does not affect energy savings, and thus, Table 6 only shows the

results for UT_0.4, UT_0.5, UT_0.7 and UT_0.9. For Hier100 network, SSPF-R fails to save

energy with UT≤0.1; thus we do not show its result in Table 6. Similar to the Abilene network,

23

other than UT=0.2 and UT=0.3, increasing UT from 0.4 to 0.6, or from 0.7 to 1.0 does not

affect energy savings. To this end, Table 6 only shows the results for UT_0.2, UT_0.3,

UT_0.4 and UT_0.7.

As shown in Table 5 and 6, energy savings increase, for each UT, when the bundle size

increases from 1 to 10 since there are more idle cables. Notice that there is a large increase in

energy saving, i.e., by about 25% when the bundle size in Abilene is increased from 1 to 2.

Similarly, a large increase in energy saving also occurs in Hier100 when the bundle size

increases from 1 to 4. As shown in Table 5, our SSPF approach is able to reduce energy

usage in Abilene between 37.8% and 86.5% when its bundle size is set between wij=1 and

wij=10, respectively, even when each link utilization is set to no more than 40%, which is

within the standard practice set by ISP [13]. Similarly, for MLU≤40%, SSPF-R is able to

reduce the energy expenditure of Hier100 by 46.5% to 90.2%, for bundle sizes between 1 and

10, respectively. For both Abilene and Hier100, relaxing the link utilization constraint to

higher values allow our SSPF algorithm to find better alternative paths, and thus further

reducing energy usage.

Tables 5 and 6 also show that for each bundle size, there is negligible effect from using

different UT constraints on energy saving. As an example, Table 6 shows that, for wij=1, using

significantly more restrictive UT=0.2, as compared to UT=0.7, only slightly decreases energy

saving to 40.9% from 50.3%. This effect may be due to the low traffic levels. Recall that for

Hier100, each traffic flow for demand d is computed as bd=10*rn1*rn2, where rn1 and rn2 are

two random numbers between 0 and 1; thus, 0≤bd≤10 is a small value as compared to the

capacity of each link, i.e., cij=10000.

To see the effect of traffic levels, i.e., different flow size in traffic demands, we generated

five other traffic levels for Hier100 when wij=1. Specifically, we multiplied each bd used to

generate Table 6 for wij=1 with five scaling factors: 0.5, 2, 3, 4, 5. Thus, the smallest scale,

i.e., 0.5, sets 0≤bd≤5, while the largest, i.e., 5, generates 0≤bd≤50; the former simulates lower

traffic level while the latter assumes a more congested network as compared to the traffic

level used in Table 6 with 0≤bd≤10. As expected, Figure 14 shows that, for each constraint UT,

24

SSPF-R produces higher energy savings for lighter traffic flows, e.g., 51.2% for 0.5*bd

versus 46.5% for bd with UT=0.6, and lower energy savings in more congested networks, e.g.,

only 39.16% for 3*bd. Further, consistent with our results in Table 5 and 6, the figure shows

that for each traffic level, UT does not significantly affect the energy savings produced by

SSPF-R, e.g., for 0.5*bd the savings increase only from 41.96% for UT=0.1 to 51.2% for

UT=1.0. We observed that the different traffic levels only affect the feasibility of traffic

routings. For example, there is no feasible routing for demands using 0≤bd≤50 (0≤bd≤20)

with UT≤0.8 (UT≤0.3), i.e., the SP routing, described in section 5.2.3, and SSPF-R fail to

produce results due to insufficient link capacities for the given set of traffic demands.

