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Abstract 

A two-tier multiple choice diagnostic instrument on the stoichiometry and rate of acid 

reaction was administered to 611 Grade 10 students and 171 pre-service teachers.  The results 

showed that the Grade 10 students and pre-service teachers had alternative conceptions 

related to the properties of different acids affecting their rates of reaction, and the particles in 

the resulting mixtures at the end of the reactions.  The study stresses the importance of 

identifying and clarifying the pre-service teachers’ understanding of the concepts that they 

will teach as this may have consequences on their future students’ learning of chemistry.   
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Understanding rate of acid reactions: Comparison between pre-service teachers and 

Grade 10 students 

 

 

Introduction 

Chemistry is a difficult subject for students to learn, even up to the tertiary levels 

(Nieswandt, 2001; Taber, 2000), because explanations of chemical phenomena not only 

involve abstract concepts and models, they can also be communicated and perceived in three 

different but inter-related ways such as experiences, models and visualizations (Talanquer, 

2011).  For example, when excess dilute hydrochloric acid is added to a piece of magnesium 

ribbon, students can see bubbles forming on the metal, and the metal becomes smaller and 

smaller until it disappears.  If sensors are used to monitor the reaction, they can see changes 

in pH, temperature and/or pressure in digital and/or graphical forms, or if a gas syringe is 

used to collect the hydrogen gas, changes in volume can be observed.  These are the students’ 

experiences of the chemical phenomena.  At the secondary level, the teacher can provide 

explanations of the reaction using models of varying sophistication.  For example, the teacher 

can simply state that a metal reacts with an acid to produce a salt and hydrogen, or also point 

out that a redox reaction has occurred where the metal donates electrons to the hydrogen ions 

which come into contact with it to form hydrogen gas.  In secondary chemistry (Grades 9 and 

10) in Singapore, the simpler term, ‘hydrogen ions’, is used instead of ‘hydroxonium ions’.  

Deeper understanding of acid reactions will require knowledge of acid-base models and 

concepts such as acid strength, neutralization, pH, dissociation and chemical equilibrium, and 

research has shown that students have difficulty understanding these concepts (Baddock & 

Bucat, 2008; Carr, 1984; Lin & Chiu, 2007; McClary & Talanquer, 2011; Nakhleh & 

Krajcik, 1994; Ross & Munby, 1991; Schmidt, 1997; Sheppard, 2006; Wilson, 1998).   As 

the concepts involved in acid reactions are numerous and intertwined, if students have 
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problems understanding one concept, they will have difficulty learning other related concepts 

as well (McClary & Talanquer, 2011;  McDermott, 1988; Ross & Munby, 1991; Sheppard, 

2006). 

To represent the experience and the explanations of magnesium reacting with 

hydrochloric acid, the teacher could use chemical symbols and equations such as: 

Mg(s) + 2HCl(aq)  MgCl2(aq) + H2(g) 

Mg(s) + 2H+(aq)  Mg2+(aq)  +  H2(g) 

The teacher could also show the students animations of the particles interacting during the 

reaction to help them understand the phenomenon and the models used to explain it.  Thus, 

students have to coordinate the information from their sensory experiences of the phenomena 

and the explanations, as well as the models and visualisations provided by the teacher or 

textbook, to form a coherent understanding of the reaction of magnesium and hydrochloric 

acid.   

 If the students are studying the rate of acid reactions, they need to be able to interpret 

or compare graphs depicting amount of product or reactant over time, a common task in 

secondary school kinetics in Singapore.  In addition to understanding the conventions of 

graphical representations, students also need to understand the chemistry involved, for 

example, the characteristics of the reactants, reactions and products, the stoichiometry 

involved and the factors affecting the rates of reactions as these would determine the amounts 

of reactants used up or products formed, and how fast they are formed (Tan, Treagust, 

Chandrasegaran, & Mocerino, 2010).  For example, if students are comparing the reactions of 

sulfuric, hydrochloric and ethanoic acids with similar masses of powdered magnesium at the 

same temperature, they need to bear in mind which reactant is the limiting reagent as this will 

impact on the amount of hydrogen gas and salt formed, as well as the concentration and 

dissociation of the acids as these will impact on the concentration of hydrogen ions reacting 



4 
 

with the metal, and hence the rate of reaction.  Understanding the graphs involved may be 

challenging as studies have shown that students have difficulty with the concepts involved in 

chemical kinetics (Cakmakci, Leach, & Donnelly, 2006; van Driel, 2002), stoichiometry 

(Chandrasegaran, Treagust, Waldrip, & Chandrasegaran, 2009; Gauchon & Meheut, 2007) 

and have problems interpreting graphs (Leinhardt, Zaslavsky, & Stein, 1990; Testa, Monroy, 

& Sassi, 2002). 

