
Optimal 1,3-propanediol production: Exploring the trade-off between process

yield and feeding rate variation

Lei Wanga, Qun Linb, Ryan Loxtonb,c, Kok Lay Teob, Guanming Chenga

aSchool of Mathematical Science, Dalian University of Technology, Dalian, People’s Republic of China
bDepartment of Mathematics and Statistics, Curtin University, Perth, Australia

cInstitute of Cyber-Systems and Control, Zhejiang University, Hangzhou, People’s Republic of China

Abstract

This paper proposes a new optimal control model for the production of 1,3-propanediol (1,3-PD) via microbial fed-

batch fermentation. The proposed model is governed by a nonlinear multistage dynamic system with two modes:

feeding mode, in which glycerol and alkali substrates are added continuously to the fermentor; and batch mode, in

which no substrates are added to the fermentor. The non-standard objective function incorporates both the final 1,3-

PD yield and the cost of changing the input feeding rate, which is the control variable for the fed-batch fermentation

process. Continuous state inequality constraints are imposed to ensure that the concentrations of biomass, glycerol,

and reaction products lie within specified limits. Using the constraint transcription method, we approximate the

continuous state inequality constraints by a conventional inequality constraint to yield an approximate parameter

optimization problem. We then develop a combined particle swarm and gradient-based optimization algorithm to

solve this approximate problem. The paper concludes with simulation results.

Keywords: Nonlinear systems, Multistage dynamic systems, Optimal control, Fed-batch fermentation, Total

variation

1. Introduction

1,3-Propanediol (1,3-PD) is an organic compound

with a wide range of applications in cosmetics, adhe-

sives, lubricants and medicines [1]. Due to its unique

symmetrical structure, 1,3-PD can act as a monomer for

the production of various industrial polymers, including

polyesters and polyurethanes [2]. Production methods

for 1,3-PD can be divided into two categories: chemi-

cal synthesis and microbial conversion. This paper fo-

cuses on the latter category, which is now becoming in-

creasingly attractive in industry because of the cheap

availability of renewable feedstock such as glycerol, a

byproduct of biodiesel production [2, 3].

Glycerol is converted to 1,3-PD via bacterial fer-

mentation [4, 5]. The fermentation process can be

one of three types: batch fermentation (all substrate

is present at the beginning of the reaction and noth-

ing is added or removed from the fermentor during

the reaction); fed-batch fermentation (fresh medium is

added during the reaction to prevent nutrient deple-

tion, but nothing is removed); and continuous fermen-

tation (fresh medium is added during the reaction while

old medium is removed). This paper focuses on fed-

batch fermentation, which is typically implemented by

switching between a batch mode (in which the input

feed is closed) and feeding mode (in which the input

feed is open). Switching between batch and feeding

modes in this manner makes it easier to regulate the

pH value for optimal reaction conditions [6, 7, 8]. In

addition, substrate inhibition (whereby secondary reac-

tion products hinder the consumption of substrate) is

greatly reduced, allowing for more glycerol and alkali

to be consumed and thus more biomass to be produced

with higher 1,3-PD concentration [9].

The fed-batch fermentation process for converting

glycerol to 1,3-PD begins with batch operation [10, 11].

During this initial batch phase, the biomass tends to

grow exponentially. Once the exponential growth phase

ends, the glycerol and alkali substrates are added con-

tinuously to the reactor to regulate the pH level. The
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process then reverts to batch mode, and so on until the

end of the final batch phase.

To achieve commercially-viable concentrations of

1,3-PD, optimization of the microbial conversion pro-

cess is critical. A major challenge is the presence of

undesirable secondary products (acetate and ethanol),

which inhibit the production of biomass. To address this

challenge, precise mathematical models are required for

process control and optimization. Recently in [12], a

nonlinear impulsive model was proposed to describe

the fed-batch fermentation process for converting glyc-

erol to 1,3-PD. The corresponding parameter identifi-

cation and optimal control problems were investigated

in [13, 14, 15, 16, 17]. The impulsive model in [12]

is based on the assumption that the addition of glycerol

and alkali substrates is a discrete process. However, in

practice, glycerol and alkali are added continuously, not

at discrete times. Thus, a new model involving a non-

linear multistage dynamic system with continuous input

variables was proposed in [18, 19, 20] for describing the

fed-batch fermentation process. This model was further

investigated in [21].