5.4 Potential Energy Savings on Real Abilene

Figure 10 shows the potential energy savings on Real Abilene [38] using SSPF-1, SSPF-2,

and SSPF-R. We ran each algorithm for 288 different traffic demands from [38]; each

demand represents traffic traces recorded every five minutes over 24 hours on September 5,

2004. For this experiment, SSPF-1, SSPF-2, and SSPF-R each required on average 0.21, 0.24

and 0.547 CPU seconds, respectively, to produce results for each five minutes of traffic

demand. As shown in Figure 10, SSPF-R consistently produces the best energy savings

compared to SSPF-1 and SSPF-2. It is interesting to observe that SSPF-2 outperforms SSPF-

1 from 0:00 through 11:00 hours and from about 22:30 through 24:00; at other times, SSPF-1

in most cases produced better results than SSPF-2. Further, energy savings produced by

SSPF-R are always the same for each of the 288 different traffic demands. As another

comparison, the figure shows that FGH in all (most) cases perform worse than SSPF-R

(either SSPF-1 or SSPF-2).

6 CONCLUSION AND FUTURE WORK

In this paper, we have proposed an efficient and effective heuristic approach, SSPF, to

minimize network energy usage while satisfying all network traffic demands subject to a

given maximum link utilization constraint. Our approach aims to switch off redundant cables

in core routers using bundled links. However, unlike [13], our approach routes each traffic

25

demand onto one single path, which simplifies routing. We have used the Abilene topology -

with both real and synthetic traffic matrices and several larger randomly generated topologies

– with synthetic traffic matrices to evaluate its performances. The simulation shows that our

approach could potentially save up to 56.7% of the energy expenditure incurred by the Real

Abilene topology, as per the 24 hours traffic demands, measured every five minutes, obtained

from [38]. Further, our heuristic significantly outperforms the approaches in [13], both in

terms of their running times and energy savings. Re-routing traffic demands to minimize

active cables using both FGH [13] and our approach may focus traffic flows to switched-on

cables and/or use longer (sd, td) paths. Consequently, our results increase the path length

and/or the upper bound of the network’s link utilization. As a future work, we plan to extend

our approach to include constraints on the maximum path length. Further, we will also

include node energy consumption in our power model, which is suitable for an environment

where both node and link can be powered-off to save energy.

Acknowledgement

We thank Will Fisher [13] for providing us the FGH source code and data, and the

anonymous reviewers for their valuable comments that have significantly improved our paper.

References
[1] C. Bianco, F. Cucchietti, G. Griffa, ”Energy Consumption Trends in the Next

Generation Access Network - A Telco Perspective,” in INTELEC 2007, Rome, Italy,
Sept. 2007, pp.737-742.

[2] S. N. Roy, “Energy Logic: A Road Map to Reducing Energy Consumption in
Telecommunications Networks,” in INTELEC 2008, San Diego, CA, USA, Sept. 2008.

[3] R. Bolla, R. Bruschi, F. Davoli, and F. Cucchietti, “Energy efficiency in the future
internet: a survey of existing approaches and trends in energy-aware fixed network
infrastructures,” in IEEE Communications Surveys & Tutorials, vol. 13, 2011, pp. 223-
244.

[4] IT Wales, “Green Evangelist to Call for Big Changes in Computer Use to Aid
Environment,” inITWales Conf., Nov. 2007, http://www.itwales.com/997539.htm.

[5] J. Guichard, F. L. Faucheur, and J.-P. Vasseur, Definitive MPLS Network Designs, in
Cisco Press, 2005.

[6] Global e-Sustainibility Initiative (GeSI), “SMART 2020: Enabling the Low Carbon
Economy in the Information Age”, http://www.theclimategroup.org/assets/
resources/publications/Smart2020Report.pdf.

[7] W. Vereecken, L. Deboosere, D. Colle, B. Vermeulen, M. Pickavet, B. Dhoedt, and P.
Demeester, “Energy efficiency in telecommunication networks,” in NOC 2008.

26

[8] J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, and S. Wright,“ Power
Awareness in Network Design and Routing,” in IEEE INFOCOM, Phoenix, AX, USA,
April, 2008.

[9] R. Hays, “Active/idle Toggling with 0base-x for Energy Efficient Ethernet,” in IEEE
P802.3az Energy Efficient Task Force, Atlanta, GA, USA, Nov. 2007.