 Teachers, too, may have similar alternative conceptions and difficulties as their 

students (Abell, 2007), for example, in the areas of chemical equilibrium (Quilez-Pardo & 

Solaz-Portoles, 1995) and chemical kinetics (Justi, 1997).  It is important to help teachers to 

identify their own alternative conceptions and difficulties, and address them because their 

own conceptions may impact on how they teach their students (de Jong, Veal, & van Driel, 

2002; Crawford, 2007) and give rise to poor learning of concepts by their students.   

 

Purpose 

 The study sought to compare pre-service teachers’ and Grade 10 students’ 

understanding of the concepts involved in the stoichiometry and rate of acid reactions and to 

highlight the significance of the nature of the alternative conceptions.  A two-tier multiple 

choice diagnostic instrument, the Acid Reactions Diagnostic Instrument, was used in the 

study, and it was developed from an open-ended version used in an earlier study (Tan et al., 

2010). 

 

Instrument 

 The Acid Reactions Diagnostic Instrument (ARDI) (see Appendix), was developed 

through several stages (Treagust, 1995) which included the clarification of the curricular 

content knowledge, interviews and open-ended versions of the instrument (Tan et al., 2010) 
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before the version used in this study was finalized.  It consists of six single-tier and eight two-

tier multiple-choice items.  Two-tier multiple-choice items require the participants to select 

two options, the answer and the reason for the answer.  Only if both options are correctly 

selected is the two-tier multiple-choice question considered correctly answered (Peterson, 

Treagust, & Garnett, 1989).    There are four reaction scenarios, each consisting of three 

questions, in the instrument.  The first item in each scenario requires the participants to select 

a graph which best describes the two reactions in the scenario.  The following two items 

require students to explain the amount of gases formed and the rate of the two reactions in the 

scenario.  The last two items (items 13 and 14) were designed to clarify the participants’ 

understanding of excess and limiting reagents as it was difficult to decide if the participants 

gave wrong answers in the earlier items due to their misreading of the questions or if they 

actually had difficulties with the concepts of excess and limiting reagents.  Six chemistry 

teachers reviewed the items in the ARDI and agreed that the content assessed by the ARDI is 

in line with the national secondary chemistry syllabus and taught in schools. 

 

Method and procedures 

 The study involved 611 Grade 10 students from six Singapore schools in 2010 and 

171 graduate pre-service teachers from a teacher education institution in Singapore over the 

period 2010 and 2011.  It was part of a larger collaborative research project focusing on the 

development of diagnostic instruments to identify student conceptual difficulties in chemistry 

and received human ethics research approval (SMEC-47-09).   

Convenience sampling was used in the study.  Six schools in Singapore which were 

approached by the first author agreed to participate in the study.  The Grade 10 students in the 

schools were chosen by the schools and the ARDI was administered to the students after they 

were taught the topics of Bonding, Acids, Bases and Salts, Stoichiometry and Reaction 
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Kinetics, all of which were required in the secondary chemistry syllabus.  Only the overall 

analysis of the results of the students in a particular school was reported back to the school 

with an offer of discussions with teachers on students’ difficulties and how to address these; 

none of the offers to the six schools was taken up.  The graduate pre-service teachers in the 

sample were from a teacher education institution in Singapore.  They answered the ARDI as 

part of a series of lessons designed to highlight difficult concepts in secondary chemistry.  It 

was one of the three diagnostic instruments used in the lessons, the other two being the 

Qualitative Analysis Diagnostic Instrument (Tan, Goh, Chia, & Treagust, 2002) and Taber’s 

(1997) instrument on ionic bonding.  The pre-service teachers were informed in advance to 

read up the relevant Grade 10 chemistry material before attempting the diagnostic 

instruments and had also seen demonstrations of the reaction of magnesium with similar 

concentrations of sulfuric acid, hydrochloric acid and ethanoic acid in a session on the 

instructional use of demonstrations and the Predict-Observe-Explain strategy.  The pre-

service teachers’ results were used, in subsequent sessions, to compare with secondary 

students’ results reported in the literature or collected by the first author to facilitate 

discussions on the prevalence and ‘longevity’ of alternative conceptions (Taber & Tan, 

2011), and how to address them when teaching in school.   