The optimal control models described in the previ-

ous paragraph only consider the maximization of the

final 1,3-PD yield. However, in actual operation, it

is also important to consider the cost associated with

changing the process inputs: large changes to the glyc-

erol and alkali addition rates are difficult (and poten-

tially very costly) to implement in practice. Accord-

ingly, in this paper, we consider a hybrid objective func-

tion that takes both 1,3-PD yield and input volatility into

account. The optimal control model involves minimiz-

ing this hybrid objective function subject to a nonlinear

multistage dynamic model for the fed-batch fermenta-

tion process, and continuous inequality constraints to

reflect operational requirements. Since the governing

multistage dynamic system is highly nonlinear, numeri-

cal techniques are unavoidable for solving the proposed

optimal control model. We develop a novel approach

based on the constraint transcription method [22], parti-

cle swarm optimization [23, 24, 25] and gradient-based

nonlinear programming [26, 27].

The remainder of this paper is organized as follows.

In Section 2, we present a nonlinear multistage dynamic

model to describe the microbial fed-batch fermentation

process. Next, in Section 3, we introduce a novel opti-

mal control model with hybrid objective function con-

sisting of two terms: the first term encourages high 1,3-

PD yield; the second term penalizes variation in the in-

put feeding rate (the control variable for the process).

By using the constraint transcription method, we obtain

an approximate parameter optimization problem, which

can be solved using the combined particle swarm and

gradient-based optimization algorithm described in Sec-

tion 4. Finally, in Section 5, we present the results from

our extensive numerical simulations.

2. Process dynamics

We consider the fed-batch fermentation process de-

scribed in [1] for converting glycerol to 1,3-PD. The

process model is derived by ignoring time-delay effects

and non-uniform space distribution. For batch mode,

the mass balance relationships for biomass, substrate

and reaction products can be expressed by the follow-

ing differential equations:

ẋ1(t) = µ(t)x1(t),

ẋ2(t) = −q2(t)x1(t),

ẋi(t) = qi(t)x1(t), i = 3, 4, 5,

where t denotes process time (in hours); and xi(t),

i = 1, 2, 3, 4, 5, are, respectively, the concentrations

of biomass, glycerol, 1,3-PD, acetic acid and ethanol

(x1(t) is measured in g L−1 and the other state variables

are measured in mmol L−1). Furthermore, µ(t) is the

specific growth rate of cells (in h−1); q2(t) is the spe-

cific consumption rate of substrate (in h−1); and qi(t),

i = 3, 4, 5, are, respectively, the specific formation rates

of the reaction products 1,3-PD, acetic acid and ethanol.

For feeding mode, the mass balance relationships

can be expressed by

ẋ1(t) = (µ(t) − D(t))x1(t),

ẋ2(t) = D(t)
( ρg

R + 1
− x2(t)

)

− q2(t)x1(t),

ẋi(t) = qi(t)x1(t) − D(t)xi(t), i = 3, 4, 5,

where D(t) denotes the dilution rate at time t, ρg denotes

the concentration of glycerol in the input feed, and R is

the ratio of alkali to glycerol in the input feed.

Based on the work in [1], the specific growth rate of

cells can be expressed as follows:

µ(t) :=
∆1x2(t)

x2(t) + k1

5
∏

l=2

(

1 −
xl(t)

x∗
l

)nl

,

where ∆1 is the maximum specific growth rate; x∗
l
,

l = 2, 3, 4, 5, are the maximum residual concentrations

of substrate and reaction products; k1 is the Monod sat-

uration constant; and nl, l = 2, 3, 4, 5, are given expo-

nents. Moreover the specific consumption rate of sub-

strate can be expressed as follows:

q2(t) := m2 +
µ(t)

Y2

+
∆2 x2(t)

x2(t) + k2

,
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where m2 is the maintenance term of substrate con-

sumption under substrate-limited conditions; Y2 is the

maximum growth yield; ∆2 is the maximum increment

of substrate consumption rate under substrate-sufficient

conditions; and k2 is the saturation constant for sub-

strate.