[10] B. Awerbuch, D. Holmer, and H. Rubens, “The Pulse Protocol: Mobile Ad hoc
Network Performance Evaluation,” in WNOC 2005, MD, USA, Jan. 2005.

[11] R. Doverspike, K. K. Ramakrishnan, and C. Chase, Structural Overview of ISP
Networks, in Guide to Reliable Internet Services and Applications (C. Kalmanek, S.
Misra, and R. Yang, eds.), Springer, 2010.

[12] IEEE, IEEE Standard 802.1 AX: Link Aggregation, 2008.
[13] W. Fisher, M. Suchara and J. Rexford. “Greening Backbone Networks: Reducing

Energy Consumption by Shutting Off Cables in Bundled Links,” in ACM SIGCOMM
Workshop on Green Networking, New Delhi, India, August,2010.

[14] M. Gupta, S. Singh, “Greening of the Internet,” in ACM SIGCOMM, Karlsruhe,
Germany, August, 2003.

[15] M. Gupta, S. Singh, “Energy Conservation with Low Power Modes in Ethernet LAN
Environments,” in IEEE INFOCOM (mini symposium), Anchorage, Alaska, USA,
2007.

[16] M. G. Zhang, C. Yi, B. Liu and B. Zhang, “GreenTE: Power-Aware Traffic
Engineering,”in IEEE International Conference on Network Protocols (ICNP), Kyoto,
Japan, October, 2010.

[17] N. Vasic and D. Kostic,“Energy-Aware Traffic Engineering,” in ACM SIGCOMM,
New Delhi, India, August, 2010.

[18] E. Gelenbe and T. Mahmoodi. “Energy-aware Routing in the Cognitive Packet
Network,” in Proc. of International Conference on Smart Grids, Green Communications
and IT Energy-aware Technologies, 2011.

[19] A. P. Bianzino, L. Chiaraviglio and M. Mellia, “GRiDA: a Green Distributed
Algorithm for Backbone Networks,” in IEEE Online Green Communications
Conference, September 2011.

[20] S. S. W. Lee, P. K. Tseng and A. Chen. “Link Weight Assignment and Loop-free
Routing Table Update for Link State Routing Protocols in Energy-aware Internet,” in
Future Generation Computer Systems, 2011.

[21] L. Chiaraviglio, M. Mellia, and F. Neri, “Minimizing ISP Network Energy Cost:
Formulation and Solutions,” in IEEE/ACM Transactions on Networking, 2011.

[22] E. Amaldi, A. Capone, L.G. Gianoli, L. Mascetti, “A MILP-based Heuristic for Energy-
Aware Traffic Engineering with Shortest Path Routing,” in International Network
Optimization Conference (INOC) 2011, Hamburg, Germany, June 13-16,2011.

[23] F. Cuomo, A.Cianfrani, M. Polverini and D.Mangione, “Network Pruning for Energy
Saving in the Internet,”in Computer Networks, 2012.

[24] A. Cianfrani, V. Eramo, M. Listanti, M. Polverini and A. V. Vasilakos, “An OSPF-
Integrated Routing Strategy for QoS-Aware Energy Saving in IP Backbone Networks,”
in IEEE Transactions on Network and Service Management, Vol. 9, No.3, Sep. 2012.

[25] AMPL/CPLEX, <http://www.ampl.com/DOWNLOADS/index.html>.
[26] U. Ranadive and D. Medhi,“ Some Observations on the Effect of Route Fluctuation and

Network LinkFailure on TCP,” in Proc. 10th IEEE International Conference on
Computer Communications and Networks (ICCCN’01), pages 460–467, Scottsdale, AZ,
October 2001.

27

[27] M. Pioro and D. Medhi, Routing, Flow, and Capacity Design in Communication and
Computer Networks, in ELSEVIER, 2004.