Graduate pre-service teachers aspiring to teach in secondary schools are assigned two 

teaching subjects. Ninety-five pre-service teachers were assigned secondary chemistry as 

their first teaching subject (CS1) and these teachers would have at least undergraduate 

degrees in science (majoring in chemistry), material science, material engineering or 

chemical engineering.  The remaining 76 pre-service teachers were assigned secondary 

chemistry as their second teaching subject (CS2).  They would have studied at least up to 

Grade 12 chemistry; many of them have science degrees but majored in mathematics, life 

sciences or physics, while the rest are usually engineering graduates.  The content of the 
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chemistry pedagogy courses and the way the courses were conducted were similar for both 

groups of pre-service teachers as both groups could be assigned to teach secondary chemistry 

in school.  The main difference between the two groups is that the CS1 pre-service teachers 

can be assigned to teach high school (Grades 11 and 12) chemistry as well. 

 

Results 

 The answer sheets were scanned using an optical mark reader, and the results were 

analysed using IBM SPSS Statistics version 19 (SPSS Inc, 2010).  Questions 1, 4, 7, 10, 13 

and 14 are one-tier questions, and contain 5 to 8 options.  The reason for the use of options 

(A-E) and (1-5) is that the answer sheet was designed for two-tier tests in which respondents 

chose an answer (A-E) and a reason for the answer (1-5).  Thus, to accommodate up to 10 

options, (A-E) and (1-5) of each row of answers had to be utilised.  There should not be any 

errors in recording responses as options (A-E) and (1-5) have corresponding circles to be 

shaded on the answer sheet.  There were respondents who provided ‘two responses’ for the 

single-tier questions.  However, these were not taken into account when the results of these 

questions were analysed. 

Some test statistics are given in Table 1 and the distribution of the total scores is 

illustrated in Figure 1. The pre-service teachers did reasonably well, the mean total score of 

the CS1 and CS2 groups being 11.09 and 10.18 (out of a maximum of 14), respectively, 

compared to the mean total score of 8.26 of the Grade 10 students.  However, it is rather 

disconcerting that 9.5% and 21.1% of the pre-service teachers in the CS1 and CS2 groups, 

respectively, scored 7 marks or less in the test (Grade 10: 42.4%).  A one-way analysis of 

variance (ANOVA) showed that there was a statistically significant difference between mean 

total scores of the three groups (p<0.001).  A post hoc pairwise multiple comparisons analysis 

(Dunnett’s T3) was conducted and it showed that there was no statistically significant 
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difference between the mean total scores of the two groups of pre-service teachers (p=0.144).   

As expected, both groups of pre-service teachers’ mean total scores were significantly 

different statistically compared to that of the Grade 10 students (p<0.001 for both 

comparisons).  However, any comparison needs to be taken with caution because of the 

different numbers of Grade 10 students (n=611) and pre-service teachers (n[CS1]=95, 

n[CS2]=76) involved.  The pre-service teachers’ and Grade 10 students’ correct responses to 

the four reaction scenarios are given in Table 2.  As expected, the percentages of the pre-

service teachers and Grade 10 students who choose the correct graph in each reaction 

scenario (CS1, 64–87%; CS2, 62–76%; Grade 10, 52–80%) are generally higher than those 

who chose the correct graphs and explanations for the volumes of gas formed and the rates of 

the reaction involved (CS1, 59–85%; CS2, 50–72%; Grade 10, 40–69%).  Cronbach alpha 

values for the instrument administrated to the three groups range between 0.73 to 0.82 

indicating acceptable to good internal consistency. 