The specific formation rates of 1,3-PD and acetic

acid are defined as

qi(t) := mi + Yiµ(t) +
∆ix2(t)

x2(t) + ki

, i = 3, 4,

where m3 and m4 are the maintenance terms of 1,3-PD

and acetic acid formations under substrate-limited con-

ditions; Y3 and Y4 are the maximum 1,3-PD and acetic

acid yields; ∆3 and ∆4 are the maximum increments of

1,3-PD and acetic acid formation rates under substrate-

sufficient conditions; and k3 and k4 are the saturation

constants for 1,3-PD and acetic acid.

The specific formation rate of ethanol can be ex-

pressed by

q5(t) := q2(t)

(

c1

c2 + µ(t)x2(t)
+

c3

c4 + µ(t)x2(t)

)

,

where c1, c2, c3 and c4 are given parameters.

Furthermore, the dilution rate D(t) and volume V(t)

are given by

D(t) :=
u(t)

V(t)
,

V(t) := V0 +

∫ t

0

u(s)ds,

where V0 denotes the initial volume of solution in the

fermentor and u(t) denotes the input feeding rate.

Let

f b(t, x(t)) :=







































µ(t)x1(t)

−q2(t)x1(t)

q3(t)x1(t)

q4(t)x1(t)

q5(t)x1(t)







































and

f c(t, x(t),D(t)) :=









































(µ(t) − D(t))x1(t)

D(t)(
ρg

R+1
− x2(t)) − q2(t)x1(t)

q3(t)x1(t) − D(t)x3(t)

q4(t)x1(t) − D(t)x4(t)

q5(t)x1(t) − D(t)x5(t)









































,

where x(t) := (x1(t), x2(t), x3(t), x4(t), x5(t))⊤ is the state

vector and D(t) is the dilution rate defined above, which

depends on the input feeding rate.

Let T be the terminal time. Furthermore, let N be

the number of feeding modes. Since the fed-batch pro-

cess starts and ends in batch mode, there are exactly

2N + 1 modes in total (N feeding modes, N + 1 batch

modes). The complete fed-batch process can be ex-

pressed as the following nonlinear multistage dynamic

system [1]:

ẋ(t) =















f b(t, x(t)), t ∈ [t2 j, t2 j+1), j = 0, . . . ,N,

f c(t, x(t),D(t)), t ∈ [t2 j−1, t2 j), j = 1, . . . ,N,

x(0) = x0,

where t0, t1, . . . , t2N+1, are given switching times such

that 0 = t0 < t1 < t2 < · · · < t2N+1 = T ; and x0 is a

given initial state vector. Note that t2 j marks the end of

feeding mode and the beginning of batch mode, i.e., the

glycerol and alkali feeds are shut off at t = t2 j.

Clearly, during batch mode, the feeding rate is zero:

u(t) = 0, t ∈ [t2 j, t2 j+1), j = 0, . . . ,N.

During feeding mode, the feeding rate is subject to the

following constraint:

a j ≤ u(t) ≤ b j, t ∈ [t2 j−1, t2 j), j = 1, . . . ,N,

where a j and b j are lower and upper bounds for the in-

put feeding rate during the jth feeding mode.

Since the concentrations of biomass, glycerol and

reaction products must be restricted to biologically

meaningful ranges, we impose the following path con-

straints:

x∗i ≤ xi(t) ≤ x∗i , t ∈ [0, T ], i = 1, 2, 3, 4, 5,

where x∗i, i = 1, 2, 3, 4, 5, are, respectively, the lower

concentration thresholds for cell growth for biomass,

glycerol, 1,3-PD, acetic acid and ethanol, and x∗
i
, i =

1, 2, 3, 4, 5, are the corresponding upper concentration

thresholds (as used in the formula for µ(t)).

3. Optimal control model

We assume that the input feeding rate is constant

during each feeding mode. Then

u(t) = σ j, t ∈ [t2 j−1, t2 j), j = 1, . . . ,N,

where σ j denotes the input feeding rate during the

jth feeding mode. Hence, during the feeding mode

[t2 j−1, t2 j), the volume V(t) becomes

V(t) = V0 +

j−1
∑

l=1

∫ t2l

t2l−1

u(s)ds +

∫ t

t2 j−1

u(s)ds

= V0 +

j−1
∑

l=1

σl(t2l − t2l−1) + σ j(t − t2 j−1).
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Furthermore, the dilution rate during the feeding mode

[t2 j−1, t2 j) becomes

D(t) =
σ j

V(t)
.