[28] R. M. Karp, “On the Complexity of Combinatorial Problems,” in Networks, 5 (1975),
pp. 45-68.

[29] S. Even, A. Itai, and A. Shamir, “On the Complexity of Time Table and Multi-
commodity Flow Problems,” in IEEE Foundation of Computer Science (FOCS),
Berkeley, CA, USA, October, 1975.

[30] D. Berger, B. Gendron, J.-Y. Potvin, S. Raghavan, P. Soriano, “TabuSearch for a
Network Loading Problem with Multiple Facilities,” in Journal of Heuristics 6
(2000),pp. 253–267.

[31] B. Gendron, J.-Y. Potvin, P. Soriano, “Diversification Strategies in Local Search for a
Non-bifurcated Network Loading Problem,” in European Journal of Operational
Research 142 (2002),pp. 231–241.

[32] Y.K. Agarwal, “Design of Capacitated Multi-commodity Networks with Multiple
Facilities,” in Operations Research 50 (2002), pp. 333-344.

[33] A. Atamturk, “On Capacitated Network Design Cut-set Polyhedral,” in Mathematical
Programming 92 (2002) 425-437.

[34] F. Barahona, “Network Design Using Cut Inequalities,” in SIAM Journal on
Optimization 6 (1996), pp. 823-837.

[35] D. Bienstock, S. Chopra, O. Günlük, C. Tsai, “Minimum Cost Capacity Installation for
Multicommodity Network Flows,” in Mathematical Programming 81 (1998), pp. 177–
199.

[36] A. Frangioni, B. Gendron, “0-1 Reformulations of the Multi-commodity Capacitated
Network Design Problem,” in Discrete Applied Mathematics 157 (6), pp. 1229-1241,
2009.

[37] J. Y. Yen, “Finding the K Shortest Loopless Paths in a Network,” in Management
Science, 17(11), 1971.

[38] Yin Zhang’s Abilene Traffic Matrix, [Online]. Available: <http://www.cs.utexas.edu/~
yzhang/research/AbileneTM>.

[39] GT-ITM: Georgia Tech Internetwork Topology Models (software), 1996. Available:
<http://www.cc.gatech.edu/fac/Ellen.Zegura/graphs.html>.

[40] B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS Weights in a Changing World,” in
IEEE Journal on Selected Areas in Communications, 20(4), 2002,pp. 756-767.

[41] GNU Linear Programming Kit (GLPK), Available: <http://www.gnu.org/s/glpk/>.

28

Table 1: Network Topologies Used in Experiments

Name Topology Nodes Edges Demands
Abilene Backbone 39 28 253
Hier50 Hierarchical 50 148 2450
Wax50 Waxman 50 169 2450
Hier100 Hierarchical 100 286 9900
Geo10 Random 10 28 90
Geo30 Random 30 136 870
Geo50 Random 50 434 2450

Real Abilene Backbone 12 30 132

Table 2: Energy Saving for Various Networks with wij=1, UT=1.0

Topology Energy Saving (%) CPU Time (Second)
SSPF-1 SSPF-2 SSPF-R FGH SSPF-1 SSPF-2 SSPF-R FGH

Abilene 50 46.3 51.2 46.3 0.385 0.392 2.036 79.6
Hier50 37.8 37.2 37.8 37.2 3.591 4.394 41.3 313.7
Wax50 56.8 60.4 63.3 53.3 2.969 5.723 163.28 359.3
Geo10 53.6 53.6 57.1 46.4 0.143 0.144 0.252 1.1
Geo30 72.1 72.8 73.5 69.9 0.564 1.310 18.225 85.7
Geo50 86.4 85.9 86.6 84.8 2.875 17.872 490.3 1395.9

Hier100 49.7 49.7 50.3 N/A 13.462 55.86 514.24 N/A

Table 3: MLU (%) and Average Link Utilization (%) for Various Algorithms, wij=1 and UT=1.0