 

(Insert Tables 1 and 2, and Figure 1 about here) 

 

Alternative conceptions 

Table 3 summarises the alternative conceptions of the two groups of pre-service 

teachers and Grade 10 students.  Alternative conceptions are considered significant if they 

exist in at least 10% of the sample (Tan et al., 2002).  In general, the effect of the same 

concentration of different acids on the initial rate of reactions posed difficulties to both 

groups of pre-service teachers and Grade 10 students.  As mentioned earlier, items 13 and 14 

were included in the instrument to clarify the respondents’ understanding of excess and 

limiting reagents.  However, in addition to performing this task, the two items also revealed 

students’ ideas of the existence of the various particles in solution. 
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(Insert Table 3 about here) 

 

The initial rates of reaction of different acids of the same concentration are equal 

 In items 1, 7 and 10, more than 10% of the respondents in the three groups chose 

graphs which indicated that the correct volumes of gas liberated but incorrect initial rates of 

reaction; they thought that initial rate of reaction of the same concentrations of different acids 

were the same (see Figure 2).  The hydrochloric/sulfuric acid pair in item 1 (Option 2: CS1, 

27%; CS2, 28%; Grade 10, 20%) and item 10 (Option B: CS1, 19%; CS2, 25%; Grade 10, 

25%) seemed to pose more difficulty than the hydrochloric/ethanoic acid pair in item 7 

(Option 2: CS1, 12%; CS2, 18%; Grade 10, 19%).  Cross-tabulation (see Table 4) showed 

that about half of the respondents were consistent in their choices in item 1 and item 10 (CS1, 

12%; CS2, 17%; Grade 10, 9%) but fewer respondents were consistent in items 1 and 7 (CS1, 

3%; CS2, 8%; Grade 10, 10%) and in all three items (CS1, 3%; CS2, 5%; Grade 10, 5%).   

 

(Insert Figure 2 and Table 4 about here) 

 

 In items 3, 9 and 12, the respondents had to explain the rates of reaction represented 

by the graphs in items 1, 7 and 10.  It could be seen again in Table 3 that the percentage of 

students explaining that the rates of reactions were the same because the acids were of the 

same concentration was higher in items 3 (Option B1: CS1, 12%; CS2, 14%; Grade 10, 23%) 

and 12 (Option B2: CS1, 14%; CS2, 17%; Grade 10, 27%) which involved the 

hydrochloric/sulfuric acid pair than item 9 which involved the hydrochloric/ethanoic acid pair 

(Option B2: CS1, <10%; CS2, <10%; Grade 10, 11%).  More than half of the pre-service 

teachers and about half the Grade 10 students were consistent in their ‘same concentration 
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same rate of reaction’ reasoning (see Table 4) in items 3 and 12 (CS1, 9%; CS2, 12%; Grade 

10, 13%); however, consistency in this reasoning across items 3, 9 and 12 is low (CS1, 0%; 

CS2, 1%; Grade 10, 6%).   

The next step taken was to cross-tabulate respondents’ answers within the same 

reaction scenarios to determine if the ‘same concentration same rate of reaction’ reasoning 

was consistent across the respondents’ graphical and text description choices.  The results 

show that the consistency in the respondents’ choices is higher again for items 1 and 3, and 

10 and 12 involving the hydrochloric/sulfuric acid pair than for items 7 and 9 involving the 

hydrochloric/ethanoic acid pair (see Table 4).  This is expected as, in general, a higher 

proportion of respondents exhibited the ‘same concentration same rate of reaction’ reasoning 

in the reaction scenarios involving the hydrochloric/sulfuric acid pair. 

  

Other alternative conceptions related to the initial rates of reaction 

 Other incidences of significant alternative conceptions related to the initial rates of 

reaction are few and involved only one of the three groups of respondents (see Table 3).  For 

example, in item 3 (B2), 10% of the CS1 pre-service teachers indicated that the initial rates of 

reaction of powdered copper(II) carbonate with hydrochloric acid and sulfuric acid, 

respectively, are the same because both acids were in excess, while 12% of the CS2 pre-

service teachers pointed out in item 12 (B1) that the initial rates of reaction of the same two 

acids with powdered magnesium were the same because the acids were strong acids.  In item 

9 (B3), 14% of the Grade 10 students indicated that the initial rates of reaction of powdered 

marble with  hydrochloric and ethanoic acids were the same because the strength of the acids 

did not affect their rates of reaction.   