The goal of glycerol bioconversion is to maximize the

concentration of 1,3-PD at the terminal time. Thus, we

consider the following optimization objective:

Objective 1 : max x3(T ).

Objective 1 is not the only consideration in practical fer-

mentation processes; the cost of changing the feeding

rate signal must also be considered. Indeed, in real fer-

mentation processes, making large changes to the feed-

ing rate may adversely affect process stability.

We use the concept of total variation to measure

feeding rate volatility. The total variation of the control

variable u : [0, T ]→ R is defined by

T
∨

0

u = sup

m
∑

r=1

∣

∣

∣u(ηr) − u(ηr−1)
∣

∣

∣,

where the supremum is taken over all partitions satisfy-

ing

0 = η0 < η1 < · · · < ηm−1 < ηm = T.

Using the results in [28], it can be shown that

T
∨

0

u = 2

N
∑

j=1

σ j.

To measure changes in the feeding rate signal, we define

an additional optimization objective as follows:

Objective 2 : min

T
∨

0

u = 2

N
∑

j=1

σ j.

Choosing a weight factor α ≥ 0 and combining Objec-

tives 1 and 2 leads to the following nonlinear multistage

optimal control problem, which we call Problem 1:

min −x3(T ) + 2α

N
∑

j=1

σ j

s.t. a j ≤ σ j ≤ b j, j = 1, . . . ,N,

x∗i ≤ xi(t) ≤ x∗i , t ∈ [0, T ], i = 1, . . . , 5.

4. Numerical solutions

The main difficulty with solving Problem 1 is the “infi-

nite index” path constraints on the concentration levels.

These constraints must hold at every point in the time

horizon and thus present a major computational chal-

lenge. To address this challenge, we will apply the con-

straint transcription method as described in [1, 22].

4.1. Constraint transcription

First, note that the concentration bounds can be writ-

ten in equivalent form as

5
∑

i=1

∫ T

0

min{0, x∗i − xi(t)}dt

+

5
∑

i=1

∫ T

0

min{0, xi(t) − x∗i}dt = 0.

(1)

However, since the min{0, ·} function is non-

differentiable, constraint (1) is not suitable for gradient-

based optimization techniques (which we will exploit

later to design a solution algorithm). We therefore

consider the following smooth approximation of the

min{0, ·} function:

min{0, η} ≈ ϕε(η),

where

ϕε(η) :=



























η, if η < −ε,

−(η − ε)2/4ε, if − ε ≤ η ≤ ε,

0, otherwise,

and ε > 0 is an adjustable parameter. It is easy to verify

that ϕε is continuously differentiable and non-positive.

Using ϕε, constraint (1) is approximated by

5
∑

i=1

∫ T

0

{

ϕε(x∗i − xi(t)) + ϕε(xi(t) − x∗i)
}

dt ≥ −γ, (2)

where γ > 0 is an adjustable parameter. Hence, with

this approximation scheme, the concentration bounds

in Problem 1 are approximated by the single canonical

constraint (2). This constraint is a standard constraint

and can be readily handled using the computational al-

gorithm described later in Section 4.2.

Problem 1 can now be approximated by the follow-

ing optimization problem called Problem 2:

min −x3(T ) + 2α

N
∑

j=1

σ j

s.t.

5
∑

i=1

∫ T

0

{

ϕε(x∗i − xi(t)) + ϕε(xi(t) − x∗i)
}

dt ≥ −γ,

a j ≤ σ j ≤ b j, j = 1, . . . ,N.
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4.2. Algorithm description

Problem 2 is a smooth optimal parameter selection

problem that can be solved using the gradient-based op-

timization methods in [27]. These methods, however,

are only designed to find local optimal solutions. Hence,

in this section, we combine gradient-based optimization

with particle swarm optimization (PSO) to develop a

global search algorithm for solving Problem 2.

PSO was originally developed by Kennedy and

Eberhart as an evolutionary computational technique

based on smarm intelligence [23]. In recent years, PSO

has received increasing attention in the optimization

field [24, 25]. Normally, the traditional PSO method is

designed to deal with unconstrained optimization prob-

lems. Problem 2, however, involves a variety of dif-

ferent constraints, including a nonlinear inequality con-

straint on the state variables.

Throughout this section, we let σ ∈ R
N denote the

collection of control values σ j, j = 1, . . . ,N, i.e., σ is

the decision vector in Problem 2. The input parameters

for our algorithm are defined below:

• M is the total number of particles in the swarm.