Network SSPF-1 SSPF-2 SSPF-R FGH SP
MLU Ave MLU Ave MLU Ave MLU Ave MLU Ave

Abilene 80.35 16.33 83.25 16.32 98.13 16.77 80.48 15.22 65.5 4.9
Hier50 100 51.26 100 50.56 100 51.51 100 48.36 100 22.9
Wax50 99.95 72.9 100 61.8 100 71.48 100 77.26 92.9 24.1
Geo10 4.49 3.32 5.99 3.32 4.65 3.32 5.87 2.45 2.17 0.9
Geo30 61.17 14.98 68.87 19.63 69.25 21.32 53.34 16.24 14.86 1.9
Geo50 86.04 38.76 99.96 37.34 100 40.62 90.2 31.12 24.2 1.4

Hier100 58.84 14.82 67.15 15.18 59.96 16.83 N/A N/A 26.25 2.9

Table 4: Average Path Length (hop) for Various Algorithms, wij=1 and UT=1.0

Network SSPF-1 SSPF-2 SSPF-R FGH SP
Abilene 4.37 4.32 4.53 4.42 2.05
Hier50 4.83 4.71 4.9 4.92 3.17
Wax50 4.16 4.23 4.3 4.26 2.2
Geo10 1.92 1.92 1.97 1.89 1.18
Geo30 5.5 5.5 5.61 5.47 1.36
Geo50 7.4 7.36 7.4 7.35 1.0

Hier100 13.83 13.72 13.83 N/A 5.81

Table 5: Energy Saving on the Abilene Network Using SSPF-R

Bundle Size
wij

Total Cables UT_0.4 UT_0.5 UT_0.7 UT_.0.9
ND (%) ND (%) ND (%) ND (%)

1 82 31 37.8 36 43.9 39 47.6 42 51.2
2 164 103 62.8 111 67.7 115 70.1 116 70.7
3 246 164 66.7 189 76.8 192 78 193 78.4
4 328 244 74.3 253 77.1 270 82.3 275 83.2

29

5 410 323 78.8 342 83.4 347 84.6 350 85.1
6 492 395 80.3 409 83.5 425 86.3 429 87
7 574 474 82.6 480 83.6 503 87.6 508 88.1
8 656 556 84.8 557 84.9 580 88.4 584 88.9
9 738 629 85.2 634 85.9 658 89.1 663 90
10 820 709 86.5 711 86.7 716 87.3 740 90.5

Table 6: Energy Saving of Hier100 Network Using SSPF-R

Bundle Size
wij

Total Cables UT_0.2 UT_0.3 UT_0.4 UT_0.7
ND (%) ND (%) ND (%) ND (%)

1 286 117 40.9 124 43.4 133 46.5 143 50.3
2 572 307 53.7 394 68.9 408 71 420 50.3
3 858 589 68.7 593 69.1 686 79.8 701 73.4
4 1144 871 76.1 876 76.6 880 83.8 981 81.7
5 1430 1156 80.8 1156 80.8 1162 81.6 1260 85.8
6 1716 1440 83.9 1441 84 1446 84.7 1541 88.1
7 2002 1723 86 1722 86 1728 86.7 1827 89.8
8 2288 2002 87.5 2004 87.6 2009 87.7 2096 91.3
9 2574 2287 88.8 2292 89 2293 89 2378 91.6
10 2860 2571 89.9 2574 90 2582 90.2 2658 92.4

Figure 1: Algorithm SSPF

Algorithm SSPF

Q ← φ , Er ← E, fix((i, j)) ← false for each (i, j)∈Er; //initialize the linkstatus
1) For each demand d∈D do

Generate shortest path Pd, and route its bd through Pd;
Store Pd into P;

End-For
2) For each (i, j)∈Er do

()ij ij ij ijn f c w ← ;

If nij<wij then // there is unused cable
If nij=0 then //no cable in the link is used