 

Ignoring excess/limiting reagents 
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 A number of Grade 10 students (11%) seemed to ignore that the 0.5 mol dm-3 and 1 

mol dm-3 hydrochloric acids were in excess, and chose option C4 in item 5 stating that the 

reaction of powdered marble with 1 mol dm-3 hydrochloric acid will liberate more carbon 

dioxide because it contains more hydrogen ions (see Table 3).  Cross-tabulation with item 14 

showed that only 12 students (2%) chose options A, B, C or D in item 14 which indicated that  

the metal was in excess (see Figure 3) when it was stated in the item that the acid was in 

excess. Similarly, another 11% of the Grade 10 students ignored that the fact the acids were 

the limiting reagent in item 11 (B2) but cross-tabulation with item 13 showed that only 11 

students (2%) chose options E, 1, 2, 3, 4 or 5 indicating that the acid was in excess when it 

was stated that the metal was in excess.  The consistency of the Grade 10 students’ choices is 

only 2% in item 5 (C4) and item 11 (B1).  The pre-service teachers did not have any 

significant problem with excess/limiting reagents. 

 

(Insert Figure 3 about here) 

 

Ionic molecules in solution and electrically unbalanced solution 

The use of items 13 and 14 to determine the respondents’ understanding of excess and 

limiting reagents in terms of the particles present in solution when the reactions were 

completed indicated that the respondents had little problems with excess and limiting 

reagents, but revealed the existence of the ‘ionic molecules in solution’ and ‘electrically 

unbalanced solution’ alternative conceptions.  A significant number of respondents chose 

option B in item 13 (CS1, 17%; CS2, 24%; Grade 10, 52%) and option E in item 14 (CS1, 

16%; CS2, 26%; Grade 10, 50%) which showed the ionic salt, MgY2, existing as a molecule 

(see Figure 4), and this thinking was consistent across the two items (CS1, 16%; CS2, 21%; 

Grade 10, 45%).  Item 14 (3) also indicated that a number of respondents (CS1, 15%; CS2, 
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14%; Grade 10, 10%) ignored the charges of the oppositely charged particles were 

unbalanced; insufficient Y- ions were present to balance the positive Mg2+ and H+ ions in the 

diagram (see Figure 5). 

 

(Insert Figures 4 and 5 about here) 

 

Discussion 

From Table 2, it can be seen that a large majority of pre-service teachers and Grade 

10 students who chose the correct graphical representations of the reactions in each reaction 

scenario chose the correct textual descriptions of the graphs in first tier options of the second 

and third items in the same reaction scenario (CS1, 93-99%; CS2, 87-100%; Grade 10, 92–

96%) as well as provided correct explanations for the volumes of gas formed and the rates of 

reaction (first and second tier options in the second and third items in the same reaction 

scenario) (CS1, 85-98%; CS2, 72-100%; Grade 10, 77-94%).  This indicates the importance 

of exposing students to both graphical as well as textual/verbal descriptions when teaching 

rates of reaction as they serve complementary roles in helping students to construct deeper 

understanding of the concepts involved (Ainsworth, 1999); the graphs can illustrate 

textual/verbal descriptions of reaction changes due to changes in the variables involved or of 

the comparison of two different reactions, facilitating understanding of the textual/verbal 

descriptions.  Reaction scenario 2 which involved different concentrations of only one acid 

seemed to cause lesser problems than the other reaction scenarios which involved two 

different acids as more participants chose the correct graph and explanations for this scenario 

compared to the other three reaction scenarios.  This is expected as the complexity of 

determining how the characteristics of different acids affect the rate of reaction and volume 

of gas formed does not come into play in the scenario, making comparisons easier. 
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Similar to the earlier study (Tan et al., 2010), a significant number of respondents 

chose graphs which indicate equal initial rates of reactions for the hydrochloric/sulfuric acid 

pair in items 1 (20-28%) and 10 (19-25%) and the hydrochloric/ethanoic acid pair in item 7 

(12-19%) (see Figure 2).  The main reason given by the respondents was that both acids had 

the same concentration (Q3 (B1): 12-23%; Q12 (B2) 14-27%; Q9 (B2): 3-11%).   In Grade 9 

and 10 chemistry, students learn that concentration is one of the factors which affect the rate 

of reaction and since the concentration of the different acids are the same in reaction 

scenarios 1, 3 and 4, it is easy to understand why Grade 10 students chose the incorrect ‘same 

concentration same rate of reaction’  option.  They might have taken what was taught at face 

value and did not understand that the characteristics of the reactants, reaction itself, products 

formed and stoichiometry involved needed to be considered in greater detail.  For example, 

marble chips will react with hydrochloric acid to liberate carbon dioxide until the limiting 

reagent is used up.  However, the reaction of marble chips and sulfuric acid (not included in 

the ARDI) will slow down and stop producing carbon dioxide soon after the reaction starts 

due to the formation of a coating of sparingly soluble calcium sulfate on the surface of the 

marble chips, preventing further reaction between the acid and the calcium carbonate.  