• ǫ is a tolerance parameter.

• Lmin and Lmax are lower and upper bounds for the

number of iterations.

• Lǫ is an integer for testing convergence (if the

optimal objective value does not improve suffi-

ciently over Lǫ iterations, then we switch from

particle swarm to gradient-based search).

• ωmin and ωmax are the minimum and maximum

inertia weights.

• π1 and π2 are the acceleration coefficients.

The algorithm also maintains the following vari-

ables as the iterations proceed:

• l is the iteration index.

• σm,∗ is the best control strategy found by the mth

individual particle.

• σ∗ is the best control strategy found by the

swarm.

• Jm,∗ is the best objective value found by the mth

individual particle.

• J∗
l

is the best objective value found by the swarm

over the first l iterations.

We use the following notation to represent the objec-

tive function and the left-hand side of the first constraint

in Problem 2:

G(σ) := −x3(T ) + 2α

N
∑

j=1

σ j,

H(σ) :=

5
∑

i=1

∫ T

0

{

ϕε(x∗i − xi(t)) + ϕε(xi(t) − x∗i)
}

dt.

Our algorithm exploits the gradients of G(·) and H(·)

with respect to σ. These gradients can be computed us-

ing the methods in [27].

Algorithm 1. Solves Problem 2 using gradient-based

optimization and PSO techniques.

1. Set 1→ l, +∞ → Jm,∗ and +∞ → J∗
0
.

2. Form a sequence
{

σm
}M

m=1 of admissible particles by

randomly sampling over the rectangular region defined

by the box constraints

a j ≤ σ j ≤ b j, j = 1, . . . ,N.

3. Form a sequence {υm}M
m=1

of particle velocities by

randomly sampling over a suitable rectangular region.

4. For each m = 1, . . . ,M, check the value of H(σm). If

H(σm) < −γ (i.e., σm is infeasible for Problem 2), then

perform a gradient-ascent search (maximizing H(·))

to obtain a feasible point σ̃m for Problem 2 and set

σ̃m → σm.

5. For each m = 1, . . . ,M, update the optimal strat-

egy for the mth particle: if G(σm) < Jm,∗, then set

G(σm)→ Jm,∗ and σm → σm,∗.

6. Update the global optimal strategy: if min G(σm) <

J∗
l−1

, then set min G(σm) → J∗
l

and arg min G(σm) →

σ∗; otherwise, set J∗
l−1
→ J∗

l
.

7. If l = Lmax, or if l ≥ Lmin and |J∗
l
− J∗

l−Lǫ
| < ǫ, then use

gradient-based optimization methods (initialized with

σ∗ as the starting point) to determine an optimal solu-

tion and stop. Otherwise, go to Step 8.

8. Calculate the inertia weight for the particles:

ωmax −
ωmax − ωmin

Lmax − 2
(l − 1)→ ω.
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Number of modes Mode duration (s)

Phase Start time (h) End time (h) Feeding Batch Feeding Batch Final Batch

1 5.33 6.13 29 29 5 95 75

2 6.13 7.15 37 37 7 93 65

3 7.15 7.83 25 25 8 92 40

4 7.83 8.83 36 36 8 92 92

5 8.83 12.16 120 120 7 93 81

6 12.16 15.83 133 133 6 94 6

7 15.83 18.10 82 82 4 96 68

8 18.10 19.83 63 63 3 97 25

9 19.83 23.83 144 144 2 98 98

10 23.83 24.16 12 12 1 99 87

Table 1: Phase characteristics for the test scenario in Section 5. Each phase consists of a series of identical 100 second feeding-batch combinations

plus a final feeding-batch combination that may have a different duration. Within each phase, all feeding modes have the same duration and all

batch modes except the last have the same duration.

9. For each m = 1, . . . ,M, update the position and ve-

locity of the mth particle:

ωυm
+ π1r1(σm,∗ − σm) + π2r2(σ∗ − σm)→ υm,

σm
+ υm → σm,

where r1 and r2 are random numbers in [0, 1].

10. For each m = 1, . . . ,M, check whether σm violates

the box constraints in Step 2: For any component of σm

that violates its lower bound, update that component to

be equal to the lower bound; for any component that

violates its upper bound, update that component to be

equal to the upper bound.