Er ← Er-{(i, j)}; // turn-off all cables in (i, j)
Q ← Q+{((i, j), wij-nij)}; // turn off nc=(wij-nij) cables in(i, j)

End-If
End-For

3) While|Er|>0 do
Use argmax() or H-Select-e() to select a link (y, z)∈Er that has fix((y, z))=false;
If GH-Flow(Er,(y, z))=true then

Q ← Q+{(y, z),1} //Turn off one cable in (y, z)
 nyz ← nyz-1

If nyz=0 then
Er ← Er-{(y, z)};

Set fix((i, j)) ← false ∀(i, j)∈Er; // restart Step 3
End-if
Else

fix((i, j)) ← true;
If fix((i, j))=true, for ∀(i, j)∈Er then // check the status of each link in Er

break; //End while loop
End-Else

End-While
Delete all switched of cables in Q from their corresponding links in G.

30

Figure 2: Function GH-Flow()

Figure 3: The SSPF-R Algorithm

GH-Flow(Er,(i, j))

Status ← true; // The status of function
1) For each demand d∈D do

If Pd∈P contains link (i, j) then
rij ← rij+bd , ∀(i, j)∈Pd; // returns the resource
If (nij-1)=0 then // the path is disconnected when one cable in (i, j) is off

Replace Pd with a new (sd, td) shortest path for don G(V, Er);
Store Pd into TP; //a new or original pathPd after deleting a cable

End-If
End-For

2) For each TPd∈TP do//we need to consider the threshold of link utilization constraint UT
If TPd has enough capacity to route bd for d then

rij ← rij-bd, ∀(i, j)∈TPd; // update the remaining capacity for each link in Pd
Replace Pd∈P with TPd;

Else
Generate the k-shortest (sd, td) paths SPd for demand d;
For each Px in SPd do// there are at most k different path Px

If Px has enough capacity to route bd then
rij ← rij-bd, ∀(i, j)∈Px;
Replace Pd∈P with Px;
Go to 2);

End-If
End-For
Status ← false; // rerouting is not possible
Go to 3);

End-Else
End-For

3) Return Status;

Algorithm SSPF-R

Q*← φ , Best_Q ← Q;
For x← 1 to ℜ do

1) Q* ← Q, Er ← E;
2) Remove xth pair ((a, b), nc) from Q, i.e., Q* ← Q*-{(a, b), nc};

nab ← nab+1; //G is the output from SSPF-1 or SSPF-2 and add one cable to (a, b);
If nab = 1then //(a, b)was disconnected

Er ← Er+{(a, b)}; //add the link
Set fix((i, j)) ← false ∀(i, j)∈Er;

3) While |Er| > 0 do
Call argmax() or H-Select-e(G) to select a link (y, z) ≠(a, b) from Er;
If GH-Flow(Er, (y, z))=true then

Q* ← Q*+{(y, z), 1};
nyz ← nyz-1; // Remove one cable every time
If nyz=0 then

Er ← Er-{(y, z)}; //delete the link
Set fix((i, j)) ← false ∀(i, j)∈Er;

Else
fix((y, z)) ← true;
If ∀(i, j)∈Er has fix((i, j))=true then

break; //End while loop
End-Else

End-While
4) If Q*contains more deleted cables than Best_Q then

Best_Q←Q*

End-For

31

Figure 4: An Example Network

Figure 5: SSPF-1 Solution for Network in Figure 4

Figure 6: SSPF-R Solution Based on Figure 5

0 (0)

9.55 (2)

8.5 (2)

8.5 (2)

8.5 (2)

4.25 (1) 2.25 (1)

5.3 (2)
4.4 (1) 4.25 (1)

0 (0) 0 (0)

0 (0)

4.2 (1)

0

1
4 7

6

5

3

2

8

9
10

0 (0)

9.55 (2)

8.5 (2)

8.5 (2)

8.5 (2)

3.3 (1)

2.25 (1)