Sulfuric acid will react with a metal or carbonate faster than hydrochloric acid of the same 

volume and concentration provided a soluble sulfate is formed.  It is a diprotic acid and 

although its second ionisation is low, the hydrogensulfate ions will dissociate further to 

generate more hydrogen ions as they are used up, unlike hydrochloric acid where the 

hydrogen ions cannot be replenished, causing a drop in the concentration of hydrogen ions 

and slowing down its rate of reaction.  Thus, graph 1 in item 1 and graph D in item 10 are the 

best options.  

H2SO4 (aq) + H2O (l)  →  H3O
+ (aq) + HSO4

- (aq), pKa = - 3.0 

HSO4
- 

 (aq) + H2O (l)  →  H3O
+ (aq) + SO4

2-  (aq),  pKa = 1.9 
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It is rather surprising that the pre-service teachers also exhibited the ‘same 

concentration same rate of reaction’ alternative conception even after learning chemistry at 

more advanced levels, albeit at a lower percentage compared to the Grade 10 students, and 

quite a number exhibited this thinking consistently in items involving the 

hydrochloric/sulfuric acid pair in in reaction scenarios 1 and 4 (see Tables 3 and 4).  These 

pre-service teachers still focused on the concentration of the acids rather than the 

concentration of the hydrogen ions present in the acids (Tan et al., 2010), highlighting the 

insidious nature (Taber & Tan, 2011) of this alternative conception.  Thus, there is a need to 

emphasise the ionic equations and the stoichiometry of the reaction when discussing the 

reactions of acids to focus attention that the reacting species is the hydrogen ion rather than 

the acid per se.  Other minor incorrect reasons that the respondents offered to explain why the 

hydrochloric/sulfuric acid pair and the hydrochloric/ethanoic acid pair had the same initial 

rate of reaction included both acids were in excess (Q3 (B2): CS1, 10%), both acids were 

strong acids (Q12 (B1, CS2, 12%) and the strength of an acid did not affect its rate of 

reaction (Q9 (B3), Grade 10, 14%).  Merely watching the reactions of the same concentration 

and volume of the three acids with magnesium apparently did not make much of an 

impression; the demonstrations or practical activities need to be supported with illustrations 

of the particles and their interactions at the sub-microscopic level to represent the reaction in 

multiple and complementary ways to help students (and pre-service teachers) construct 

deeper understanding of the process (Ainsworth, 1999).  Computer animations or relevant 

diagrams can be used to show what excess reagent and strength of acids mean at the sub-

microscopic level and how these affect reactions.  For example, even if an acid is in excess, it 

is still the number of hydrogen ions in the immediate vicinity of the metal and colliding with 

metal that is responsible for the initial reaction rate, and this number of hydrogen ions is 
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determined by the concentration and dissociation of the acid rather than the excess hydrogen 

ions which are spread throughout the mixture.   

 The respondents, in general, had little difficulty with the concepts of excess and 

limiting reagents per se, as indicated by their answers in items 14 and 13, even though they 

made incorrect choices in items 5 and 11, respectively.  However, items 13 and 14 

established that the respondents had problems with the representation of ‘MgY2(aq)’, with 

about 17% of the CS1 group, 25% of the CS2 group and 51% of the Grade 10 students 

incorrectly believing that MgY2 exists as an ‘ionic molecules’ (Taber, 1997; Tan & Treagust, 

1999) in solution, and the consistency of their alternative conception ranged from 16% (CS1) 

to 45% (Grade 10).  Devetak and Glazar (2010) also found that students in their study had 

problems representing soluble ionic substances in solution, drawing aqueous potassium 

bromide as ion-pair molecules.  Taber (1997) and Tan and Treagust (1999) argue that the 

teaching of ionic bonding at the secondary level, focussing on the transfer of electrons to 

form discrete units of the ionic compound, encourages students to adopt this molecular 

framework (Taber, 1997) and this is another tenacious alternative conception, defying the 

impact of additional years of chemical education.  Item 14 also revealed the ‘electrically 

unbalanced solution’ choice which a number of respondents (10-15%) made.  These 

respondents might have focussed only on the hydrogen ions in the depiction of excess acid, 

forgetting that an equal number of counter-ions (Y-) would have to be present as well.  The 

learning of the ions present in solution (and in the molten state) can be facilitated, again, by 

computer animations or the use of relevant diagrams to give students a picture of how 

solutions of ionic compounds (and molten ionic compounds) would look like; hopefully, this 

would minimise students and pre-service teachers persisting with the molecular framework.  