11. Set l + 1→ l and return to Step 4.

5. Numerical results and discussion

To test Algorithm 1, we considered the test scenario

in [1], which is based on real experimental data. In

this test scenario, the fed-batch process consists of an

initial batch mode followed by 10 phases, where each

phase involves an equal number of feeding and batch

modes operating in succession. Within each phase, all

feeding modes have the same duration, and all batch

modes except the last have duration 100 seconds mi-

nus the feeding mode duration. The characteristics of

each phase are given in Table 1. The entire fed-batch

process operates for T = 24.16 hours, with the ini-

tial batch mode operating for 5.33 hours. For the ini-

tial state values, the initial concentration of biomass is

0.1115 g L−1, the initial concentration of glycerol is

495 mmol L−1, and the initial concentrations of 1,3-

PD, acetic acid and ethanol are all 0 mmol L−1. Hence,

x0 = (0.1115, 495, 0, 0, 0)⊤. Furthermore, the initial

volume in the fermentor is V0 = 5 L, the concentra-

tion of glycerol in the input feed is ρg = 10762 mmol

L−1, and the ratio of alkali to glycerol in the input feed

is R = 0.75.

5.1. Parameter identification

Before solving the optimal control problem, the

values of the model constants in the dynamic model

must be determined. To do this, we solved the follow-

ing least-squares optimization problem corresponding

to the experimental data in [29]:

min

5
∑

i=1

p
∑

r=κi

ςi(xi(τr) − x̂r
i )

2, (3)

where xi(τr) is the predicted value of state i at sample

time τr, x̂r
i

is the measured value of state i at sample

time τr , and the constants ς1, ς2, ς3, ς4 and ς5 are weight

factors. The aim here is to choose the tunable model pa-

rameters mi, i = 2, 3, 4; Yi, i = 2, 3, 4; ∆i, i = 2, 3, 4;

ki, i = 1, 2, 3, 4; and ci, i = 1, 2, 3, 4 to minimize (3),

which measures the discrepancy between the model and

the experimental data. Note that ∆1, n2, n3, n4, n5, x∗
1
,

x∗
2
, x∗

3
, x∗

4
, and x∗

5
have well-defined values and do not

need to be tuned. As in [29], we use ∆1 = 0.67, n2 = 1,

n3 = n4 = n5 = 3, x∗
1
= 6, x∗

2
= 2039, x∗

3
= 1036,

x∗
4
= 1026, and x∗

5
= 361.

The test data in [29] contains 12 data points (p = 12)

as shown in Table 2. This data was generated using a

constant feeding rate in each phase, the values of which

6



r τr x̂r
1

(g L−1) x̂r
2

(mmol L−1) x̂r
3

(mmol L−1) x̂r
4

(mmol L−1) x̂r
5

(mmol L−1)

1 2.00 0.50 434.35 − − −

2 4.00 1.31 323.26 69.74 102.50 −

3 5.83 2.60 182.61 168.82 164.83 −

4 7.83 3.62 202.07 301.84 198.67 −

5 9.83 4.90 212.17 411.58 282.50 −

6 11.83 4.85 219.24 488.82 213.50 43.26

7 13.83 5.42 209.13 673.16 176.67 53.04

8 15.83 5.23 247.50 705.79 196.33 90.43

9 17.83 4.92 242.39 745.26 187.50 103.91

10 19.83 5.19 252.50 862.27 238.33 151.74

11 21.83 5.07 242.39 824.47 204.83 101.30

12 23.83 4.91 222.17 797.24 234.00 147.61

Table 2: Experimental data used in Section 5.1.

Phases 1-2 Phases 3-4 Phases 5-6 Phase 7 Phase 8 Phases 9-10

u(t) 1.32489 1.25489 1.32789 1.39489 1.53487 1.60487

Table 3: Feeding rates (in L h−1) for the experimental data used in Section 5.1.

are given in Table 3. For the least-squares error func-

tion (3), the weight factors ςi, i = 1, 2, 3, 4, 5,were cho-

sen as follows:

ς1 = 1.0 × 102, ς2 = 1.5 × 10−2, ς3 = 1.5 × 10−2,

ς4 = 1.0 × 10−2, ς5 = 1.0 × 10−2.

We solved the estimation problem using the Fortran op-

timization solver NLPQLP [30] combined with the gra-

dient computation procedure in [31]. The optimal pa-

rameters obtained are given in Table 4. The correspond-

ing state trajectories are shown in Figure 1.