4.35 (1)
4.4 (1) 3.3 (1)

0.95 (1) 0.95(1)

0 (0)

4.2 (1)

0

1
4 7

6

5

3

2

8

9
10

0 (0)

9.55 (2)

8.5 (2)

8.5 (2)

8.5 (2)

2.25 (1) 2.25 (1)

3.35 (1)
4.35 (1) 2.25 (1)

0.95 (1) 0.95 (1)

1.05(1)

5.25 (2)

0

1
4 7

6

5

3

2

8

9
10

32

Figure 7: Energy Saving and Running Time on Abilene for Various Bundle Sizes

Figure 8: Energy Saving and Running Time on the Hier50 Network for Various Bundle Sizes

Figure 9: Energy Saving and Running Time on the Wax50 Network for Various Bundle Sizes

Figure 10: The Potential Energy Saving on Real Abilene on Sept. 5, 2004

0

20

40

60

80

100

2 4 6 8 10

E
ne

rg
y

Sa
vi

ng
 (%

)

Bundle Size

LB

FGH

SSPF-1

UB

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
im

e
(C

PU
 S

ec
on

d)

Bundle Size

FGH

SSPF-1

0

20

40

60

80

100

2 4 6 8 10

E
ne

rg
y

Sa
vi

ng
 (%

)

Bundle Size

LB
FGH
SSPF-1
UB

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 T
Im

e
(C

PU
 S

ec
on

d)

Bundle Size

FGH

SSPF-1

0

20

40

60

80

100

2 4 6 8 10

E
ne

rg
y

Sa
vi

ng
 (%

)

Bundle Size

LB
FGH
SSPF-1
UB

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10 R
un

ni
ng

 T
Im

e
(C

PU
 S

ec
on

d)

Bundle Size

FGH

SSPF-1

0

20

40

60

80

100

0 6 12 18

E
ne

rg
y

Sa
vi

ng
(%

)

Time (hour)

SSPF-1
SSPF-2
SSPF-R
FGH

33

(a) (b)

Figure 11: CDF of Link Utilization and Packet Delay on the Abilene network

(a) (b)

Figure 12: CDF of Link Utilization and Packet Delay on the Wax50 network

(a) (b)

Figure 13: CDF of Link Utilization and Packet Delay on the Hier100 network

0

20

40

60

80

100

0.2 0.4 0.6 0.8 1

Pe
rc

en
t o

f L
in

ks
 (

%
)

Link Utilization (%)

SSPF-1
SSPF-2
SSPF-R
FGH
SP

0

20

40

60

80

100

2 4 6 8 10

Pe
rc

en
t o

f T
ra

ff
ic

 (%
)

Path Length (hop)

SSPF-1
SSPF-2
SSPF-R
FGH
SP

0

20

40

60

80

100

0.2 0.4 0.6 0.8 1

Pe
rc

en
t o

f L
in

ks
 (

%
)

Link Utilization (%)

SSPF-1
SSPF-2
SSPF-R
FGH
SP

0

20

40

60

80

100

2 4 6 8 10

Pe
rc

en
t o

f T
ra

ff
ic

 (%
)

Path Length (hop)

SSPF-1
SSPF-2
SSPF-R
FGH
SP

0

20

40

60

80

100

0.2 0.4 0.6 0.8 1

Pe
rc

en
t o

f P
oi

nt
 (%

)

Link Utilization (%)

SSPF-1

SSPF-2

SSPF-R

SP

0

20

40

60

80

100

10 20 30 40 50

Pe
rc

en
t o

f T
ra

ff
ic

 (%
)

Path Length (hop)

SSPF-1

SSPF-2

SSPF-R

SP

34

Figure 14: Impact of Different Traffic Levels and UT on Energy Saving in Hier100

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

E
ne

rg
y

Sa
vi

ng
 (%

)

UT

0.5bd bd
2bd 3bd
4bd 5bd

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