 

Conclusion 
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 This study indicates that the pre-service teachers and Grade 10 students did not have 

difficulty with the concepts of excess and limiting reagents per se although a number of 

Grade 10 students seemed to ignore the excess and limiting reagents when determining the 

amounts of products formed in reactions.  However, many pre-service teachers and Grade 10 

students had alternative conceptions related to rates of reaction of different acids such as the 

initial rates of reaction of the same concentration of acids of different proticity or strengths 

are equal.  They also had problems describing how the various substances exist in resulting 

mixtures at the end of the reaction, for example, they indicated that ‘ionic molecules’ exist in 

solution or chose options which show electrically unbalanced solutions.  The most likely 

cause of these difficulties is the lack of understanding of the sub-microscopic representations 

of the properties and reactions of acids (Tan et al., 2010).  Thus, there is a pressing need for 

illustrations of the entities and process at the sub-microscopic level to be included in 

chemistry lessons to foster complementary learning and deeper understanding (Ainsworth, 

1999).  The study also highlights the need to help pre-service teachers to identify tenacious 

alternative conceptions that they may have and clarify their understanding of the chemistry 

concepts that they will be teaching as what they think about these concepts may affect their 

classroom teaching and the learning of their future students. 

(4820 words) 
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Appendix 1.  The Acid Reactions Diagnostic Instrument 

 

(submitted as a separate document to prevent formatting issues with the diagrams in the 

instrument)
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Figure 1. Distribution of total scores of the two groups of pre-service teachers and the 

Grade 10 students 
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Figure 2. Options indicating ‘same concentration same rate of reaction’ alternative 

conception 
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Figure 3. Options indicating excess metal in reaction mixture in item 14 
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Figure 4. Options indicating ‘ionic molecules’ in solution  

 
 

 

 

 
 

 

 

  

Option B in item 13 
 

 Option E in item 14 

 



26 
 

Figure 5. Option indicating an electrically unbalanced solution in item 14 
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Table 1.  Test statistics for the administration of the ARDI to pre-service teachers and Grade 

10 students  

 

 CS1 

 

CS2 Grade 10 

No. of cases  

 
Cronbach alpha reliability 

 

Mean (Standard deviation) 
 

Median / Mode 

 

Minimum / Maximum  
 

Number (Percentage) of respondents whose 

total scores are 7 and below 

95 

 
0.732 

 

11.09 (2.62) 
 

12.00 / 14 

 

5 / 14 
 

9 (9.5) 

76 

 
0.816 

 

10.18 (3.28) 
 

11.00 / 13 

 

0 / 14 
 

16 (21.1) 

611 

 
0.820 

 

8.26 (3.45) 
 

8.00 / 12 

 

0 / 14 
 

259 (42.4) 

 

Notes: 

CS1 represents pre-service teachers with chemistry as their first teaching subject 

CS2 represents pre-service teachers with chemistry as their second teaching subject 
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Table 2.  Frequency of correct responses to the items in the four reaction scenarios (% in 

parentheses) 

 

Reaction 
Scenarios 

Reaction kinetics  CS1 
(n = 95) 

CS2 
(n = 76) 

Grade 10 
(n = 612) 

1 Excess 1M-HCl and 1M- H2SO4 with CuCO3:     

 Correct response to Q1  61 (64) 48 (63) 319 (52) 

 Correct responses to Q1, Q2 (1st tier) & Q3 (1st 
tier) 

 57 (60) 48 (63) 305 (50) 

 Correct responses to Q1, Q2 (both tiers) & Q3 

(both tiers) 

 56 (59) 48 (63) 300 (49) 

2 Excess 1M-HCl and 0.5M-HCl with CaCO3:     
 Correct response to Q4  83 (87) 56 (74) 492 (80) 

 Correct responses to Q4, Q5 (1st tier)  & Q6 

(1st tier) 

 82 (86) 56 (74) 465 (76) 

 
 Correct responses to Q4, Q5 (both tiers) & Q6 

(both tiers) 

 81 (85) 55 (72) 424 (69) 

 