5.2. Optimal control strategy

Based on the dynamic model with optimized param-

eters from Section 5.1, the next step is to determine the

optimal control strategy. For the optimal control prob-

lem, the lower concentration thresholds for biomass,

glycerol, 1,3-PD, acetic acid, and ethanol are given as

follows:

x∗1 = 0.01, x∗2 = 15, x∗3 = 0, x∗4 = 0, x∗5 = 0.

The upper concentration thresholds are as defined in

Section 5.1. Recall that these thresholds define the path

constraints. The lower and upper bounds for the feeding

rate are listed in Table 5.

Our implementation of Algorithm 1 uses the Fortran

software NLPQLP [30] to perform the gradient-based

optimization process in Step 7. For the parameters in

Algorithm 1, we used the following values:

M = 100, ǫ = 0.01, Lmin = 1, Lmax = 1000,

Lǫ = 5, π1 = π2 = 1, ωmin = 1, ωmax = 100.

Phases a j b j

1-2 0.6624 1.9873

3-4 0.6274 1.8823

5-6 0.6624 1.9873

7 0.6974 2.0923

8 0.7674 2.3023

9-10 0.8024 2.4073

Table 5: Lower and upper bounds for the feeding rate in Section 5.2.

7



0 5 10 15 20 25
0

1

2

3

4

5

6

t (in hours)

x 1(t
)

(a) Concentration of biomass (in g L−1)

0 5 10 15 20 25
150

200

250

300

350

400

450

500

t (in hours)

x 2(t
)

(b) Concentration of glycerol (in mmol L−1)

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000

t (in hours)

x 3(t
)

(c) Concentration of 1,3-PD (in mmol L−1)

0 5 10 15 20 25
0

50

100

150

200

250

300

t (in hours)

x 4(t
)

(d) Concentration of acetic acid (in mmol L−1)

0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

t (in hours)

x 5(t
)

(e) Concentration of ethanol (in mmol L−1)

Figure 1: Optimal trajectories for the parameter tuning problem in Section 5.1. The blue lines represent the model predictions corresponding to the

optimal parameter estimates; the red crosses represent the experimental data.
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i mi Yi ∆i ki ci

1 − − 0.6700 0.056 0.045

2 0.3420 0.0060 8.8703 30.0420 0.01475

3 −0.6120 57.9232 9.2967 3.1000 1.1254

4 −0.1940 12.9718 2.8439 3.1420 10.0900

Table 4: Optimal parameter estimates for Section 5.1.

α x3(T )

T
∨

0

u

0 971.32 1353.68

0.1 966.99 1267.27

0.2 947.81 1136.21

0.3 939.57 1102.75

0.4 931.13 1078.62

0.5 924.82 1064.30

0.6 922.73 1060.43

0.7 922.04 1059.37

0.8 921.42 1058.92

0.9 921.28 1058.58

1 921.28 1058.43

Table 6: Numerical results for Section 5.2.

Using Algorithm 1 (implemented within Fortran),

we solved Problem 2 for different values of α. The opti-

mal 1,3-PD yields and feeding rate variations are given

in Table 6. The results show that when α is increased,

the control variation can be reduced with little change

to 1,3-PD yield. For example, the difference in 1,3-PD

yield between α = 0 and α = 1 is around 5.15%, but the

difference in control variation is around 21.81%. The

optimal state trajectories for α = 0 and α = 1 are shown

in Figure 2.

6. Conclusion

This paper has studied a nonlinear multistage dy-

namic system for describing the fed-batch fermentation

process used in 1,3-PD production. To maximize the

productivity of the process, we formulated a novel op-

timization model in which the objective function mea-

sures both the final yield of 1,3-PD and the cost of

changing the substrate feed. Large changes in the sub-

strate feed may cause potential hazards, or could even

be impossible to implement in practice. Our hybrid cost

function is designed to ensure that an appropriate bal-

ance is struck between 1,3-PD yield and implementa-

tion cost. To solve the proposed non-standard optimiza-

tion model, a computational method based on constraint

transcription, particle swarm optimization and gradient-

based nonlinear programming was developed. The nu-

merical results in Section 5 show that the method is suc-

cessful at producing high-quality control strategies with

low feeding rate volatility.
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