3 Excess 1M-HCl and 1M-CH3COOH with 

CaCO3: 

    

 Correct response to Q7  72 (76) 58 (76) 319 (52) 

 

 Correct responses to Q7,  Q8 (1st tier) & Q9 
(1st tier)   

 69 (73) 57 (75) 294 (48) 
 

 Correct responses to Q7,  Q8 (both tiers) & Q9 

(both tiers) 

 61 (64) 42 (55) 247 (40) 

 

4 Excess magnesium with 1M-HCl and 1M- 
H2SO4: 

    

 Correct response to Q10  69 (73) 47 (62) 396 (66) 

 
 Correct responses to Q10,  Q11 (1st tier) & 

Q12 (1st tier) 

 64 (67) 41 (54) 372 (62) 

 

 Correct responses to Q10,  Q11 (both tiers) & 

Q12 (both tiers) 

 59 (62) 38 (50) 368 (61) 
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Table 3.  Significant alternative conceptions of the pre-service teachers and the Grade 10 

students 

 
Alternative conception 

 
Choice 

combination 

Percentage of respondents 
with the alternative conception 

CS1 

(n=95) 
 

CS2 

(n=76) 

Grade 10 

(n=611) 

The initial rates of reactions of different 

acids of the same concentration are 

equal (graph with the correct volumes of 
gas liberated are correct) 

Q1 (2) 

 

Q7 (2) 
 

Q10 (B) 

 

27 

 

12 
 

19 

28 

 

18 
 

25 

20 

 

19 
 

25 

 
The two initial rates of reaction are equal 

because both acids have the same 

concentration (text) 

 

Q3 (B1) 

 

Q9 (B2) 

 
Q12 (B2) 

 

12 

 

~ 

 
14 

14 

 

~ 

 
17 

23 

 

11 

 
27 

The two initial rates of reaction are 
equal because both acids are in excess 

 

Q3 (B2) 
 

10 
 

~ 
 

~ 
 

The two initial rates of reaction are 

equal because the strength of the acid 
does not affect its rate of reaction 

 

Q9 (B3) ~ 

 

~ 

 

14 

The two initial rates of reaction are 
equal because both the acids are strong 

acids 

 

Q12 (B1) ~ 
 

12 ~ 
 

Ignore excess/limiting reagents Q5 (C4) 

 

Q11 (B2) 

 

~ 

 

~ 

 

~ 

 

~ 

 
 

11 

 

11 

Ionic ‘molecule’ in solution 

 

Q13 (B) 

 
Q14 (E) 

17 

 
16 

24 

 
26 

52 

 
50 

 

Electrically unbalanced solution Q14 (3) 
 

15 14 10 

 

Note:  ~ represents a figure which is less than 10% 
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Table 4.  Consistency of pre-service teachers’ and Grade 10 students’ alternative conceptions 

 

 

Alternative conception 

Percentage of respondents 

with the alternative conception 

CS1 

(n=95) 

 

CS2 

(n=76) 

Grade 10 

(n=611) 

The initial rates of reactions of different 

acids of the same concentration are 

equal.  Volumes of gas liberated are 

correct  
 

Graph 

 

Q1 (2) & Q7 (2) 
 

Q1 (2) & Q10 (B) 

 
Q1 (2), Q7 (2) & Q10 (B) 

 

 
 

 

 
 

 

 

3 
 

12 

 
3 

 
 

 

 
 

 

 

8 
 

17 

 
5 

 
 

 

 
 

 

 

10 
 

9 

 
5 

Text 
 

Q3 (B1) & Q12 (B2) 

 

Q3 (B1), Q9 (B2) & Q12 (B2) 
 

 
 

9 

 

0 

 
 

12 

 

1 

 
 

13 

 

6 

Graph and text 

 
Q1 (2) & Q3 (B1) 

 

 
7 

 

 

 
12 

 

 

 
16 

 

Q7 (2) & Q9 (B2) 
 

3 
 

7 
 

7 
 

Q10 (B) & Q12 (B2) 

 

11 

 

14 

 

15 

 

Ignore excess/limiting reagents 

 

Q5 (C4) & Q11 (B2) 

 

 
 

0 

 
 

1 

 
 

2 

Ionic ‘molecule’ in solution 

 

Q13 (B) & Q14 (E) 

 

 

 

16 

 

 

21 

 

 

45 

 

 

 

 

  


